metal-organic compounds
Bis(2,2′-bipyridyl-κ2N,N′)dichloridorhodium(III) perchlorate
aDepartamento Química Orgánica e Inorgánica, Universidad de Oviedo, 33006 Oviedo, Spain, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo–CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es
The 2(C10H8N2)2]ClO4, consists of one unit of the cationic complex [RhCl2(bipy)2]+ and one uncoordinated perchlorate anion. The RhIII atom is coordinated by four N atoms from two bipyridyl ligands and two Cl atoms, forming a distorted octahedral environment. The Cl ligands are cis. Two intramolecular C—H⋯Cl hydrogen bonds occur in the cationic complex . In the crystal, molecules are linked together by a hydrogen-bond network involving the H atoms of bipyridyl rings and perchlorate anions. An O atom of the perchlorate anion is disordered over two sites, with an occupancy-factor ratio of 0.78 (3):0.22 (3).
of the title compound, [RhClRelated literature
For potential applications of noble metal complexes of pyridyl ligands in biochemistry, catalysis and anticancer activity, see: Chifotides et al. (2004); Mbaye et al. (2003); Karidi et al. (2005); Tan et al. (2005). For their photochemical and photophysical properties, see: Forster & Rund (2003); Arachchige et al. (2008) and for their electrochemical properties, see: Rasmussen et al. (1990). For related structures, see: Al-Noaimi & Haddad (2007); Andansen & Josephsen (1971); Choudhury et al. (2006); De Munno et al. (1993); Figgis et al. (1985); Fontaine (2001); Gao & Ng (2010); Kramer & Straehle (1986); Sofetis et al. (2006); Strenger et al. (2000). For similar structures with platinum group metals, see: Lahuerta et al. (1991); Kim et al. (2009); Helberg et al. (1996); Prajapati et al. (2008); Eggleston et al. (1985).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536812018685/lr2059sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812018685/lr2059Isup2.hkl
To a solution of RhCl3.xH2O (0.05 g, 0.231 mmol) and KClO4 (0.09 g, 0.693 mmol) in H2O (10 ml) was added 2,2'-bipyridine (0.04 g, 0.462 mmol) in CH3OH (10 ml), and was stirred for 2 h to yellow solution resulted. Yellowish rhombohedral crystals suitable for X-ray analysis were obtained by slow evaporation during two weeks. RhCl3.xH2O purchased from Johnson Matthey, all other reagents was obtained commercially from Sigma-Aldrich and used without futher purification.
H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The value of the
0.47 (3) suggests that the crystal is a racemic twin.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).Fig. 1. A view of [RhCl2(C10H8N2)2]ClO4 asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. |
[RhCl2(C10H8N2)2]ClO4 | F(000) = 1168 |
Mr = 585.63 | Dx = 1.766 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4926 reflections |
a = 11.0344 (2) Å | θ = 3.5–32.1° |
b = 11.6796 (2) Å | µ = 1.18 mm−1 |
c = 17.0884 (3) Å | T = 293 K |
V = 2202.33 (8) Å3 | Rhombohedron, yellow |
Z = 4 | 0.19 × 0.16 × 0.12 mm |
Agilent Xcalibur Ruby Gemini diffractometer | 6922 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5569 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 32.1°, θmin = 3.5° |
ω scans | h = −8→16 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −17→10 |
Tmin = 0.973, Tmax = 1 | l = −22→25 |
12115 measured reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0292P)2 + 0.1669P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.042 | (Δ/σ)max = 0.001 |
wR(F2) = 0.081 | Δρmax = 0.75 e Å−3 |
S = 1.02 | Δρmin = −0.25 e Å−3 |
6922 reflections | Absolute structure: Flack (1983), 2630 Friedel pairs |
294 parameters | Absolute structure parameter: 0.47 (3) |
0 restraints |
[RhCl2(C10H8N2)2]ClO4 | V = 2202.33 (8) Å3 |
Mr = 585.63 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 11.0344 (2) Å | µ = 1.18 mm−1 |
b = 11.6796 (2) Å | T = 293 K |
c = 17.0884 (3) Å | 0.19 × 0.16 × 0.12 mm |
Agilent Xcalibur Ruby Gemini diffractometer | 6922 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 5569 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 1 | Rint = 0.026 |
12115 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.081 | Δρmax = 0.75 e Å−3 |
S = 1.02 | Δρmin = −0.25 e Å−3 |
6922 reflections | Absolute structure: Flack (1983), 2630 Friedel pairs |
294 parameters | Absolute structure parameter: 0.47 (3) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rh1 | 0.98325 (2) | 0.241474 (19) | 0.367163 (12) | 0.04095 (7) | |
Cl1 | 0.97063 (10) | −0.18258 (8) | 0.63515 (5) | 0.0629 (2) | |
Cl2 | 1.10302 (9) | 0.40548 (7) | 0.35644 (6) | 0.0609 (2) | |
Cl3 | 0.80775 (9) | 0.35183 (8) | 0.37395 (6) | 0.0603 (2) | |
N1 | 0.9798 (2) | 0.2369 (2) | 0.48547 (13) | 0.0439 (5) | |
N2 | 0.8794 (2) | 0.1010 (2) | 0.38286 (14) | 0.0426 (6) | |
N3 | 0.9942 (3) | 0.2300 (2) | 0.24844 (13) | 0.0467 (6) | |
N4 | 1.1338 (3) | 0.1414 (2) | 0.35733 (15) | 0.0455 (6) | |
O1 | 1.0370 (4) | −0.2722 (3) | 0.6687 (2) | 0.1228 (15) | |
O2A | 0.9396 (14) | −0.1068 (7) | 0.6981 (7) | 0.102 (3) | 0.78 (3) |
O2B | 0.891 (4) | −0.123 (3) | 0.6744 (18) | 0.102 (3) | 0.22 (3) |
O3 | 1.0402 (4) | −0.1234 (3) | 0.57914 (19) | 0.1075 (12) | |
O4 | 0.8704 (4) | −0.2320 (5) | 0.5957 (2) | 0.1495 (17) | |
C1 | 1.0374 (3) | 0.3097 (3) | 0.5332 (2) | 0.0557 (9) | |
H1 | 1.0805 | 0.3705 | 0.5117 | 0.067* | |
C2 | 1.0344 (4) | 0.2968 (4) | 0.6128 (2) | 0.0654 (11) | |
H2 | 1.0755 | 0.3481 | 0.6448 | 0.078* | |
C3 | 0.9706 (4) | 0.2082 (4) | 0.6450 (2) | 0.0672 (11) | |
H3 | 0.968 | 0.1985 | 0.699 | 0.081* | |
C4 | 0.9098 (4) | 0.1331 (3) | 0.59588 (19) | 0.0586 (9) | |
H4 | 0.8657 | 0.0725 | 0.6166 | 0.07* | |
C5 | 0.9153 (3) | 0.1492 (3) | 0.51615 (17) | 0.0446 (7) | |
C6 | 0.8570 (3) | 0.0741 (2) | 0.45826 (17) | 0.0442 (7) | |
C7 | 0.7849 (4) | −0.0179 (3) | 0.4774 (2) | 0.0546 (9) | |
H7 | 0.7708 | −0.036 | 0.5297 | 0.065* | |
C8 | 0.7341 (4) | −0.0825 (3) | 0.4193 (2) | 0.0665 (11) | |
H8 | 0.6858 | −0.1452 | 0.4316 | 0.08* | |
C9 | 0.7550 (4) | −0.0539 (3) | 0.3429 (2) | 0.0637 (10) | |
H9 | 0.72 | −0.0963 | 0.3028 | 0.076* | |
C10 | 0.8279 (3) | 0.0380 (3) | 0.3260 (2) | 0.0535 (9) | |
H10 | 0.8421 | 0.0572 | 0.274 | 0.064* | |
C11 | 0.9169 (4) | 0.2771 (3) | 0.1977 (2) | 0.0629 (10) | |
H11 | 0.8496 | 0.3163 | 0.2166 | 0.075* | |
C12 | 0.9344 (4) | 0.2689 (4) | 0.1183 (2) | 0.0719 (11) | |
H12 | 0.8797 | 0.3022 | 0.0837 | 0.086* | |
C13 | 1.0325 (5) | 0.2118 (3) | 0.0909 (2) | 0.0726 (13) | |
H13 | 1.0453 | 0.2058 | 0.0373 | 0.087* | |
C14 | 1.1141 (4) | 0.1621 (3) | 0.1429 (2) | 0.0632 (10) | |
H14 | 1.182 | 0.1231 | 0.1249 | 0.076* | |
C15 | 1.0912 (3) | 0.1724 (3) | 0.22194 (18) | 0.0461 (8) | |
C16 | 1.1686 (3) | 0.1207 (3) | 0.28234 (18) | 0.0464 (8) | |
C17 | 1.2693 (4) | 0.0539 (3) | 0.2680 (2) | 0.0595 (9) | |
H17 | 1.2956 | 0.0422 | 0.2169 | 0.071* | |
C18 | 1.3302 (4) | 0.0049 (3) | 0.3289 (3) | 0.0698 (12) | |
H18 | 1.3968 | −0.042 | 0.3196 | 0.084* | |
C19 | 1.2925 (4) | 0.0256 (3) | 0.4035 (3) | 0.0686 (11) | |
H19 | 1.3331 | −0.0074 | 0.4455 | 0.082* | |
C20 | 1.1956 (4) | 0.0945 (3) | 0.4161 (2) | 0.0563 (9) | |
H20 | 1.1715 | 0.1094 | 0.4673 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.04542 (12) | 0.04254 (12) | 0.03489 (10) | −0.00107 (11) | −0.00011 (10) | 0.00272 (10) |
Cl1 | 0.0798 (6) | 0.0651 (5) | 0.0438 (4) | 0.0109 (5) | −0.0048 (5) | 0.0050 (4) |
Cl2 | 0.0664 (6) | 0.0557 (5) | 0.0606 (5) | −0.0147 (4) | 0.0015 (5) | 0.0072 (4) |
Cl3 | 0.0580 (5) | 0.0612 (5) | 0.0618 (5) | 0.0098 (4) | 0.0026 (5) | 0.0058 (5) |
N1 | 0.0474 (14) | 0.0471 (13) | 0.0370 (11) | 0.0040 (18) | −0.0028 (10) | 0.0026 (10) |
N2 | 0.0443 (15) | 0.0422 (13) | 0.0414 (15) | −0.0005 (11) | 0.0015 (12) | 0.0017 (11) |
N3 | 0.0537 (16) | 0.0491 (14) | 0.0375 (12) | −0.0050 (17) | −0.0008 (11) | 0.0049 (11) |
N4 | 0.0483 (16) | 0.0430 (13) | 0.0451 (15) | −0.0016 (12) | −0.0021 (13) | 0.0042 (12) |
O1 | 0.157 (4) | 0.120 (3) | 0.091 (2) | 0.073 (3) | 0.009 (2) | 0.032 (2) |
O2A | 0.160 (8) | 0.084 (3) | 0.063 (4) | 0.040 (4) | 0.005 (4) | −0.011 (3) |
O2B | 0.160 (8) | 0.084 (3) | 0.063 (4) | 0.040 (4) | 0.005 (4) | −0.011 (3) |
O3 | 0.123 (3) | 0.108 (3) | 0.092 (2) | −0.013 (2) | 0.025 (2) | 0.0163 (19) |
O4 | 0.137 (4) | 0.207 (5) | 0.104 (3) | −0.053 (4) | −0.027 (3) | 0.028 (3) |
C1 | 0.057 (2) | 0.062 (2) | 0.0480 (18) | −0.0090 (18) | 0.0027 (17) | −0.0091 (15) |
C2 | 0.063 (3) | 0.085 (3) | 0.048 (2) | 0.002 (2) | −0.0115 (18) | −0.0183 (19) |
C3 | 0.070 (3) | 0.090 (3) | 0.0414 (18) | 0.009 (2) | −0.0019 (19) | −0.0028 (17) |
C4 | 0.069 (3) | 0.065 (2) | 0.0419 (18) | 0.008 (2) | 0.0038 (18) | 0.0098 (17) |
C5 | 0.0456 (19) | 0.0481 (17) | 0.0401 (16) | 0.0076 (15) | 0.0025 (14) | 0.0040 (14) |
C6 | 0.051 (2) | 0.0390 (16) | 0.0432 (16) | 0.0056 (15) | 0.0066 (15) | 0.0031 (13) |
C7 | 0.067 (3) | 0.0458 (19) | 0.0512 (18) | −0.0012 (17) | 0.0086 (18) | 0.0064 (16) |
C8 | 0.071 (3) | 0.049 (2) | 0.079 (3) | −0.0105 (19) | 0.011 (2) | 0.0006 (19) |
C9 | 0.069 (3) | 0.058 (2) | 0.063 (2) | −0.009 (2) | 0.0035 (19) | −0.0161 (19) |
C10 | 0.060 (2) | 0.056 (2) | 0.0453 (18) | −0.0061 (18) | 0.0009 (17) | −0.0073 (16) |
C11 | 0.071 (3) | 0.069 (2) | 0.0481 (19) | 0.004 (2) | −0.0041 (18) | 0.0063 (17) |
C12 | 0.090 (3) | 0.079 (3) | 0.046 (2) | 0.004 (2) | −0.0136 (19) | 0.007 (2) |
C13 | 0.108 (4) | 0.070 (2) | 0.0402 (19) | −0.006 (2) | 0.002 (2) | −0.0029 (17) |
C14 | 0.081 (3) | 0.062 (2) | 0.047 (2) | −0.004 (2) | 0.011 (2) | −0.0068 (17) |
C15 | 0.056 (2) | 0.0385 (16) | 0.0441 (17) | −0.0077 (15) | 0.0018 (16) | −0.0020 (13) |
C16 | 0.054 (2) | 0.0384 (16) | 0.0467 (18) | −0.0089 (15) | 0.0023 (15) | −0.0056 (13) |
C17 | 0.060 (2) | 0.055 (2) | 0.063 (2) | −0.0002 (19) | 0.0051 (19) | −0.0151 (18) |
C18 | 0.057 (3) | 0.054 (2) | 0.098 (3) | 0.0120 (19) | −0.003 (2) | −0.013 (2) |
C19 | 0.061 (3) | 0.061 (2) | 0.084 (3) | 0.012 (2) | −0.014 (2) | 0.011 (2) |
C20 | 0.060 (2) | 0.059 (2) | 0.050 (2) | 0.0023 (18) | −0.0066 (18) | 0.0101 (17) |
Rh1—N2 | 2.019 (2) | C4—H4 | 0.93 |
Rh1—N1 | 2.023 (2) | C5—C6 | 1.470 (4) |
Rh1—N3 | 2.037 (2) | C6—C7 | 1.377 (5) |
Rh1—N4 | 2.038 (3) | C7—C8 | 1.369 (5) |
Rh1—Cl3 | 2.3291 (9) | C7—H7 | 0.93 |
Rh1—Cl3 | 2.3291 (9) | C8—C9 | 1.366 (5) |
Rh1—Cl2 | 2.3344 (9) | C8—H8 | 0.93 |
Rh1—Cl2 | 2.3344 (9) | C9—C10 | 1.373 (5) |
Cl1—O2B | 1.31 (3) | C9—H9 | 0.93 |
Cl1—O1 | 1.401 (3) | C10—H10 | 0.93 |
Cl1—O3 | 1.408 (3) | C11—C12 | 1.375 (5) |
Cl1—O4 | 1.418 (4) | C11—H11 | 0.93 |
Cl1—O2A | 1.434 (9) | C12—C13 | 1.354 (6) |
N1—C1 | 1.338 (4) | C12—H12 | 0.93 |
N1—C5 | 1.353 (4) | C13—C14 | 1.392 (6) |
N2—C10 | 1.344 (4) | C13—H13 | 0.93 |
N2—C6 | 1.349 (4) | C14—C15 | 1.379 (5) |
N3—C11 | 1.335 (4) | C14—H14 | 0.93 |
N3—C15 | 1.343 (4) | C15—C16 | 1.469 (5) |
N4—C20 | 1.332 (4) | C16—C17 | 1.380 (5) |
N4—C16 | 1.359 (4) | C17—C18 | 1.365 (5) |
C1—C2 | 1.369 (5) | C17—H17 | 0.93 |
C1—H1 | 0.93 | C18—C19 | 1.362 (6) |
C2—C3 | 1.367 (6) | C18—H18 | 0.93 |
C2—H2 | 0.93 | C19—C20 | 1.356 (5) |
C3—C4 | 1.387 (5) | C19—H19 | 0.93 |
C3—H3 | 0.93 | C20—H20 | 0.93 |
C4—C5 | 1.377 (4) | ||
N2—Rh1—N1 | 80.50 (10) | C2—C3—C4 | 118.9 (3) |
N2—Rh1—N3 | 96.45 (10) | C2—C3—H3 | 120.5 |
N1—Rh1—N3 | 174.22 (10) | C4—C3—H3 | 120.5 |
N2—Rh1—N4 | 90.41 (11) | C5—C4—C3 | 119.5 (4) |
N1—Rh1—N4 | 94.74 (10) | C5—C4—H4 | 120.3 |
N3—Rh1—N4 | 80.32 (11) | C3—C4—H4 | 120.3 |
N2—Rh1—Cl3 | 88.36 (8) | N1—C5—C4 | 120.6 (3) |
N1—Rh1—Cl3 | 87.08 (7) | N1—C5—C6 | 114.9 (3) |
N3—Rh1—Cl3 | 97.78 (8) | C4—C5—C6 | 124.4 (3) |
N4—Rh1—Cl3 | 177.61 (8) | N2—C6—C7 | 121.0 (3) |
N2—Rh1—Cl3 | 88.36 (8) | N2—C6—C5 | 115.1 (3) |
N1—Rh1—Cl3 | 87.08 (7) | C7—C6—C5 | 123.9 (3) |
N3—Rh1—Cl3 | 97.78 (8) | C8—C7—C6 | 119.6 (3) |
N4—Rh1—Cl3 | 177.61 (8) | C8—C7—H7 | 120.2 |
Cl3—Rh1—Cl3 | 0.00 (5) | C6—C7—H7 | 120.2 |
N2—Rh1—Cl2 | 176.85 (7) | C9—C8—C7 | 119.3 (4) |
N1—Rh1—Cl2 | 96.36 (8) | C9—C8—H8 | 120.3 |
N3—Rh1—Cl2 | 86.69 (7) | C7—C8—H8 | 120.3 |
N4—Rh1—Cl2 | 90.16 (8) | C8—C9—C10 | 119.4 (4) |
Cl3—Rh1—Cl2 | 91.18 (4) | C8—C9—H9 | 120.3 |
Cl3—Rh1—Cl2 | 91.18 (4) | C10—C9—H9 | 120.3 |
N2—Rh1—Cl2 | 176.85 (7) | N2—C10—C9 | 121.5 (3) |
N1—Rh1—Cl2 | 96.36 (8) | N2—C10—H10 | 119.2 |
N3—Rh1—Cl2 | 86.69 (7) | C9—C10—H10 | 119.2 |
N4—Rh1—Cl2 | 90.16 (8) | N3—C11—C12 | 121.5 (4) |
Cl3—Rh1—Cl2 | 91.18 (4) | N3—C11—H11 | 119.2 |
Cl3—Rh1—Cl2 | 91.18 (4) | C12—C11—H11 | 119.2 |
Cl2—Rh1—Cl2 | 0.00 (5) | C13—C12—C11 | 119.2 (4) |
O2B—Cl1—O1 | 122.6 (14) | C13—C12—H12 | 120.4 |
O2B—Cl1—O3 | 117.0 (14) | C11—C12—H12 | 120.4 |
O1—Cl1—O3 | 111.1 (2) | C12—C13—C14 | 120.1 (3) |
O2B—Cl1—O4 | 86 (2) | C12—C13—H13 | 119.9 |
O1—Cl1—O4 | 107.4 (3) | C14—C13—H13 | 119.9 |
O3—Cl1—O4 | 107.5 (2) | C15—C14—C13 | 118.1 (4) |
O1—Cl1—O2A | 106.2 (5) | C15—C14—H14 | 121 |
O3—Cl1—O2A | 109.7 (4) | C13—C14—H14 | 121 |
O4—Cl1—O2A | 115.0 (7) | N3—C15—C14 | 121.3 (3) |
C1—N1—C5 | 119.7 (3) | N3—C15—C16 | 115.6 (3) |
C1—N1—Rh1 | 125.7 (2) | C14—C15—C16 | 123.1 (3) |
C5—N1—Rh1 | 114.7 (2) | N4—C16—C17 | 119.7 (3) |
C10—N2—C6 | 119.1 (3) | N4—C16—C15 | 115.2 (3) |
C10—N2—Rh1 | 126.0 (2) | C17—C16—C15 | 125.1 (3) |
C6—N2—Rh1 | 114.8 (2) | C18—C17—C16 | 119.9 (4) |
C11—N3—C15 | 119.8 (3) | C18—C17—H17 | 120.1 |
C11—N3—Rh1 | 125.6 (2) | C16—C17—H17 | 120.1 |
C15—N3—Rh1 | 114.6 (2) | C19—C18—C17 | 119.3 (4) |
C20—N4—C16 | 119.6 (3) | C19—C18—H18 | 120.4 |
C20—N4—Rh1 | 126.2 (2) | C17—C18—H18 | 120.4 |
C16—N4—Rh1 | 114.2 (2) | C20—C19—C18 | 119.7 (4) |
N1—C1—C2 | 121.6 (3) | C20—C19—H19 | 120.1 |
N1—C1—H1 | 119.2 | C18—C19—H19 | 120.1 |
C2—C1—H1 | 119.2 | N4—C20—C19 | 121.8 (4) |
C3—C2—C1 | 119.8 (4) | N4—C20—H20 | 119.1 |
C3—C2—H2 | 120.1 | C19—C20—H20 | 119.1 |
C1—C2—H2 | 120.1 | ||
N1—Rh1—Cl2—Cl2 | 0E1 (8) | Cl2—Rh1—N4—C16 | −84.4 (2) |
N3—Rh1—Cl2—Cl2 | 0.00 (2) | C5—N1—C1—C2 | 1.0 (5) |
N4—Rh1—Cl2—Cl2 | 0.00 (2) | Rh1—N1—C1—C2 | −176.9 (3) |
Cl3—Rh1—Cl2—Cl2 | 0.00 (2) | N1—C1—C2—C3 | −0.4 (6) |
Cl3—Rh1—Cl2—Cl2 | 0.00 (2) | C1—C2—C3—C4 | −0.1 (6) |
N2—Rh1—Cl3—Cl3 | 0.00 (3) | C2—C3—C4—C5 | 0.2 (6) |
N1—Rh1—Cl3—Cl3 | 0.00 (3) | C1—N1—C5—C4 | −0.9 (5) |
N3—Rh1—Cl3—Cl3 | 0.00 (3) | Rh1—N1—C5—C4 | 177.2 (3) |
Cl2—Rh1—Cl3—Cl3 | 0.00 (3) | C1—N1—C5—C6 | −179.4 (3) |
Cl2—Rh1—Cl3—Cl3 | 0.00 (3) | Rh1—N1—C5—C6 | −1.3 (3) |
N2—Rh1—N1—C1 | 178.2 (3) | C3—C4—C5—N1 | 0.3 (5) |
N4—Rh1—N1—C1 | 88.5 (3) | C3—C4—C5—C6 | 178.7 (3) |
Cl3—Rh1—N1—C1 | −93.0 (3) | C10—N2—C6—C7 | 1.5 (5) |
Cl3—Rh1—N1—C1 | −93.0 (3) | Rh1—N2—C6—C7 | 178.3 (3) |
Cl2—Rh1—N1—C1 | −2.2 (3) | C10—N2—C6—C5 | −178.8 (3) |
Cl2—Rh1—N1—C1 | −2.2 (3) | Rh1—N2—C6—C5 | −2.0 (4) |
N2—Rh1—N1—C5 | 0.2 (2) | N1—C5—C6—N2 | 2.2 (4) |
N4—Rh1—N1—C5 | −89.4 (2) | C4—C5—C6—N2 | −176.2 (3) |
Cl3—Rh1—N1—C5 | 89.0 (2) | N1—C5—C6—C7 | −178.2 (3) |
Cl3—Rh1—N1—C5 | 89.0 (2) | C4—C5—C6—C7 | 3.4 (5) |
Cl2—Rh1—N1—C5 | 179.9 (2) | N2—C6—C7—C8 | −0.7 (6) |
Cl2—Rh1—N1—C5 | 179.9 (2) | C5—C6—C7—C8 | 179.7 (3) |
N1—Rh1—N2—C10 | 177.6 (3) | C6—C7—C8—C9 | −0.6 (6) |
N3—Rh1—N2—C10 | −7.4 (3) | C7—C8—C9—C10 | 1.0 (6) |
N4—Rh1—N2—C10 | −87.7 (3) | C6—N2—C10—C9 | −1.1 (5) |
Cl3—Rh1—N2—C10 | 90.3 (3) | Rh1—N2—C10—C9 | −177.5 (3) |
Cl3—Rh1—N2—C10 | 90.3 (3) | C8—C9—C10—N2 | −0.1 (6) |
N1—Rh1—N2—C6 | 1.1 (2) | C15—N3—C11—C12 | −0.5 (5) |
N3—Rh1—N2—C6 | 176.1 (2) | Rh1—N3—C11—C12 | 177.1 (3) |
N4—Rh1—N2—C6 | 95.8 (2) | N3—C11—C12—C13 | 0.0 (6) |
Cl3—Rh1—N2—C6 | −86.3 (2) | C11—C12—C13—C14 | 0.0 (6) |
Cl3—Rh1—N2—C6 | −86.3 (2) | C12—C13—C14—C15 | 0.5 (6) |
N2—Rh1—N3—C11 | 89.5 (3) | C11—N3—C15—C14 | 1.0 (5) |
N4—Rh1—N3—C11 | 178.8 (3) | Rh1—N3—C15—C14 | −176.9 (3) |
Cl3—Rh1—N3—C11 | 0.3 (3) | C11—N3—C15—C16 | −178.1 (3) |
Cl3—Rh1—N3—C11 | 0.3 (3) | Rh1—N3—C15—C16 | 4.0 (3) |
Cl2—Rh1—N3—C11 | −90.4 (3) | C13—C14—C15—N3 | −1.0 (5) |
Cl2—Rh1—N3—C11 | −90.4 (3) | C13—C14—C15—C16 | 178.1 (3) |
N2—Rh1—N3—C15 | −92.7 (2) | C20—N4—C16—C17 | −1.7 (5) |
N4—Rh1—N3—C15 | −3.4 (2) | Rh1—N4—C16—C17 | −179.9 (2) |
Cl3—Rh1—N3—C15 | 178.0 (2) | C20—N4—C16—C15 | 177.4 (3) |
Cl3—Rh1—N3—C15 | 178.0 (2) | Rh1—N4—C16—C15 | −0.8 (3) |
Cl2—Rh1—N3—C15 | 87.3 (2) | N3—C15—C16—N4 | −2.1 (4) |
Cl2—Rh1—N3—C15 | 87.3 (2) | C14—C15—C16—N4 | 178.8 (3) |
N2—Rh1—N4—C20 | −79.4 (3) | N3—C15—C16—C17 | 177.0 (3) |
N1—Rh1—N4—C20 | 1.1 (3) | C14—C15—C16—C17 | −2.2 (5) |
N3—Rh1—N4—C20 | −175.9 (3) | N4—C16—C17—C18 | 2.8 (5) |
Cl2—Rh1—N4—C20 | 97.5 (3) | C15—C16—C17—C18 | −176.2 (3) |
Cl2—Rh1—N4—C20 | 97.5 (3) | C16—C17—C18—C19 | −1.8 (6) |
N2—Rh1—N4—C16 | 98.7 (2) | C17—C18—C19—C20 | −0.2 (7) |
N1—Rh1—N4—C16 | 179.2 (2) | C16—N4—C20—C19 | −0.4 (5) |
N3—Rh1—N4—C16 | 2.3 (2) | Rh1—N4—C20—C19 | 177.6 (3) |
Cl2—Rh1—N4—C16 | −84.4 (2) | C18—C19—C20—N4 | 1.4 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.93 | 2.7 | 3.301 (4) | 123 |
C11—H11···Cl3 | 0.93 | 2.76 | 3.358 (4) | 123 |
C3—H3···O1i | 0.93 | 2.29 | 3.192 (5) | 164 |
C8—H8···O1ii | 0.93 | 2.56 | 3.142 (6) | 121 |
C9—H9···O1ii | 0.93 | 2.58 | 3.154 (6) | 120 |
C13—H13···O4iii | 0.93 | 2.56 | 3.427 (6) | 155 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x−1/2, −y−1/2, −z+1; (iii) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [RhCl2(C10H8N2)2]ClO4 |
Mr | 585.63 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 11.0344 (2), 11.6796 (2), 17.0884 (3) |
V (Å3) | 2202.33 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.18 |
Crystal size (mm) | 0.19 × 0.16 × 0.12 |
Data collection | |
Diffractometer | Agilent Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.973, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12115, 6922, 5569 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.748 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.081, 1.02 |
No. of reflections | 6922 |
No. of parameters | 294 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.75, −0.25 |
Absolute structure | Flack (1983), 2630 Friedel pairs |
Absolute structure parameter | 0.47 (3) |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Rh1—N2 | 2.019 (2) | Rh1—N4 | 2.038 (3) |
Rh1—N1 | 2.023 (2) | Rh1—Cl3 | 2.3291 (9) |
Rh1—N3 | 2.037 (2) | Rh1—Cl2 | 2.3344 (9) |
N1—Rh1—N3 | 174.22 (10) | Cl3—Rh1—Cl2 | 91.18 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.93 | 2.7 | 3.301 (4) | 123.4 |
C11—H11···Cl3 | 0.93 | 2.76 | 3.358 (4) | 123 |
C3—H3···O1i | 0.93 | 2.29 | 3.192 (5) | 164.3 |
C8—H8···O1ii | 0.93 | 2.56 | 3.142 (6) | 120.8 |
C9—H9···O1ii | 0.93 | 2.58 | 3.154 (6) | 120.1 |
C13—H13···O4iii | 0.93 | 2.56 | 3.427 (6) | 155.3 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x−1/2, −y−1/2, −z+1; (iii) −x+2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the Spanish MICINN (projects MAT2006–01997, FC-08-IB08–036 and MAT2010–15094) and FEDER. AD also thanks MICINN for their pre-doctoral FPU grant (AP2008–03942).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Al-Noaimi, M. & Haddad, S. F. (2007). Acta Cryst. E63, m2332. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Andansen, P. & Josephsen, J. (1971). Acta Chem. Scand. 25, 3255–3260. Google Scholar
Arachchige, S. M., Brown, J. & Brewe, K. J. (2008). J. Photochem. Photobiol. A, 197, 13–17. Web of Science CrossRef CAS Google Scholar
Chifotides, H. T., Fu, P. K. L., Dunbar, K. R. & Turro, C. (2004). Inorg. Chem. 43, 1175–1183. Web of Science CrossRef PubMed CAS Google Scholar
Choudhury, S. R., Dutta, A., Mukhopadhyay, S., Lu, L.-P. & Zhu, M.-L. (2006). Acta Cryst. E62, m1489–m1491. Web of Science CSD CrossRef IUCr Journals Google Scholar
De Munno, G., Nicolò, F. & Julve, M. (1993). Acta Cryst. C49, 1049–1052. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573–4580. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Figgis, B. N., Reynolds, P. A. & White, A. H. (1985). Inorg. Chem. 24, 3762–3770. CSD CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fontaine, F. G. (2001). Acta Cryst. E57, m270–m271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Forster, L. C. & Rund, J. V. (2003). Inorg. Chem. Commun. 6, 78–81. Web of Science CrossRef CAS Google Scholar
Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Helberg, L. E., Orth, S. D., Sabat, M. & Harman, W. D. (1996). Inorg. Chem. 35, 5584–5594. CSD CrossRef PubMed CAS Web of Science Google Scholar
Karidi, K., Garoufis, A., Tsipis, A., Hadjiliadis, N., Dulk, H. & Reedijk, J. (2005). Dalton Trans. pp. 1176–1187. Web of Science CrossRef Google Scholar
Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kramer, T. & Straehle, J. (1986). Z. Naturforsch. Teil B, 41, 692–696. Google Scholar
Lahuerta, P., Latorre, J., Martínez-Máñez, R., García-Granda, S. & Gómez-Beltrán, F. (1991). Acta Cryst. C47, 519–522. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mbaye, M. D., Demersement, B., Reneaud, J.-L., Toupet, L. & Bruneau, C. (2003). Angew. Chem. Int. Ed. 42, 5066–5068. Web of Science CSD CrossRef CAS Google Scholar
Prajapati, R., Yadan, V. K., Dubey, S. K., Durham, B. & Mishra, L. (2008). Indian J. Chem. Sect. A, 47, 1780–1787. Google Scholar
Rasmussen, S. C., Richter, M. M., Yi, E., Place, H. & Brewer, K. J. (1990). Inorg. Chem. 29, 3926–3932. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395. Web of Science CSD CrossRef CAS Google Scholar
Strenger, I., Rosu, T. & Negoiu, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 489–490. CAS Google Scholar
Tan, L. F., Chao, H., Li, H., Liu, Y. J., Sun, B., Wei, W. & Ji, L. N. (2005). J. Inorg. Biochem. 99, 513–520. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, noble metal complexes of pyridyl ligands have received much attention because of their rich electrochemical (Rasmussen et al., 1990, photophysical (Forster & Rund, 2003) and photochemical (Arachchige et al., 2008) properties, and their potential applications in catalysis (Mbaye et al., 2003), biochemistry (Tan et al., 2005; Chifotides et al., 2004) and anticancer activity (Karidi et al., 2005). Bipyridine (bipy) is one of the most commonly used bidentate ligand of this type in the formation of wide variety of transition metal complexes with a general formula of [MII(bipy)2X2] (M = Co, Ni, Mn, Fe) in which X is an coordinated anionic ligand such as CN, SCN and chloride (De Munno et al., 1993; Eggleston et al., 1985; Kramer & Straehle, 1986; Al-Noaimi and Haddad, 2007; Fontaine, 2001; Choudhury et al., 2006; Gao & Ng, 2010) and complexes with cationic part [MIIICl2(bipy)2]+ (M = Re, Ru, Co, Ga) and any counter anion like Cl-, PF6- (Figgis et al., 1985; Sofetis et al., 2006; Andansen & Josephsen, 1971; Strenger et al., 2000; Kim et al., 2009; Prajapati et al., 2008; Helberg et al., 1996). The complex [RhCl2(bipy)2]Cl.2H2O has also been obtained and crystallographycaly determined by Lahuerta et al., 1991. Yet, no crystal structure has been reported for the cationic complex cis-[Rh(bipy)2Cl 2]+ in its perchlorate form as counter anion, therefore, we report the crystal structure of compound (I).
Complex (I) crystallizes in the orthorhombic space group P212121. The molecular structure of (I) depicted in Figure 1. It has a distorted octahedral geometry with the two chloride ions in cis positions. Selected bond lengths for the complex are given in Table 1. The Rh–N axial bond distance (2.038 (3) Å) is slightly longer than Rh–N equatorial bonds (average 2.026 (5) Å). Its may be well compared with the negligible difference between equatorial and axial M–N bonds distances seen in the analogous complexes of platinum metal group (Lahuerta et al., 1991; Kim et al., 2009; Helberg et al., 1996; Prajapati et al., 2008; Eggleston et al., 1985), but greater distortion observed in majority of transition metal complexes (Strenger et al., 2000; Fontaine, 2001; Kramer & Straehle, 1986; Sofetis et al., 2006; Figgis et al., 1985; Choudhury et al., 2006; Gao & Ng, 2010). The Rh–Cl bond distances in (I) are 2.3291 (9) (equatorial) and 2.3344 (9) Å (axial). The Neq–Rh–Neq angle is 174.22 (10)° and its distorted from linearity by approximately 6 °. Also Cleq–Rh–Clax angle (91.18 (4) °) is nearly octahedral. The cis isomerization of cationic complex [RhCl2(bipy)2]+ is stabilized by short contacts. Coordinated chlorides which situated in cis position to respect to each other make up short contact Cl2···H1 and Cl3···H11 with distances 2.7 and 2.76 Å, respectively (Tabl. 2). The crystal lattice of (I) is made up of well separated ClO4- anions and [RhCl2(bipy)2]+ cations. The perchlorate anion contribute to forming extensive hydrogen bonding net linked together cationic and anionic parts of the structure. The interactions involve the hydrogen bonding between H atoms of bipy ring with oxygen atoms uncoordinated perchlorate anion. Each oxygen atoms participates in four hydrogen bonds to H atoms of aryl groups (Tabl. 2). The atom O2 of the perchlorate anion is disordered and splited over two sites with refined occupancy ratio of 0.78 (3):0.22 (3).