organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetamido­anilinium nitrate monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bDipartimento di Chimica and Centro di Strutturistica Diffrattometrica, University of Ferrara, via L. Borsari 46, I-44121 Ferrara, Italy, and cLaboratoire de Chimie Organometallique de Surface, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 11 April 2012; accepted 30 April 2012; online 5 May 2012)

In the title hydrated salt, C8H11N2O+·NO3·H2O, the N—C bond distances [1.349 (2) and 1.413 (2) Å] along with the sum of the angles (359.88°) around the acetamide N atom clearly indicate that the heteroatom has an sp2 character. The ammonium group is involved in a total of three N—H⋯O hydrogen bonds, two of these are with a water mol­ecule, which forms two O—H⋯O hydrogen bonds. All these hydrogen bonds link the ionic units and the water mol­ecule into infinite planar layers parallel to (100). The remaining two N—H⋯O inter­actions in which the ammoniun group is involved link these layers into an infinite three-dimensional network.

Related literature

For the structural diversity of amine salts, see: Tooke et al. (2004[Tooke, D. M., Spek, A. L., Reedijk, J. & Kannappan, R. (2004). Acta Cryst. E60, o911-o912.]). For related nitrate compounds, see: Dai & Chen (2011[Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.]); Pourayoubi et al. (2011[Pourayoubi, M., Eshtiagh-Hosseini, H., Sanaei Ataabadi, S., Mancilla Percino, T. & A. Leyva Ramírez, M. (2011). Acta Cryst. E67, o565.]); Berrah et al. (2011[Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o2057-o2058.]). For hydrogen-bond patterns in related compounds, see: Flores-Alamo et al. (2010[Flores-Alamo, M., González-Martínez, S. & Castillo-Blum, S. E. (2010). Acta Cryst. E66, o812.]). For details of graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N2O+·NO3·H2O

  • Mr = 231.21

  • Monoclinic, P 21 /c

  • a = 4.1059 (1) Å

  • b = 23.1112 (5) Å

  • c = 11.4702 (3) Å

  • β = 92.942 (1)°

  • V = 1087.00 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.41 × 0.32 × 0.25 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4741 measured reflections

  • 2606 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.142

  • S = 1.06

  • 2606 reflections

  • 197 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1 0.93 (3) 1.79 (3) 2.689 (2) 161 (3)
O1W—H2W⋯O3 0.78 (3) 2.03 (3) 2.805 (2) 172 (3)
N1—H3⋯O2i 0.91 (2) 2.24 (2) 3.117 (2) 161 (2)
N2—H4⋯O1Wii 0.93 (2) 1.87 (2) 2.796 (2) 173 (2)
N2—H5⋯O2iii 0.89 (3) 2.14 (3) 3.008 (2) 165 (3)
N2—H6⋯O1Wiv 0.93 (3) 1.95 (2) 2.827 (2) 156 (2)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y, -z+1.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). WinGX. University of Glasgow, Scotland.]).

Supporting information


Comment top

Salts of amine show interesting structural diversity governed mainly by hydrogen bonds (Tooke et al., 2004), whose crystal pattern seems to be strongly influenced by the nature of the anion (Flores-Alamo et al., 2010). We report here the crystal structure of one such compound, 4-acetamidoanilinium nitrate monohydrate, (I), formed from the reaction of 4-acetamidoaniline and nitric acid. The asymmetric unit of the title salt, shown in Fig. 1, contains one protonated 4-acetamidoanilinium cation, one nitrate anion and one water molecule. The NO3- anion geometry agrees with that observed in similar compounds (Dai & Chen, 2011; Pourayoubi et al., 2011; Berrah et al., 2011). In the organic cation the bond length distance N1—C7 = 1.349 (2) Å and the sum of the angles around N1 atoms = 359.88 ° clearly indicate that the heteroatom N1 has a sp2 character. The N2 nitrogen atom is involved in a positive charge-assisted N—H···O hydrogen bond with a neighboring water molecule (N2···O1w = 2.796 (2) Å). Moreover, the water molecule forms two O—H···O interactions (O1W···O1 = 2.689 (2) Å and O1W···O3 = 2.805 (2) Å) with, respectively, the O1 oxygen atom belonging to the carbonyl group and the O3 atom of the adjacent NO3- anion. The weak hydrogen bond N1—H3···O2 (N1···O2 = 3.117 (2) Å) contributes to the robustness of the crystal architecture but it is not influencing the overall crystal packing pattern (Table 1, Fig. 2). Within the structure, the graph-set motif (Bernstein et al., 1995) R44(22) is formed by two cations and two water molecules, which in turn link cations and anions to form infinite planar layers parallel to (1 0 0) (Fig. 2). These layers are interconnected via further hydrogen bonds to form a three dimensional network.

Related literature top

For the structural diversity of amine salts, see: Tooke et al. (2004). For related nitrate compounds, see: Dai & Chen (2011); Pourayoubi et al. (2011); Berrah et al. (2011). For hydrogen-bond patterns in related compounds, see: Flores-Alamo et al. (2010). For details of graph-set theory, see: Bernstein et al. (1995).

Experimental top

Commercial 4-acetamidobenzenamine (3 mmol) was dissolved in water/HNO3 (50:1 v/v) solution. Colorless single crystals of the title compound, suitable for X-ray analysis, were obtained after slowly evaporation of the solvent at room temperature.

Refinement top

All H atoms were located in successive difference Fourier maps and refined riding on its parents atoms with Uiso=1.2 and 1.5Ueq(parent atom).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view, down the a axis, showing a layer of the structure. The hydrogen bonding transforming the layers in a three-dimenional network has been omitted for clarity.
4-Acetamidoanilinium nitrate monohydrate top
Crystal data top
C8H11N2O+·NO3·H2OF(000) = 488
Mr = 231.21Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4741 reflections
a = 4.1059 (1) Åθ = 3.0–28.0°
b = 23.1112 (5) ŵ = 0.12 mm1
c = 11.4702 (3) ÅT = 295 K
β = 92.942 (1)°Prismatic, pale yellow
V = 1087.00 (5) Å30.41 × 0.32 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 3.7°
ϕ scans and ω scansh = 55
4741 measured reflectionsk = 3027
2606 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.142All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.1041P]
where P = (Fo2 + 2Fc2)/3
2606 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H11N2O+·NO3·H2OV = 1087.00 (5) Å3
Mr = 231.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1059 (1) ŵ = 0.12 mm1
b = 23.1112 (5) ÅT = 295 K
c = 11.4702 (3) Å0.41 × 0.32 × 0.25 mm
β = 92.942 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1885 reflections with I > 2σ(I)
4741 measured reflectionsRint = 0.022
2606 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.142All H-atom parameters refined
S = 1.06Δρmax = 0.24 e Å3
2606 reflectionsΔρmin = 0.19 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1624 (3)0.11922 (5)0.45863 (11)0.0662 (4)
O20.6017 (4)0.36949 (6)0.53827 (14)0.0878 (5)
O30.3474 (5)0.30471 (6)0.63123 (12)0.0866 (5)
O40.3293 (4)0.30565 (6)0.44397 (12)0.0766 (4)
O1W0.2790 (3)0.18436 (6)0.65055 (11)0.0570 (3)
N10.0860 (3)0.09798 (5)0.28298 (12)0.0500 (3)
N20.2062 (4)0.13752 (6)0.21089 (16)0.0543 (4)
N30.4244 (3)0.32626 (5)0.53870 (12)0.0515 (3)
C10.0001 (3)0.03922 (6)0.27013 (12)0.0431 (3)
C20.1814 (4)0.00752 (7)0.35317 (14)0.0515 (4)
C30.2493 (4)0.05022 (7)0.33325 (15)0.0518 (4)
C40.1367 (3)0.07607 (6)0.23129 (13)0.0447 (3)
C50.0431 (4)0.04540 (7)0.14791 (15)0.0524 (4)
C60.1123 (4)0.01213 (7)0.16734 (14)0.0519 (4)
C70.0072 (4)0.13406 (6)0.37245 (13)0.0480 (4)
C80.1396 (5)0.19416 (8)0.3608 (2)0.0621 (5)
H10.259 (4)0.0238 (8)0.4267 (17)0.061 (5)*
H20.369 (5)0.0731 (9)0.3872 (18)0.065 (5)*
H30.205 (5)0.1131 (9)0.2208 (18)0.060 (5)*
H40.374 (5)0.1507 (9)0.2619 (18)0.067 (5)*
H50.243 (6)0.1417 (13)0.135 (3)0.103 (9)*
H60.040 (6)0.1603 (12)0.239 (2)0.095 (8)*
H70.229 (4)0.0345 (9)0.1086 (19)0.065 (5)*
H80.123 (5)0.0614 (9)0.0796 (18)0.064 (5)*
H90.251 (9)0.2023 (17)0.290 (4)0.141 (12)*
H100.017 (8)0.2231 (14)0.371 (3)0.115 (9)*
H110.272 (8)0.2008 (15)0.415 (3)0.124 (11)*
H1W0.219 (6)0.1691 (11)0.578 (2)0.087 (7)*
H2W0.288 (6)0.2175 (13)0.639 (2)0.088 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0952 (9)0.0479 (7)0.0534 (7)0.0049 (6)0.0168 (6)0.0067 (5)
O20.1177 (12)0.0606 (8)0.0825 (10)0.0398 (8)0.0211 (8)0.0080 (7)
O30.1328 (13)0.0705 (9)0.0578 (8)0.0060 (8)0.0158 (8)0.0140 (7)
O40.0939 (10)0.0746 (9)0.0600 (8)0.0196 (7)0.0086 (7)0.0111 (6)
O1W0.0760 (8)0.0460 (7)0.0485 (7)0.0006 (5)0.0023 (5)0.0004 (5)
N10.0605 (7)0.0410 (7)0.0475 (7)0.0017 (5)0.0055 (6)0.0018 (5)
N20.0544 (8)0.0424 (7)0.0662 (10)0.0028 (6)0.0025 (7)0.0084 (6)
N30.0673 (8)0.0381 (6)0.0479 (7)0.0029 (5)0.0074 (6)0.0047 (5)
C10.0473 (7)0.0393 (7)0.0428 (7)0.0037 (5)0.0037 (6)0.0003 (6)
C20.0631 (9)0.0466 (8)0.0438 (8)0.0018 (7)0.0059 (7)0.0036 (6)
C30.0599 (9)0.0475 (8)0.0472 (8)0.0040 (7)0.0039 (7)0.0018 (7)
C40.0451 (7)0.0393 (7)0.0505 (8)0.0025 (5)0.0082 (6)0.0028 (6)
C50.0603 (9)0.0493 (8)0.0469 (9)0.0030 (7)0.0046 (7)0.0075 (7)
C60.0619 (9)0.0460 (8)0.0467 (8)0.0008 (7)0.0074 (7)0.0005 (7)
C70.0531 (8)0.0422 (8)0.0487 (8)0.0052 (6)0.0022 (6)0.0018 (6)
C80.0674 (11)0.0448 (9)0.0731 (13)0.0038 (8)0.0067 (10)0.0086 (8)
Geometric parameters (Å, º) top
O1—C71.2286 (19)C1—C61.393 (2)
O2—N31.2363 (18)C2—C31.385 (2)
O3—N31.2284 (19)C2—H10.96 (2)
O4—N31.2314 (18)C3—C41.372 (2)
O1W—H1W0.93 (3)C3—H20.93 (2)
O1W—H2W0.78 (3)C4—C51.375 (2)
N1—C71.349 (2)C5—C61.380 (2)
N1—C11.4129 (19)C5—H80.91 (2)
N1—H30.91 (2)C6—H70.96 (2)
N2—C41.4698 (19)C7—C81.495 (2)
N2—H40.93 (2)C8—H90.93 (4)
N2—H50.89 (3)C8—H100.93 (3)
N2—H60.93 (3)C8—H110.86 (4)
C1—C21.387 (2)
H1W—O1W—H2W103 (2)C4—C3—H2117.5 (13)
C7—N1—C1128.48 (14)C2—C3—H2122.6 (13)
C7—N1—H3117.0 (12)C3—C4—C5120.93 (14)
C1—N1—H3114.4 (12)C3—C4—N2119.78 (14)
C4—N2—H4111.1 (13)C5—C4—N2119.29 (14)
C4—N2—H5107.7 (19)C4—C5—C6119.47 (15)
H4—N2—H5115 (2)C4—C5—H8123.0 (13)
C4—N2—H6109.9 (16)C6—C5—H8117.5 (13)
H4—N2—H697.5 (19)C5—C6—C1120.52 (15)
H5—N2—H6116 (2)C5—C6—H7120.4 (12)
O3—N3—O4121.44 (15)C1—C6—H7119.0 (12)
O3—N3—O2120.58 (15)O1—C7—N1122.92 (14)
O4—N3—O2117.98 (14)O1—C7—C8121.34 (15)
C2—C1—C6119.12 (14)N1—C7—C8115.75 (15)
C2—C1—N1124.34 (14)C7—C8—H9115 (2)
C6—C1—N1116.53 (13)C7—C8—H10114.1 (18)
C3—C2—C1120.07 (15)H9—C8—H10106 (3)
C3—C2—H1117.5 (11)C7—C8—H11110 (2)
C1—C2—H1122.4 (11)H9—C8—H11107 (3)
C4—C3—C2119.89 (15)H10—C8—H11104 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.93 (3)1.79 (3)2.689 (2)161 (3)
O1W—H2W···O30.78 (3)2.03 (3)2.805 (2)172 (3)
N1—H3···O2i0.91 (2)2.24 (2)3.117 (2)161 (2)
N2—H4···O1Wii0.93 (2)1.87 (2)2.796 (2)173 (2)
N2—H5···O2iii0.89 (3)2.14 (3)3.008 (2)165 (3)
N2—H6···O1Wiv0.93 (3)1.95 (2)2.827 (2)156 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H11N2O+·NO3·H2O
Mr231.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)4.1059 (1), 23.1112 (5), 11.4702 (3)
β (°) 92.942 (1)
V3)1087.00 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.41 × 0.32 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4741, 2606, 1885
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.06
No. of reflections2606
No. of parameters197
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: COLLECT (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.93 (3)1.79 (3)2.689 (2)161 (3)
O1W—H2W···O30.78 (3)2.03 (3)2.805 (2)172 (3)
N1—H3···O2i0.91 (2)2.24 (2)3.117 (2)161 (2)
N2—H4···O1Wii0.93 (2)1.87 (2)2.796 (2)173 (2)
N2—H5···O2iii0.89 (3)2.14 (3)3.008 (2)165 (3)
N2—H6···O1Wiv0.93 (3)1.95 (2)2.827 (2)156 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x, y, z+1.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o2057–o2058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). WinGX. University of Glasgow, Scotland.  Google Scholar
First citationFlores-Alamo, M., González-Martínez, S. & Castillo-Blum, S. E. (2010). Acta Cryst. E66, o812.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Eshtiagh-Hosseini, H., Sanaei Ataabadi, S., Mancilla Percino, T. & A. Leyva Ramírez, M. (2011). Acta Cryst. E67, o565.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTooke, D. M., Spek, A. L., Reedijk, J. & Kannappan, R. (2004). Acta Cryst. E60, o911–o912.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds