organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,8-Di­methyl-4-oxo-3,4-di­hydro­quinazoline-6-carbo­nitrile

aKey Laboratory of Green Chemical Engineering and Technology of Colleges of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
*Correspondence e-mail: bjc@126.com

(Received 23 April 2012; accepted 16 May 2012; online 31 May 2012)

In the title compound, C11H9N3O, the quinazoline unit is almost planar, with a mean deviation of 0.006 (1) Å from the least-squares plane defined by the ten constituent atoms. In the crystal, mol­ecules are linked by weak C—H⋯N hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Shapiro et al. (2006[Shapiro, R., Taylor, E. D. & Zimmerman, W. T. (2006). World Patent No. WO2006062978.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O

  • Mr = 199.21

  • Orthorhombic, P n a 21

  • a = 7.0700 (14) Å

  • b = 13.441 (3) Å

  • c = 10.156 (2) Å

  • V = 965.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.977

  • 8874 measured reflections

  • 1162 independent reflections

  • 1054 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.07

  • 1162 reflections

  • 138 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1i 0.93 2.58 3.431 (3) 152
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anthranilic diamide compounds are known as new broad spectrum pesticides, which are developed and produced by E.I.Du Pont Company. The title compound is an important intermediate of this kind of pesticides. Herein, we report the crystal structure of the title compound. The title compound crystallizes as the non-centrosymmetric space group Pna21 in spite of having no asymmetric C atoms.

In the title molecule (Fig. 1), the quinazoline unit is almost planar, with a mean deviation of 0.006 (1) Å from the least-squares plane defined by the ten constituent atoms. In the crystal structure, molecules are connected by weak intermolecular C—H···N hydrogen bonds (Table 1).

Related literature top

For the synthesis of the title compound, see: Shapiro et al. (2006).

Experimental top

The title compound was prepared by the reaction of N-methyl-2-amino-5-cyano-3-methylbenzamide and NaCN in DMSO under reflux conditions (Shapiro et al., 2006). Single crystals suitable for X-ray diffraction were obtained by recrystallization of the title compound from ethyl acetate.

Refinement top

All the Friedel pairs were merged. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 / 0.96 Å (aromatic / methyl), and with Uiso(H) = 1.2 / 1.5 Ueq(C) (aromatic / methyl). The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
3,8-Dimethyl-4-oxo-3,4-dihydroquinazoline-6-carbonitrile top
Crystal data top
C11H9N3OF(000) = 416
Mr = 199.21Dx = 1.371 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8275 reflections
a = 7.0700 (14) Åθ = 3.0–27.5°
b = 13.441 (3) ŵ = 0.09 mm1
c = 10.156 (2) ÅT = 293 K
V = 965.1 (3) Å3Blcok, colorless
Z = 40.45 × 0.30 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1162 independent reflections
Radiation source: fine-focus sealed tube1054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.960, Tmax = 0.977k = 1717
8874 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.095H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.0037P]
where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C11H9N3OV = 965.1 (3) Å3
Mr = 199.21Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.0700 (14) ŵ = 0.09 mm1
b = 13.441 (3) ÅT = 293 K
c = 10.156 (2) Å0.45 × 0.30 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1162 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1054 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.977Rint = 0.024
8874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
1162 reflectionsΔρmin = 0.20 e Å3
138 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1413 (2)0.27920 (15)0.02167 (19)0.0378 (4)
C20.1206 (3)0.37812 (15)0.02217 (19)0.0396 (4)
H20.13940.43000.03700.048*
C30.0734 (2)0.39952 (12)0.1495 (2)0.0370 (4)
C40.0470 (2)0.31970 (13)0.23889 (19)0.0310 (3)
C50.0689 (2)0.22115 (12)0.19457 (18)0.0323 (4)
C60.1155 (2)0.20073 (14)0.06421 (19)0.0370 (4)
H60.12900.13540.03550.044*
C70.0396 (2)0.13796 (13)0.28618 (19)0.0359 (4)
C80.0271 (3)0.26620 (13)0.44539 (19)0.0381 (4)
H80.06030.28030.53200.046*
C90.1888 (3)0.25977 (17)0.1578 (2)0.0446 (5)
C100.0482 (4)0.50555 (16)0.1950 (3)0.0545 (6)
H10A0.06820.54990.12220.082*
H10B0.13820.52000.26320.082*
H10C0.07760.51430.22850.082*
C110.0442 (4)0.09042 (15)0.5119 (2)0.0525 (6)
H11A0.05930.12090.59680.079*
H11B0.06120.04540.51420.079*
H11C0.15700.05440.48970.079*
N10.2256 (3)0.24416 (16)0.2643 (2)0.0609 (5)
N20.0095 (2)0.16788 (11)0.41248 (17)0.0370 (4)
N30.0021 (2)0.34132 (12)0.36812 (16)0.0375 (4)
O10.0553 (2)0.05017 (10)0.25774 (18)0.0547 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (8)0.0531 (10)0.0265 (9)0.0022 (8)0.0019 (7)0.0016 (8)
C20.0431 (9)0.0448 (9)0.0309 (9)0.0036 (7)0.0018 (7)0.0083 (7)
C30.0401 (8)0.0352 (8)0.0356 (10)0.0020 (7)0.0015 (7)0.0033 (8)
C40.0323 (7)0.0332 (8)0.0276 (8)0.0002 (6)0.0006 (6)0.0011 (6)
C50.0316 (7)0.0349 (8)0.0304 (9)0.0007 (6)0.0001 (6)0.0017 (7)
C60.0385 (9)0.0392 (8)0.0332 (10)0.0002 (7)0.0023 (7)0.0057 (7)
C70.0402 (8)0.0340 (8)0.0335 (9)0.0003 (7)0.0007 (7)0.0009 (7)
C80.0461 (9)0.0403 (9)0.0279 (9)0.0028 (7)0.0042 (7)0.0013 (7)
C90.0431 (10)0.0586 (12)0.0321 (11)0.0015 (9)0.0039 (8)0.0013 (8)
C100.0849 (15)0.0336 (9)0.0450 (12)0.0009 (10)0.0096 (11)0.0033 (8)
C110.0754 (13)0.0433 (10)0.0387 (13)0.0026 (10)0.0104 (10)0.0121 (9)
N10.0690 (12)0.0809 (14)0.0329 (10)0.0012 (10)0.0099 (9)0.0037 (9)
N20.0441 (8)0.0371 (8)0.0298 (9)0.0001 (6)0.0016 (6)0.0042 (6)
N30.0482 (8)0.0356 (7)0.0287 (9)0.0012 (7)0.0051 (6)0.0023 (6)
O10.0816 (11)0.0328 (6)0.0498 (10)0.0011 (7)0.0053 (8)0.0036 (6)
Geometric parameters (Å, º) top
C1—C61.381 (3)C7—N21.388 (3)
C1—C21.410 (3)C8—N31.291 (2)
C1—C91.447 (3)C8—N21.369 (2)
C2—C31.366 (3)C8—H80.9300
C2—H20.9300C9—N11.132 (3)
C3—C41.418 (2)C10—H10A0.9600
C3—C101.508 (3)C10—H10B0.9600
C4—N31.388 (2)C10—H10C0.9600
C4—C51.408 (2)C11—N21.471 (2)
C5—C61.392 (3)C11—H11A0.9600
C5—C71.469 (2)C11—H11B0.9600
C6—H60.9300C11—H11C0.9600
C7—O11.220 (2)
C6—C1—C2120.46 (18)N3—C8—N2126.47 (18)
C6—C1—C9119.78 (19)N3—C8—H8116.8
C2—C1—C9119.76 (19)N2—C8—H8116.8
C3—C2—C1121.54 (17)N1—C9—C1179.7 (3)
C3—C2—H2119.2C3—C10—H10A109.5
C1—C2—H2119.2C3—C10—H10B109.5
C2—C3—C4118.61 (17)H10A—C10—H10B109.5
C2—C3—C10121.16 (18)C3—C10—H10C109.5
C4—C3—C10120.23 (18)H10A—C10—H10C109.5
N3—C4—C5121.79 (16)H10B—C10—H10C109.5
N3—C4—C3118.67 (16)N2—C11—H11A109.5
C5—C4—C3119.54 (16)N2—C11—H11B109.5
C6—C5—C4121.05 (16)H11A—C11—H11B109.5
C6—C5—C7119.06 (15)N2—C11—H11C109.5
C4—C5—C7119.88 (16)H11A—C11—H11C109.5
C1—C6—C5118.80 (16)H11B—C11—H11C109.5
C1—C6—H6120.6C8—N2—C7121.87 (16)
C5—C6—H6120.6C8—N2—C11120.03 (18)
O1—C7—N2121.44 (18)C7—N2—C11118.10 (16)
O1—C7—C5125.00 (19)C8—N3—C4116.43 (16)
N2—C7—C5113.56 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.932.583.431 (3)152
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H9N3O
Mr199.21
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)7.0700 (14), 13.441 (3), 10.156 (2)
V3)965.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.960, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8874, 1162, 1054
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.07
No. of reflections1162
No. of parameters138
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.932.583.431 (3)151.6
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Harbin University of Science and Technology and Heilongjiang Institute of Science and Technology for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationShapiro, R., Taylor, E. D. & Zimmerman, W. T. (2006). World Patent No. WO2006062978.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds