metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m713-m714

Bis(2,2′-bi­pyridyl-κ2N,N′)di­chlorido­rhodium(III) perchlorate

aDepartamento Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo, Spain, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo–CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 3 April 2012; accepted 25 April 2012; online 2 May 2012)

The asymmetric unit of the title compound, [RhCl2(C10H8N2)2]ClO4, consists of one unit of the cationic complex [RhCl2(bipy)2]+ and one uncoordinated perchlorate anion. The RhIII atom is coordinated by four N atoms from two bipyridyl ligands and two Cl atoms, forming a distorted octa­hedral environment. The Cl ligands are cis. Two intramolecular C—H⋯Cl hydrogen bonds occur in the cationic complex . In the crystal, mol­ecules are linked together by a hydrogen-bond network involving the H atoms of bipyridyl rings and perchlorate anions. An O atom of the perchlorate anion is disordered over two sites, with an occupancy-factor ratio of 0.78 (3):0.22 (3).

Related literature

For potential applications of noble metal complexes of pyridyl ligands in biochemistry, catalysis and anti­cancer activity, see: Chifotides et al. (2004[Chifotides, H. T., Fu, P. K. L., Dunbar, K. R. & Turro, C. (2004). Inorg. Chem. 43, 1175-1183.]); Mbaye et al. (2003[Mbaye, M. D., Demersement, B., Reneaud, J.-L., Toupet, L. & Bruneau, C. (2003). Angew. Chem. Int. Ed. 42, 5066-5068.]); Karidi et al. (2005[Karidi, K., Garoufis, A., Tsipis, A., Hadjiliadis, N., Dulk, H. & Reedijk, J. (2005). Dalton Trans. pp. 1176-1187.]); Tan et al. (2005[Tan, L. F., Chao, H., Li, H., Liu, Y. J., Sun, B., Wei, W. & Ji, L. N. (2005). J. Inorg. Biochem. 99, 513-520.]). For their photochemical and photophysical properties, see: Forster & Rund (2003[Forster, L. C. & Rund, J. V. (2003). Inorg. Chem. Commun. 6, 78-81.]); Arachchige et al. (2008[Arachchige, S. M., Brown, J. & Brewe, K. J. (2008). J. Photochem. Photobiol. A, 197, 13-17.]) and for their electrochemical properties, see: Rasmussen et al. (1990[Rasmussen, S. C., Richter, M. M., Yi, E., Place, H. & Brewer, K. J. (1990). Inorg. Chem. 29, 3926-3932.]). For related structures, see: Al-Noaimi & Haddad (2007[Al-Noaimi, M. & Haddad, S. F. (2007). Acta Cryst. E63, m2332.]); Andansen & Josephsen (1971[Andansen, P. & Josephsen, J. (1971). Acta Chem. Scand. 25, 3255-3260.]); Choudhury et al. (2006[Choudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489-m1491.]); De Munno et al. (1993[De Munno, G., Nicolò, F. & Julve, M. (1993). Acta Cryst. C49, 1049-1052.]); Figgis et al. (1985[Figgis, B. N., Reynolds, P. A. & White, A. H. (1985). Inorg. Chem. 24, 3762-3770.]); Fontaine (2001[Fontaine, F. G. (2001). Acta Cryst. E57, m270-m271.]); Gao & Ng (2010[Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1692.]); Kramer & Straehle (1986[Kramer, T. & Straehle, J. (1986). Z. Naturforsch. Teil B, 41, 692-696.]); Sofetis et al. (2006[Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389-3395.]); Strenger et al. (2000[Strenger, I., Rosu, T. & Negoiu, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 489-490.]). For similar structures with platinum group metals, see: Lahuerta et al. (1991[Lahuerta, P., Latorre, J., Martínez-Máñez, R., García-Granda, S. & Gómez-Beltrán, F. (1991). Acta Cryst. C47, 519-522.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m180.]); Helberg et al. (1996[Helberg, L. E., Orth, S. D., Sabat, M. & Harman, W. D. (1996). Inorg. Chem. 35, 5584-5594.]); Prajapati et al. (2008[Prajapati, R., Yadan, V. K., Dubey, S. K., Durham, B. & Mishra, L. (2008). Indian J. Chem. Sect. A, 47, 1780-1787.]); Eggleston et al. (1985[Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573-4580.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl2(C10H8N2)2]ClO4

  • Mr = 585.63

  • Orthorhombic, P 21 21 21

  • a = 11.0344 (2) Å

  • b = 11.6796 (2) Å

  • c = 17.0884 (3) Å

  • V = 2202.33 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.12 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.973, Tmax = 1

  • 12115 measured reflections

  • 6922 independent reflections

  • 5569 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.081

  • S = 1.02

  • 6922 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2630 Friedel pairs

  • Flack parameter: 0.47 (3)

Table 1
Selected geometric parameters (Å, °)

Rh1—N2 2.019 (2)
Rh1—N1 2.023 (2)
Rh1—N3 2.037 (2)
Rh1—N4 2.038 (3)
Rh1—Cl3 2.3291 (9)
Rh1—Cl2 2.3344 (9)
N1—Rh1—N3 174.22 (10)
Cl3—Rh1—Cl2 91.18 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.70 3.301 (4) 123
C11—H11⋯Cl3 0.93 2.76 3.358 (4) 123
C3—H3⋯O1i 0.93 2.29 3.192 (5) 164
C8—H8⋯O1ii 0.93 2.56 3.142 (6) 121
C9—H9⋯O1ii 0.93 2.58 3.154 (6) 120
C13—H13⋯O4iii 0.93 2.56 3.427 (6) 155
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In recent years, noble metal complexes of pyridyl ligands have received much attention because of their rich electrochemical (Rasmussen et al., 1990, photophysical (Forster & Rund, 2003) and photochemical (Arachchige et al., 2008) properties, and their potential applications in catalysis (Mbaye et al., 2003), biochemistry (Tan et al., 2005; Chifotides et al., 2004) and anticancer activity (Karidi et al., 2005). Bipyridine (bipy) is one of the most commonly used bidentate ligand of this type in the formation of wide variety of transition metal complexes with a general formula of [MII(bipy)2X2] (M = Co, Ni, Mn, Fe) in which X is an coordinated anionic ligand such as CN, SCN and chloride (De Munno et al., 1993; Eggleston et al., 1985; Kramer & Straehle, 1986; Al-Noaimi and Haddad, 2007; Fontaine, 2001; Choudhury et al., 2006; Gao & Ng, 2010) and complexes with cationic part [MIIICl2(bipy)2]+ (M = Re, Ru, Co, Ga) and any counter anion like Cl-, PF6- (Figgis et al., 1985; Sofetis et al., 2006; Andansen & Josephsen, 1971; Strenger et al., 2000; Kim et al., 2009; Prajapati et al., 2008; Helberg et al., 1996). The complex [RhCl2(bipy)2]Cl.2H2O has also been obtained and crystallographycaly determined by Lahuerta et al., 1991. Yet, no crystal structure has been reported for the cationic complex cis-[Rh(bipy)2Cl 2]+ in its perchlorate form as counter anion, therefore, we report the crystal structure of compound (I).

Complex (I) crystallizes in the orthorhombic space group P212121. The molecular structure of (I) depicted in Figure 1. It has a distorted octahedral geometry with the two chloride ions in cis positions. Selected bond lengths for the complex are given in Table 1. The Rh–N axial bond distance (2.038 (3) Å) is slightly longer than Rh–N equatorial bonds (average 2.026 (5) Å). Its may be well compared with the negligible difference between equatorial and axial M–N bonds distances seen in the analogous complexes of platinum metal group (Lahuerta et al., 1991; Kim et al., 2009; Helberg et al., 1996; Prajapati et al., 2008; Eggleston et al., 1985), but greater distortion observed in majority of transition metal complexes (Strenger et al., 2000; Fontaine, 2001; Kramer & Straehle, 1986; Sofetis et al., 2006; Figgis et al., 1985; Choudhury et al., 2006; Gao & Ng, 2010). The Rh–Cl bond distances in (I) are 2.3291 (9) (equatorial) and 2.3344 (9) Å (axial). The Neq–Rh–Neq angle is 174.22 (10)° and its distorted from linearity by approximately 6 °. Also Cleq–Rh–Clax angle (91.18 (4) °) is nearly octahedral. The cis isomerization of cationic complex [RhCl2(bipy)2]+ is stabilized by short contacts. Coordinated chlorides which situated in cis position to respect to each other make up short contact Cl2···H1 and Cl3···H11 with distances 2.7 and 2.76 Å, respectively (Tabl. 2). The crystal lattice of (I) is made up of well separated ClO4- anions and [RhCl2(bipy)2]+ cations. The perchlorate anion contribute to forming extensive hydrogen bonding net linked together cationic and anionic parts of the structure. The interactions involve the hydrogen bonding between H atoms of bipy ring with oxygen atoms uncoordinated perchlorate anion. Each oxygen atoms participates in four hydrogen bonds to H atoms of aryl groups (Tabl. 2). The atom O2 of the perchlorate anion is disordered and splited over two sites with refined occupancy ratio of 0.78 (3):0.22 (3).

Related literature top

For potential applications of noble metal complexes of pyridyl ligands in biochemistry, catalysis and anticancer activity, see: Chifotides et al. (2004); Mbaye et al. (2003); Karidi et al. (2005); Tan et al. (2005). For their photochemical and photophysical properties, see: Forster & Rund (2003); Arachchige et al. (2008) and for their electrochemical properties, see: Rasmussen et al. (1990). For related structures, see: Al-Noaimi & Haddad (2007); Andansen & Josephsen (1971); Choudhury et al. (2006); De Munno et al. (1993); Figgis et al. (1985); Fontaine (2001); Gao & Ng (2010); Kramer & Straehle (1986); Sofetis et al. (2006); Strenger et al. (2000). For similar structures with platinum group metals, see: Lahuerta et al. (1991); Kim et al. (2009); Helberg et al. (1996); Prajapati et al. (2008); Eggleston et al. (1985).

Experimental top

To a solution of RhCl3.xH2O (0.05 g, 0.231 mmol) and KClO4 (0.09 g, 0.693 mmol) in H2O (10 ml) was added 2,2'-bipyridine (0.04 g, 0.462 mmol) in CH3OH (10 ml), and was stirred for 2 h to yellow solution resulted. Yellowish rhombohedral crystals suitable for X-ray analysis were obtained by slow evaporation during two weeks. RhCl3.xH2O purchased from Johnson Matthey, all other reagents was obtained commercially from Sigma-Aldrich and used without futher purification.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The value of the Flack parameter, 0.47 (3) suggests that the crystal is a racemic twin.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A view of [RhCl2(C10H8N2)2]ClO4 asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.
Bis(2,2'-bipyridyl-κ2N,N')dichloridorhodium(III) perchlorate top
Crystal data top
[RhCl2(C10H8N2)2]ClO4F(000) = 1168
Mr = 585.63Dx = 1.766 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 4926 reflections
a = 11.0344 (2) Åθ = 3.5–32.1°
b = 11.6796 (2) ŵ = 1.18 mm1
c = 17.0884 (3) ÅT = 293 K
V = 2202.33 (8) Å3Rhombohedron, yellow
Z = 40.19 × 0.16 × 0.12 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
6922 independent reflections
Radiation source: Enhance (Mo) X-ray Source5569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.2673 pixels mm-1θmax = 32.1°, θmin = 3.5°
ω scansh = 816
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1710
Tmin = 0.973, Tmax = 1l = 2225
12115 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0292P)2 + 0.1669P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.001
wR(F2) = 0.081Δρmax = 0.75 e Å3
S = 1.02Δρmin = 0.25 e Å3
6922 reflectionsAbsolute structure: Flack (1983), 2630 Friedel pairs
294 parametersAbsolute structure parameter: 0.47 (3)
0 restraints
Crystal data top
[RhCl2(C10H8N2)2]ClO4V = 2202.33 (8) Å3
Mr = 585.63Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.0344 (2) ŵ = 1.18 mm1
b = 11.6796 (2) ÅT = 293 K
c = 17.0884 (3) Å0.19 × 0.16 × 0.12 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
6922 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5569 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 1Rint = 0.026
12115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.75 e Å3
S = 1.02Δρmin = 0.25 e Å3
6922 reflectionsAbsolute structure: Flack (1983), 2630 Friedel pairs
294 parametersAbsolute structure parameter: 0.47 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.98325 (2)0.241474 (19)0.367163 (12)0.04095 (7)
Cl10.97063 (10)0.18258 (8)0.63515 (5)0.0629 (2)
Cl21.10302 (9)0.40548 (7)0.35644 (6)0.0609 (2)
Cl30.80775 (9)0.35183 (8)0.37395 (6)0.0603 (2)
N10.9798 (2)0.2369 (2)0.48547 (13)0.0439 (5)
N20.8794 (2)0.1010 (2)0.38286 (14)0.0426 (6)
N30.9942 (3)0.2300 (2)0.24844 (13)0.0467 (6)
N41.1338 (3)0.1414 (2)0.35733 (15)0.0455 (6)
O11.0370 (4)0.2722 (3)0.6687 (2)0.1228 (15)
O2A0.9396 (14)0.1068 (7)0.6981 (7)0.102 (3)0.78 (3)
O2B0.891 (4)0.123 (3)0.6744 (18)0.102 (3)0.22 (3)
O31.0402 (4)0.1234 (3)0.57914 (19)0.1075 (12)
O40.8704 (4)0.2320 (5)0.5957 (2)0.1495 (17)
C11.0374 (3)0.3097 (3)0.5332 (2)0.0557 (9)
H11.08050.37050.51170.067*
C21.0344 (4)0.2968 (4)0.6128 (2)0.0654 (11)
H21.07550.34810.64480.078*
C30.9706 (4)0.2082 (4)0.6450 (2)0.0672 (11)
H30.9680.19850.6990.081*
C40.9098 (4)0.1331 (3)0.59588 (19)0.0586 (9)
H40.86570.07250.61660.07*
C50.9153 (3)0.1492 (3)0.51615 (17)0.0446 (7)
C60.8570 (3)0.0741 (2)0.45826 (17)0.0442 (7)
C70.7849 (4)0.0179 (3)0.4774 (2)0.0546 (9)
H70.77080.0360.52970.065*
C80.7341 (4)0.0825 (3)0.4193 (2)0.0665 (11)
H80.68580.14520.43160.08*
C90.7550 (4)0.0539 (3)0.3429 (2)0.0637 (10)
H90.720.09630.30280.076*
C100.8279 (3)0.0380 (3)0.3260 (2)0.0535 (9)
H100.84210.05720.2740.064*
C110.9169 (4)0.2771 (3)0.1977 (2)0.0629 (10)
H110.84960.31630.21660.075*
C120.9344 (4)0.2689 (4)0.1183 (2)0.0719 (11)
H120.87970.30220.08370.086*
C131.0325 (5)0.2118 (3)0.0909 (2)0.0726 (13)
H131.04530.20580.03730.087*
C141.1141 (4)0.1621 (3)0.1429 (2)0.0632 (10)
H141.1820.12310.12490.076*
C151.0912 (3)0.1724 (3)0.22194 (18)0.0461 (8)
C161.1686 (3)0.1207 (3)0.28234 (18)0.0464 (8)
C171.2693 (4)0.0539 (3)0.2680 (2)0.0595 (9)
H171.29560.04220.21690.071*
C181.3302 (4)0.0049 (3)0.3289 (3)0.0698 (12)
H181.39680.0420.31960.084*
C191.2925 (4)0.0256 (3)0.4035 (3)0.0686 (11)
H191.33310.00740.44550.082*
C201.1956 (4)0.0945 (3)0.4161 (2)0.0563 (9)
H201.17150.10940.46730.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.04542 (12)0.04254 (12)0.03489 (10)0.00107 (11)0.00011 (10)0.00272 (10)
Cl10.0798 (6)0.0651 (5)0.0438 (4)0.0109 (5)0.0048 (5)0.0050 (4)
Cl20.0664 (6)0.0557 (5)0.0606 (5)0.0147 (4)0.0015 (5)0.0072 (4)
Cl30.0580 (5)0.0612 (5)0.0618 (5)0.0098 (4)0.0026 (5)0.0058 (5)
N10.0474 (14)0.0471 (13)0.0370 (11)0.0040 (18)0.0028 (10)0.0026 (10)
N20.0443 (15)0.0422 (13)0.0414 (15)0.0005 (11)0.0015 (12)0.0017 (11)
N30.0537 (16)0.0491 (14)0.0375 (12)0.0050 (17)0.0008 (11)0.0049 (11)
N40.0483 (16)0.0430 (13)0.0451 (15)0.0016 (12)0.0021 (13)0.0042 (12)
O10.157 (4)0.120 (3)0.091 (2)0.073 (3)0.009 (2)0.032 (2)
O2A0.160 (8)0.084 (3)0.063 (4)0.040 (4)0.005 (4)0.011 (3)
O2B0.160 (8)0.084 (3)0.063 (4)0.040 (4)0.005 (4)0.011 (3)
O30.123 (3)0.108 (3)0.092 (2)0.013 (2)0.025 (2)0.0163 (19)
O40.137 (4)0.207 (5)0.104 (3)0.053 (4)0.027 (3)0.028 (3)
C10.057 (2)0.062 (2)0.0480 (18)0.0090 (18)0.0027 (17)0.0091 (15)
C20.063 (3)0.085 (3)0.048 (2)0.002 (2)0.0115 (18)0.0183 (19)
C30.070 (3)0.090 (3)0.0414 (18)0.009 (2)0.0019 (19)0.0028 (17)
C40.069 (3)0.065 (2)0.0419 (18)0.008 (2)0.0038 (18)0.0098 (17)
C50.0456 (19)0.0481 (17)0.0401 (16)0.0076 (15)0.0025 (14)0.0040 (14)
C60.051 (2)0.0390 (16)0.0432 (16)0.0056 (15)0.0066 (15)0.0031 (13)
C70.067 (3)0.0458 (19)0.0512 (18)0.0012 (17)0.0086 (18)0.0064 (16)
C80.071 (3)0.049 (2)0.079 (3)0.0105 (19)0.011 (2)0.0006 (19)
C90.069 (3)0.058 (2)0.063 (2)0.009 (2)0.0035 (19)0.0161 (19)
C100.060 (2)0.056 (2)0.0453 (18)0.0061 (18)0.0009 (17)0.0073 (16)
C110.071 (3)0.069 (2)0.0481 (19)0.004 (2)0.0041 (18)0.0063 (17)
C120.090 (3)0.079 (3)0.046 (2)0.004 (2)0.0136 (19)0.007 (2)
C130.108 (4)0.070 (2)0.0402 (19)0.006 (2)0.002 (2)0.0029 (17)
C140.081 (3)0.062 (2)0.047 (2)0.004 (2)0.011 (2)0.0068 (17)
C150.056 (2)0.0385 (16)0.0441 (17)0.0077 (15)0.0018 (16)0.0020 (13)
C160.054 (2)0.0384 (16)0.0467 (18)0.0089 (15)0.0023 (15)0.0056 (13)
C170.060 (2)0.055 (2)0.063 (2)0.0002 (19)0.0051 (19)0.0151 (18)
C180.057 (3)0.054 (2)0.098 (3)0.0120 (19)0.003 (2)0.013 (2)
C190.061 (3)0.061 (2)0.084 (3)0.012 (2)0.014 (2)0.011 (2)
C200.060 (2)0.059 (2)0.050 (2)0.0023 (18)0.0066 (18)0.0101 (17)
Geometric parameters (Å, º) top
Rh1—N22.019 (2)C4—H40.93
Rh1—N12.023 (2)C5—C61.470 (4)
Rh1—N32.037 (2)C6—C71.377 (5)
Rh1—N42.038 (3)C7—C81.369 (5)
Rh1—Cl32.3291 (9)C7—H70.93
Rh1—Cl32.3291 (9)C8—C91.366 (5)
Rh1—Cl22.3344 (9)C8—H80.93
Rh1—Cl22.3344 (9)C9—C101.373 (5)
Cl1—O2B1.31 (3)C9—H90.93
Cl1—O11.401 (3)C10—H100.93
Cl1—O31.408 (3)C11—C121.375 (5)
Cl1—O41.418 (4)C11—H110.93
Cl1—O2A1.434 (9)C12—C131.354 (6)
N1—C11.338 (4)C12—H120.93
N1—C51.353 (4)C13—C141.392 (6)
N2—C101.344 (4)C13—H130.93
N2—C61.349 (4)C14—C151.379 (5)
N3—C111.335 (4)C14—H140.93
N3—C151.343 (4)C15—C161.469 (5)
N4—C201.332 (4)C16—C171.380 (5)
N4—C161.359 (4)C17—C181.365 (5)
C1—C21.369 (5)C17—H170.93
C1—H10.93C18—C191.362 (6)
C2—C31.367 (6)C18—H180.93
C2—H20.93C19—C201.356 (5)
C3—C41.387 (5)C19—H190.93
C3—H30.93C20—H200.93
C4—C51.377 (4)
N2—Rh1—N180.50 (10)C2—C3—C4118.9 (3)
N2—Rh1—N396.45 (10)C2—C3—H3120.5
N1—Rh1—N3174.22 (10)C4—C3—H3120.5
N2—Rh1—N490.41 (11)C5—C4—C3119.5 (4)
N1—Rh1—N494.74 (10)C5—C4—H4120.3
N3—Rh1—N480.32 (11)C3—C4—H4120.3
N2—Rh1—Cl388.36 (8)N1—C5—C4120.6 (3)
N1—Rh1—Cl387.08 (7)N1—C5—C6114.9 (3)
N3—Rh1—Cl397.78 (8)C4—C5—C6124.4 (3)
N4—Rh1—Cl3177.61 (8)N2—C6—C7121.0 (3)
N2—Rh1—Cl388.36 (8)N2—C6—C5115.1 (3)
N1—Rh1—Cl387.08 (7)C7—C6—C5123.9 (3)
N3—Rh1—Cl397.78 (8)C8—C7—C6119.6 (3)
N4—Rh1—Cl3177.61 (8)C8—C7—H7120.2
Cl3—Rh1—Cl30.00 (5)C6—C7—H7120.2
N2—Rh1—Cl2176.85 (7)C9—C8—C7119.3 (4)
N1—Rh1—Cl296.36 (8)C9—C8—H8120.3
N3—Rh1—Cl286.69 (7)C7—C8—H8120.3
N4—Rh1—Cl290.16 (8)C8—C9—C10119.4 (4)
Cl3—Rh1—Cl291.18 (4)C8—C9—H9120.3
Cl3—Rh1—Cl291.18 (4)C10—C9—H9120.3
N2—Rh1—Cl2176.85 (7)N2—C10—C9121.5 (3)
N1—Rh1—Cl296.36 (8)N2—C10—H10119.2
N3—Rh1—Cl286.69 (7)C9—C10—H10119.2
N4—Rh1—Cl290.16 (8)N3—C11—C12121.5 (4)
Cl3—Rh1—Cl291.18 (4)N3—C11—H11119.2
Cl3—Rh1—Cl291.18 (4)C12—C11—H11119.2
Cl2—Rh1—Cl20.00 (5)C13—C12—C11119.2 (4)
O2B—Cl1—O1122.6 (14)C13—C12—H12120.4
O2B—Cl1—O3117.0 (14)C11—C12—H12120.4
O1—Cl1—O3111.1 (2)C12—C13—C14120.1 (3)
O2B—Cl1—O486 (2)C12—C13—H13119.9
O1—Cl1—O4107.4 (3)C14—C13—H13119.9
O3—Cl1—O4107.5 (2)C15—C14—C13118.1 (4)
O1—Cl1—O2A106.2 (5)C15—C14—H14121
O3—Cl1—O2A109.7 (4)C13—C14—H14121
O4—Cl1—O2A115.0 (7)N3—C15—C14121.3 (3)
C1—N1—C5119.7 (3)N3—C15—C16115.6 (3)
C1—N1—Rh1125.7 (2)C14—C15—C16123.1 (3)
C5—N1—Rh1114.7 (2)N4—C16—C17119.7 (3)
C10—N2—C6119.1 (3)N4—C16—C15115.2 (3)
C10—N2—Rh1126.0 (2)C17—C16—C15125.1 (3)
C6—N2—Rh1114.8 (2)C18—C17—C16119.9 (4)
C11—N3—C15119.8 (3)C18—C17—H17120.1
C11—N3—Rh1125.6 (2)C16—C17—H17120.1
C15—N3—Rh1114.6 (2)C19—C18—C17119.3 (4)
C20—N4—C16119.6 (3)C19—C18—H18120.4
C20—N4—Rh1126.2 (2)C17—C18—H18120.4
C16—N4—Rh1114.2 (2)C20—C19—C18119.7 (4)
N1—C1—C2121.6 (3)C20—C19—H19120.1
N1—C1—H1119.2C18—C19—H19120.1
C2—C1—H1119.2N4—C20—C19121.8 (4)
C3—C2—C1119.8 (4)N4—C20—H20119.1
C3—C2—H2120.1C19—C20—H20119.1
C1—C2—H2120.1
N1—Rh1—Cl2—Cl20E1 (8)Cl2—Rh1—N4—C1684.4 (2)
N3—Rh1—Cl2—Cl20.00 (2)C5—N1—C1—C21.0 (5)
N4—Rh1—Cl2—Cl20.00 (2)Rh1—N1—C1—C2176.9 (3)
Cl3—Rh1—Cl2—Cl20.00 (2)N1—C1—C2—C30.4 (6)
Cl3—Rh1—Cl2—Cl20.00 (2)C1—C2—C3—C40.1 (6)
N2—Rh1—Cl3—Cl30.00 (3)C2—C3—C4—C50.2 (6)
N1—Rh1—Cl3—Cl30.00 (3)C1—N1—C5—C40.9 (5)
N3—Rh1—Cl3—Cl30.00 (3)Rh1—N1—C5—C4177.2 (3)
Cl2—Rh1—Cl3—Cl30.00 (3)C1—N1—C5—C6179.4 (3)
Cl2—Rh1—Cl3—Cl30.00 (3)Rh1—N1—C5—C61.3 (3)
N2—Rh1—N1—C1178.2 (3)C3—C4—C5—N10.3 (5)
N4—Rh1—N1—C188.5 (3)C3—C4—C5—C6178.7 (3)
Cl3—Rh1—N1—C193.0 (3)C10—N2—C6—C71.5 (5)
Cl3—Rh1—N1—C193.0 (3)Rh1—N2—C6—C7178.3 (3)
Cl2—Rh1—N1—C12.2 (3)C10—N2—C6—C5178.8 (3)
Cl2—Rh1—N1—C12.2 (3)Rh1—N2—C6—C52.0 (4)
N2—Rh1—N1—C50.2 (2)N1—C5—C6—N22.2 (4)
N4—Rh1—N1—C589.4 (2)C4—C5—C6—N2176.2 (3)
Cl3—Rh1—N1—C589.0 (2)N1—C5—C6—C7178.2 (3)
Cl3—Rh1—N1—C589.0 (2)C4—C5—C6—C73.4 (5)
Cl2—Rh1—N1—C5179.9 (2)N2—C6—C7—C80.7 (6)
Cl2—Rh1—N1—C5179.9 (2)C5—C6—C7—C8179.7 (3)
N1—Rh1—N2—C10177.6 (3)C6—C7—C8—C90.6 (6)
N3—Rh1—N2—C107.4 (3)C7—C8—C9—C101.0 (6)
N4—Rh1—N2—C1087.7 (3)C6—N2—C10—C91.1 (5)
Cl3—Rh1—N2—C1090.3 (3)Rh1—N2—C10—C9177.5 (3)
Cl3—Rh1—N2—C1090.3 (3)C8—C9—C10—N20.1 (6)
N1—Rh1—N2—C61.1 (2)C15—N3—C11—C120.5 (5)
N3—Rh1—N2—C6176.1 (2)Rh1—N3—C11—C12177.1 (3)
N4—Rh1—N2—C695.8 (2)N3—C11—C12—C130.0 (6)
Cl3—Rh1—N2—C686.3 (2)C11—C12—C13—C140.0 (6)
Cl3—Rh1—N2—C686.3 (2)C12—C13—C14—C150.5 (6)
N2—Rh1—N3—C1189.5 (3)C11—N3—C15—C141.0 (5)
N4—Rh1—N3—C11178.8 (3)Rh1—N3—C15—C14176.9 (3)
Cl3—Rh1—N3—C110.3 (3)C11—N3—C15—C16178.1 (3)
Cl3—Rh1—N3—C110.3 (3)Rh1—N3—C15—C164.0 (3)
Cl2—Rh1—N3—C1190.4 (3)C13—C14—C15—N31.0 (5)
Cl2—Rh1—N3—C1190.4 (3)C13—C14—C15—C16178.1 (3)
N2—Rh1—N3—C1592.7 (2)C20—N4—C16—C171.7 (5)
N4—Rh1—N3—C153.4 (2)Rh1—N4—C16—C17179.9 (2)
Cl3—Rh1—N3—C15178.0 (2)C20—N4—C16—C15177.4 (3)
Cl3—Rh1—N3—C15178.0 (2)Rh1—N4—C16—C150.8 (3)
Cl2—Rh1—N3—C1587.3 (2)N3—C15—C16—N42.1 (4)
Cl2—Rh1—N3—C1587.3 (2)C14—C15—C16—N4178.8 (3)
N2—Rh1—N4—C2079.4 (3)N3—C15—C16—C17177.0 (3)
N1—Rh1—N4—C201.1 (3)C14—C15—C16—C172.2 (5)
N3—Rh1—N4—C20175.9 (3)N4—C16—C17—C182.8 (5)
Cl2—Rh1—N4—C2097.5 (3)C15—C16—C17—C18176.2 (3)
Cl2—Rh1—N4—C2097.5 (3)C16—C17—C18—C191.8 (6)
N2—Rh1—N4—C1698.7 (2)C17—C18—C19—C200.2 (7)
N1—Rh1—N4—C16179.2 (2)C16—N4—C20—C190.4 (5)
N3—Rh1—N4—C162.3 (2)Rh1—N4—C20—C19177.6 (3)
Cl2—Rh1—N4—C1684.4 (2)C18—C19—C20—N41.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.73.301 (4)123
C11—H11···Cl30.932.763.358 (4)123
C3—H3···O1i0.932.293.192 (5)164
C8—H8···O1ii0.932.563.142 (6)121
C9—H9···O1ii0.932.583.154 (6)120
C13—H13···O4iii0.932.563.427 (6)155
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1/2, y1/2, z+1; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[RhCl2(C10H8N2)2]ClO4
Mr585.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.0344 (2), 11.6796 (2), 17.0884 (3)
V3)2202.33 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.19 × 0.16 × 0.12
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.973, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
12115, 6922, 5569
Rint0.026
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.081, 1.02
No. of reflections6922
No. of parameters294
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.25
Absolute structureFlack (1983), 2630 Friedel pairs
Absolute structure parameter0.47 (3)

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Rh1—N22.019 (2)Rh1—N42.038 (3)
Rh1—N12.023 (2)Rh1—Cl32.3291 (9)
Rh1—N32.037 (2)Rh1—Cl22.3344 (9)
N1—Rh1—N3174.22 (10)Cl3—Rh1—Cl291.18 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.73.301 (4)123.4
C11—H11···Cl30.932.763.358 (4)123
C3—H3···O1i0.932.293.192 (5)164.3
C8—H8···O1ii0.932.563.142 (6)120.8
C9—H9···O1ii0.932.583.154 (6)120.1
C13—H13···O4iii0.932.563.427 (6)155.3
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1/2, y1/2, z+1; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Spanish MICINN (projects MAT2006–01997, FC-08-IB08–036 and MAT2010–15094) and FEDER. AD also thanks MICINN for their pre-doctoral FPU grant (AP2008–03942).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAl-Noaimi, M. & Haddad, S. F. (2007). Acta Cryst. E63, m2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAndansen, P. & Josephsen, J. (1971). Acta Chem. Scand. 25, 3255–3260.  Google Scholar
First citationArachchige, S. M., Brown, J. & Brewe, K. J. (2008). J. Photochem. Photobiol. A, 197, 13–17.  Web of Science CrossRef CAS Google Scholar
First citationChifotides, H. T., Fu, P. K. L., Dunbar, K. R. & Turro, C. (2004). Inorg. Chem. 43, 1175–1183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChoudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489–m1491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDe Munno, G., Nicolò, F. & Julve, M. (1993). Acta Cryst. C49, 1049–1052.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573–4580.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFiggis, B. N., Reynolds, P. A. & White, A. H. (1985). Inorg. Chem. 24, 3762–3770.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFontaine, F. G. (2001). Acta Cryst. E57, m270–m271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationForster, L. C. & Rund, J. V. (2003). Inorg. Chem. Commun. 6, 78–81.  Web of Science CrossRef CAS Google Scholar
First citationGao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHelberg, L. E., Orth, S. D., Sabat, M. & Harman, W. D. (1996). Inorg. Chem. 35, 5584–5594.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKaridi, K., Garoufis, A., Tsipis, A., Hadjiliadis, N., Dulk, H. & Reedijk, J. (2005). Dalton Trans. pp. 1176–1187.  Web of Science CrossRef Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKramer, T. & Straehle, J. (1986). Z. Naturforsch. Teil B, 41, 692–696.  Google Scholar
First citationLahuerta, P., Latorre, J., Martínez-Máñez, R., García-Granda, S. & Gómez-Beltrán, F. (1991). Acta Cryst. C47, 519–522.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMbaye, M. D., Demersement, B., Reneaud, J.-L., Toupet, L. & Bruneau, C. (2003). Angew. Chem. Int. Ed. 42, 5066–5068.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrajapati, R., Yadan, V. K., Dubey, S. K., Durham, B. & Mishra, L. (2008). Indian J. Chem. Sect. A, 47, 1780–1787.  Google Scholar
First citationRasmussen, S. C., Richter, M. M., Yi, E., Place, H. & Brewer, K. J. (1990). Inorg. Chem. 29, 3926–3932.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrenger, I., Rosu, T. & Negoiu, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 489–490.  CAS Google Scholar
First citationTan, L. F., Chao, H., Li, H., Liu, Y. J., Sun, B., Wei, W. & Ji, L. N. (2005). J. Inorg. Biochem. 99, 513–520.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m713-m714
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds