organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­cyclo­hexan-1-aminium thio­cyanate

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 25 April 2012; accepted 8 May 2012; online 16 May 2012)

The title compound, C6H15N2+·NCS, was obtained unexpectedly from the reaction mixture of benzoyl chloride, ammonium thio­cyanate and cyclo­hexane-1,2-diamine. The cyclo­hexane ring adopts a chair conformation. In the crystal, N—H⋯S and N—H⋯N inter­actions involving the thio­cyanate anion and both the amine and the aminium N atoms link the mol­ecules, forming two-dimensional networks parallel to (001).

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related thio­cyanate structures, see: Selvakumaran et al. (2011[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843.]); Khawar Rauf et al. (2008[Khawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.]).

[Scheme 1]

Experimental

Crystal data
  • C6H15N2+·NCS

  • Mr = 173.28

  • Orthorhombic, P b c a

  • a = 8.590 (3) Å

  • b = 12.885 (5) Å

  • c = 17.237 (7) Å

  • V = 1907.8 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.50 × 0.50 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.932

  • 10172 measured reflections

  • 1685 independent reflections

  • 1449 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.14

  • 1685 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.87 2.53 3.3914 (19) 172
N1—H1B⋯N3ii 0.82 2.10 2.895 (3) 166
N1—H1C⋯N2iii 1.01 1.83 2.841 (2) 175
N2—H2A⋯N3ii 0.99 2.31 3.231 (3) 155
N2—H2B⋯S1 0.97 2.81 3.681 (2) 149
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker,2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON.

Supporting information


Comment top

The thiocyanate salts such as ammonium, potassium and sodium thiocyanate are useful reagents for organic synthesis specially for the formation of thiourea moiety. There are also some organic salts of thiocyanate such as dicyclohexylammonium thiocyanate which formed polymorph with orthorhombic (Khawar Rauf et al., 2008) and monoclinic (Selvakumaran et al., 2011) system respectively. Both salts were obtained rather unexpectedly from the mixture of benzoyl chloride, KSCN and dicyclohexylamine in the first and similarly, in the latter when isopthaloyl dichloride was used instead of benzoyl chloride. The title compound is analogous to the said compounds except the cation is a cyclohexane ring having a protonated and unprotonated amines at 1 and 2 positions respectively (Fig.1). The thiocyanate is linear with N3—C7—S1 bond angle of 178.22 (19)°. The cyclohexane ring adopts a chair conformation. The bond lengths and angles are in normal ranges (Allen, 2002). In the crystal structure, the molecules are linked by N1–H1A···S1, N1–H1B···N3, N1–H1C···N2 ,N2–H2A···N3 and N2–H2B···S1 intermolecular hydrogen bonds (symmetry codes as shown in Table 1) to form two-dimensional network (Fig. 2) parallel to (001).

Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002). For related thiocyanate structures, see: Selvakumaran et al. (2011); Khawar Rauf et al. (2008).

Experimental top

All solvents and chemicals were of analytical grade and were used without purification. The mixture of benzoyl chloride (1.41 g, 0.01 mol), ammonium thiocyanate (0.76 g, 0.01 mol) and 1,2-diaminocyclohexane (1.14 g, 0.01 mol) in acetone was refluxed for 1 h. After cooling the solution was filtered and left to evaporate at room temperature. Some good crystals were obtained after 5 days of evaporation. (Yield 82%, m.p 395.9- 397.1 K). IR, NH: 3435.2, 3184.3 cm-1, C—N—S: 2058 cm-1, C—N: 1459 cm-1; CHNS, expt C: 48.22%, N: 24.50%, H: 8.73%, S: 17.50%), Calc C: 48.57, N: 24.20, H: 8.67, S: 18.49).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H= 0.97 Å (for CH2) and 0.98 Å (for CH) with Uiso(H)= 1.2Ueq(C). The hydrogen atoms attached to nitrogen atoms were located from difference maps and refined using a riding model with Uiso(H)= 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker,2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) viewed down c axis. The dashed lines indicate intermolecular hydrogen bonds.
2-Aminocyclohexan-1-aminium thiocyanate top
Crystal data top
C6H15N2+·NCSF(000) = 752
Mr = 173.28Dx = 1.207 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2210 reflections
a = 8.590 (3) Åθ = 3.0–25.0°
b = 12.885 (5) ŵ = 0.29 mm1
c = 17.237 (7) ÅT = 298 K
V = 1907.8 (13) Å3Block, colourless
Z = 80.50 × 0.50 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1685 independent reflections
Radiation source: fine-focus sealed tube1449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scanh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1512
Tmin = 0.870, Tmax = 0.932l = 2018
10172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.051P)2 + 0.6001P]
where P = (Fo2 + 2Fc2)/3
1685 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H15N2+·NCSV = 1907.8 (13) Å3
Mr = 173.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.590 (3) ŵ = 0.29 mm1
b = 12.885 (5) ÅT = 298 K
c = 17.237 (7) Å0.50 × 0.50 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1449 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.932Rint = 0.028
10172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.14Δρmax = 0.25 e Å3
1685 reflectionsΔρmin = 0.16 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.87938 (18)0.27887 (13)0.03084 (9)0.0437 (4)
H1A0.94310.30730.06370.052*
H1B0.83430.32420.00650.052*
H1C0.93750.23570.00900.052*
N20.55776 (18)0.33551 (13)0.07851 (9)0.0436 (4)
H2A0.61300.39260.05160.052*
H2B0.47570.36380.11120.052*
C10.7706 (2)0.20856 (14)0.07357 (10)0.0354 (4)
H1D0.70770.17080.03550.043*
C20.8674 (2)0.13050 (15)0.11858 (12)0.0433 (5)
H2C0.93000.09020.08270.052*
H2D0.93740.16710.15320.052*
C30.7648 (3)0.05792 (16)0.16548 (12)0.0493 (5)
H3A0.70220.01620.13050.059*
H3B0.82970.01140.19570.059*
C40.6591 (3)0.11804 (17)0.21932 (12)0.0513 (5)
H4A0.72130.15390.25790.062*
H4B0.59040.07030.24620.062*
C50.5629 (2)0.19625 (16)0.17426 (11)0.0463 (5)
H5A0.50100.23660.21040.056*
H5B0.49190.15930.14030.056*
C60.6618 (2)0.26985 (14)0.12574 (10)0.0371 (4)
H6A0.72350.31410.16030.045*
S10.15812 (8)0.37823 (5)0.14873 (3)0.0610 (2)
N30.2362 (3)0.53658 (16)0.04577 (11)0.0678 (6)
C70.2023 (2)0.47221 (16)0.08883 (11)0.0443 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0428 (9)0.0436 (9)0.0446 (9)0.0029 (7)0.0051 (7)0.0088 (7)
N20.0366 (8)0.0421 (9)0.0520 (10)0.0063 (7)0.0000 (7)0.0027 (7)
C10.0349 (9)0.0353 (10)0.0361 (9)0.0039 (8)0.0002 (7)0.0009 (8)
C20.0421 (11)0.0409 (11)0.0469 (11)0.0055 (9)0.0019 (9)0.0032 (9)
C30.0586 (13)0.0400 (11)0.0493 (11)0.0026 (10)0.0020 (10)0.0085 (9)
C40.0582 (13)0.0522 (13)0.0435 (11)0.0042 (10)0.0079 (10)0.0075 (9)
C50.0408 (10)0.0531 (12)0.0451 (10)0.0008 (9)0.0078 (8)0.0006 (9)
C60.0366 (10)0.0366 (10)0.0383 (9)0.0002 (8)0.0025 (8)0.0029 (8)
S10.0708 (4)0.0589 (4)0.0535 (4)0.0088 (3)0.0002 (3)0.0116 (3)
N30.0815 (15)0.0521 (12)0.0697 (12)0.0012 (11)0.0043 (11)0.0167 (11)
C70.0420 (11)0.0442 (12)0.0467 (11)0.0070 (9)0.0023 (9)0.0063 (10)
Geometric parameters (Å, º) top
N1—C11.495 (2)C3—C41.512 (3)
N1—H1A0.8682C3—H3A0.9700
N1—H1B0.8173C3—H3B0.9700
N1—H1C1.0147C4—C51.517 (3)
N2—C61.475 (2)C4—H4A0.9700
N2—H2A0.9911C4—H4B0.9700
N2—H2B0.9740C5—C61.523 (3)
C1—C21.518 (3)C5—H5A0.9700
C1—C61.519 (2)C5—H5B0.9700
C1—H1D0.9800C6—H6A0.9800
C2—C31.518 (3)S1—C71.636 (2)
C2—H2C0.9700N3—C71.150 (3)
C2—H2D0.9700
C1—N1—H1A109.2C2—C3—H3A109.4
C1—N1—H1B112.9C4—C3—H3B109.4
H1A—N1—H1B109.4C2—C3—H3B109.4
C1—N1—H1C108.0H3A—C3—H3B108.0
H1A—N1—H1C111.2C3—C4—C5110.68 (17)
H1B—N1—H1C106.1C3—C4—H4A109.5
C6—N2—H2A113.2C5—C4—H4A109.5
C6—N2—H2B109.5C3—C4—H4B109.5
H2A—N2—H2B109.9C5—C4—H4B109.5
N1—C1—C2108.11 (15)H4A—C4—H4B108.1
N1—C1—C6111.17 (15)C4—C5—C6113.01 (16)
C2—C1—C6112.27 (15)C4—C5—H5A109.0
N1—C1—H1D108.4C6—C5—H5A109.0
C2—C1—H1D108.4C4—C5—H5B109.0
C6—C1—H1D108.4C6—C5—H5B109.0
C3—C2—C1111.24 (17)H5A—C5—H5B107.8
C3—C2—H2C109.4N2—C6—C1110.14 (15)
C1—C2—H2C109.4N2—C6—C5108.79 (15)
C3—C2—H2D109.4C1—C6—C5110.16 (15)
C1—C2—H2D109.4N2—C6—H6A109.2
H2C—C2—H2D108.0C1—C6—H6A109.2
C4—C3—C2111.09 (17)C5—C6—H6A109.2
C4—C3—H3A109.4N3—C7—S1178.2 (2)
N1—C1—C2—C3178.41 (15)C2—C1—C6—N2173.39 (15)
C6—C1—C2—C355.4 (2)N1—C1—C6—C5174.63 (15)
C1—C2—C3—C456.1 (2)C2—C1—C6—C553.4 (2)
C2—C3—C4—C555.6 (2)C4—C5—C6—N2174.46 (16)
C3—C4—C5—C655.2 (2)C4—C5—C6—C153.6 (2)
N1—C1—C6—N265.36 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.872.533.3914 (19)172
N1—H1B···N3ii0.822.102.895 (3)166
N1—H1C···N2iii1.011.832.841 (2)175
N2—H2A···N3ii0.992.313.231 (3)155
N2—H2B···S10.972.813.681 (2)149
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H15N2+·NCS
Mr173.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.590 (3), 12.885 (5), 17.237 (7)
V3)1907.8 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.50 × 0.50 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.870, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
10172, 1685, 1449
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.14
No. of reflections1685
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: SMART (Bruker,2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.872.533.3914 (19)172.1
N1—H1B···N3ii0.822.102.895 (3)165.8
N1—H1C···N2iii1.011.832.841 (2)174.9
N2—H2A···N3ii0.992.313.231 (3)154.6
N2—H2B···S10.972.813.681 (2)149.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for research grant No. UKM-GUP-NBT-08–27-110.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhawar Rauf, M., Ebihara, M., Imtiaz-ud-Din & Badshah, A. (2008). Acta Cryst. E64, o366.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSelvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds