metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-aza­niumyleth­yl)piperazin-1-ium] di-μ-sulfido-bis­­[di­sulfido­germanate(II)]

aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 5 May 2012; accepted 15 May 2012; online 26 May 2012)

In the title compound, (C6H17N3)2[Ge2S6], the dimeric [Ge2S6]4− anion is formed by two edge-sharing GeS4 tetra­hedral units. The average terminal and bridging Ge—S bond lengths are 2.164 (2) and 2.272 (8) Å, respectively. The dimeric inorganic anions and the organic piperazinium cations are organized into a three-dimensional network by N—H⋯S hydrogen bonds.

Related literature

For background to main-group metal–chalcogenide compounds, see: Bedard et al. (1989[Bedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1989). Zeolites Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier.]); Yaghi et al. (1994[Yaghi, O. M., Sun, Z., Richardson, D. A. & Groy, T. L. (1994). J. Am. Chem. Soc. 116, 807-808.]); Bowes & Ozin (1996[Bowes, C. L. & Ozin, G. A. (1996). Adv. Mater. 8, 13-18.]); Zheng et al. (2005[Zheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805-2806.]); Zhang et al. (2008[Zhang, Z., Zhang, J., Wu, T., Bu, X. & Feng, P. (2008). J. Am. Chem. Soc. 130, 15238-15239.]); Haddadpour et al. (2009[Haddadpour, S., Melullis, M., Staesche, H., Mariappan, C. R., Roling, B., Clerac, R. & Dehnen, S. (2009). Inorg. Chem. 48, 1689-1695.]). For related structures, see: Jia et al. (2005[Jia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874-881.]); Xu et al. (2012[Xu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H17N3)2[Ge2S6]

  • Mr = 600.10

  • Triclinic, [P \overline 1]

  • a = 7.4985 (1) Å

  • b = 8.2709 (1) Å

  • c = 10.4177 (1) Å

  • α = 72.156 (1)°

  • β = 78.323 (1)°

  • γ = 89.792 (1)°

  • V = 601.11 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 296 K

  • 0.21 × 0.16 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.568, Tmax = 0.694

  • 11264 measured reflections

  • 2756 independent reflections

  • 2558 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.044

  • S = 1.04

  • 2756 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S2i 0.90 2.50 3.3864 (14) 170
N1—H1A⋯S2ii 0.90 2.49 3.2990 (14) 150
N2—H2A⋯S3 0.89 2.43 3.2781 (13) 160
N2—H2C⋯S2iii 0.89 2.51 3.3467 (13) 157
N2—H2B⋯S3iv 0.89 2.42 3.3021 (13) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z-1; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Main group (groups 13 and 14) metal chalcogenide complexes with well-defined compositions and structures are of great interest because of their size-dependent optical properties, semiconducting and photocatalytic behaviors (Bowes & Ozin, 1996; Zhang et al., 2008). Since Bedard synthesized the first porous chalcogenide compound by replacing O2- with S2- in an open-framework oxide (Bedard et al., 1989), much effort has been expended during the past two decades to develop open-framework metal chalcogenides (Yaghi et al., 1994; Zheng et al., 2005; Haddadpour et al., 2009). In this paper we report the hydrothermal synthesis and crystal structure of a new thiogermanate, [aepH2]2[Ge2S6]. (aep = N-(2-aminoethyl)piperazinium).

The title compound consists of a dimeric [Ge2S6]4- anion having crystallographically-imposed centrosymmetry and two diprotonated [aepH2]2+ cations (Fig. 1). The dimeric [Ge2S6]4- anion is constructed by two edge-linked tetrahedral GeS4 units forming a planar Ge2S2 quadrilateral while the four terminal sulfur atoms lie in a second plane at an angle of 88.38 (1)° to the first. The S—Ge—S angles in the tetrahedral GeS4 unit range from 91.827 (13) to 114.634 (15)°. The average Ge—St (terminal bond) length of 2.1642 (4) Å) is significantly shorter than the average Ge—Sb (bridging bond) length of 2.2724 (4) Å) with both values similar to those found in the other thiogermanates (Xu et al., 2012; Jia et al., 2005). The two terminal amine groups of the N-(2-aminoethyl)piperazine are protonated to balance the negative charge of the dimeric anion. The [Ge2S6]4- anions and [apeH2]2+ cations are organized into an extended three-dimensional network by N—H···S hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background to main-group metal–chalcogenide compounds, see: Bedard et al. (1989); Yaghi et al. (1994); Bowes & Ozin (1996); Zheng et al. (2005); Zhang et al. (2008); Haddadpour et al. (2009). For related structures, see: Jia et al. (2005); Xu et al. (2012).

Experimental top

GeO2 (104.6 mg, 1.0 mmol) and S powder (128.0 mg, 4.0 mmol) were mixed with N-(2-aminoethyl)piperazine (2.3478 g) in a 23 mL Teflon-lined stainless steel autoclave and stirred for 20 min. The vessel was sealed and heated at 190°C for 7 d and then cooled to room temperature. Colorless slab crystals were obtained and air dried. The yield based on GeO2 is about 36%. Analysis, calculated for C12H34N6S6Ge2: C 24.0, H 5.71, N 14.0%; found C 23.7, H 5.56, N 13.9%.

Refinement top

The structure was solved by direct methods and refined by full-matrix least-squares methods based on F2. All C-bound H atoms were positioned and refined as riding atoms with C—H = 0.97(CH2) Å and Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in a difference map, adjusted to give N—H = 0.90 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Dashed lines denote hydrogen bonds.
Bis[4-(2-azaniumylethyl)piperazin-1-ium] di-µ-sulfido-bis[disulfidogermanate(II)] top
Crystal data top
(C6H17N3)2[Ge2S6]Z = 1
Mr = 600.10F(000) = 308
Triclinic, P1Dx = 1.657 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4985 (1) ÅCell parameters from 6350 reflections
b = 8.2709 (1) Åθ = 2.5–26.4°
c = 10.4177 (1) ŵ = 3.03 mm1
α = 72.156 (1)°T = 296 K
β = 78.323 (1)°Slab, colorless
γ = 89.792 (1)°0.21 × 0.16 × 0.13 mm
V = 601.11 (1) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2756 independent reflections
Radiation source: fine-focus sealed tube2558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 99
Tmin = 0.568, Tmax = 0.694k = 1010
11264 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.0568P]
where P = (Fo2 + 2Fc2)/3
2756 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
(C6H17N3)2[Ge2S6]γ = 89.792 (1)°
Mr = 600.10V = 601.11 (1) Å3
Triclinic, P1Z = 1
a = 7.4985 (1) ÅMo Kα radiation
b = 8.2709 (1) ŵ = 3.03 mm1
c = 10.4177 (1) ÅT = 296 K
α = 72.156 (1)°0.21 × 0.16 × 0.13 mm
β = 78.323 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2558 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.694Rint = 0.018
11264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
2756 reflectionsΔρmin = 0.20 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.534452 (18)0.015013 (17)0.647883 (13)0.02329 (5)
S10.39310 (5)0.17306 (4)0.49657 (4)0.03133 (9)
S20.34914 (5)0.14470 (5)0.84118 (4)0.03350 (9)
S30.77604 (5)0.09503 (5)0.68057 (4)0.03090 (9)
N10.6536 (2)0.80969 (18)0.03620 (14)0.0430 (3)
H1A0.60970.84210.04150.052*
H1B0.63800.89340.07510.052*
N20.94141 (17)0.20541 (15)0.34735 (13)0.0330 (3)
H2A0.87300.16340.43200.049*
H2B1.02360.13180.33230.049*
H2C0.87070.22300.28590.049*
N30.82332 (17)0.56300 (15)0.22444 (12)0.0310 (3)
C30.5509 (2)0.6512 (2)0.1331 (2)0.0471 (4)
H3A0.55810.56360.08840.057*
H3B0.42340.67280.15860.057*
C40.6293 (2)0.5917 (2)0.25953 (17)0.0404 (4)
H4A0.61390.67630.30740.048*
H4B0.56380.48670.32120.048*
C50.9224 (2)0.7215 (2)0.13193 (18)0.0462 (4)
H5A1.05120.70300.10960.055*
H5B0.90880.80790.17800.055*
C60.8514 (3)0.7828 (3)0.00124 (18)0.0513 (5)
H6A0.91720.88860.05840.062*
H6B0.86990.69920.04750.062*
C70.9006 (3)0.5008 (2)0.34801 (17)0.0416 (4)
H7A0.80310.45150.42790.050*
H7B0.96060.59550.36250.050*
C81.0363 (2)0.3689 (2)0.33375 (18)0.0384 (3)
H8A1.11920.40950.24450.046*
H8B1.10750.35110.40440.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.02519 (8)0.02634 (8)0.02008 (8)0.00381 (5)0.00971 (5)0.00663 (6)
S10.0419 (2)0.03052 (18)0.02880 (19)0.01500 (14)0.01897 (15)0.01251 (14)
S20.03277 (19)0.0426 (2)0.02247 (17)0.00458 (15)0.00702 (14)0.00547 (15)
S30.02968 (18)0.03499 (19)0.03217 (19)0.00113 (14)0.01403 (14)0.01165 (15)
N10.0604 (9)0.0426 (8)0.0369 (7)0.0181 (6)0.0304 (7)0.0153 (6)
N20.0350 (6)0.0325 (6)0.0308 (6)0.0071 (5)0.0105 (5)0.0066 (5)
N30.0387 (7)0.0290 (6)0.0265 (6)0.0061 (5)0.0144 (5)0.0056 (5)
C30.0397 (9)0.0499 (10)0.0598 (11)0.0059 (7)0.0220 (8)0.0214 (9)
C40.0414 (9)0.0377 (8)0.0375 (9)0.0026 (7)0.0057 (7)0.0067 (7)
C50.0395 (9)0.0485 (10)0.0411 (9)0.0035 (7)0.0160 (7)0.0046 (8)
C60.0546 (11)0.0568 (11)0.0310 (9)0.0061 (9)0.0104 (8)0.0037 (8)
C70.0641 (11)0.0337 (8)0.0330 (8)0.0120 (7)0.0255 (8)0.0097 (7)
C80.0391 (8)0.0371 (8)0.0404 (9)0.0034 (6)0.0211 (7)0.0062 (7)
Geometric parameters (Å, º) top
Ge1—S32.1628 (4)C3—C41.495 (2)
Ge1—S22.1658 (4)C3—H3A0.9700
Ge1—S1i2.2668 (4)C3—H3B0.9700
Ge1—S12.2780 (4)C4—H4A0.9700
S1—Ge1i2.2668 (4)C4—H4B0.9700
N1—C61.487 (2)C5—C61.504 (2)
N1—C31.487 (2)C5—H5A0.9700
N1—H1A0.9000C5—H5B0.9700
N1—H1B0.9000C6—H6A0.9700
N2—C81.4845 (19)C6—H6B0.9700
N2—H2A0.8900C7—C81.509 (2)
N2—H2B0.8900C7—H7A0.9700
N2—H2C0.8900C7—H7B0.9700
N3—C41.464 (2)C8—H8A0.9700
N3—C51.4637 (19)C8—H8B0.9700
N3—C71.467 (2)
S3—Ge1—S2111.635 (15)N3—C4—H4A109.4
S3—Ge1—S1i111.482 (15)C3—C4—H4A109.4
S2—Ge1—S1i114.630 (15)N3—C4—H4B109.4
S3—Ge1—S1113.476 (15)C3—C4—H4B109.4
S2—Ge1—S1112.453 (16)H4A—C4—H4B108.0
S1i—Ge1—S191.835 (13)N3—C5—C6110.83 (14)
Ge1i—S1—Ge188.165 (13)N3—C5—H5A109.5
C6—N1—C3110.87 (13)C6—C5—H5A109.5
C6—N1—H1A109.4N3—C5—H5B109.5
C3—N1—H1A109.5C6—C5—H5B109.5
C6—N1—H1B109.5H5A—C5—H5B108.1
C3—N1—H1B109.4N1—C6—C5109.21 (15)
H1A—N1—H1B108.1N1—C6—H6A109.8
C8—N2—H2A109.5C5—C6—H6A109.8
C8—N2—H2B109.5N1—C6—H6B109.8
H2A—N2—H2B109.5C5—C6—H6B109.8
C8—N2—H2C109.5H6A—C6—H6B108.3
H2A—N2—H2C109.5N3—C7—C8111.07 (13)
H2B—N2—H2C109.5N3—C7—H7A109.4
C4—N3—C5109.42 (13)C8—C7—H7A109.4
C4—N3—C7111.63 (13)N3—C7—H7B109.4
C5—N3—C7109.98 (13)C8—C7—H7B109.4
N1—C3—C4109.82 (13)H7A—C7—H7B108.0
N1—C3—H3A109.7N2—C8—C7110.74 (13)
C4—C3—H3A109.7N2—C8—H8A109.5
N1—C3—H3B109.7C7—C8—H8A109.5
C4—C3—H3B109.7N2—C8—H8B109.5
H3A—C3—H3B108.2C7—C8—H8B109.5
N3—C4—C3111.20 (13)H8A—C8—H8B108.1
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S2ii0.902.503.3864 (14)170
N1—H1A···S2iii0.902.493.2990 (14)150
N2—H2A···S30.892.433.2781 (13)160
N2—H2C···S2i0.892.513.3467 (13)157
N2—H2B···S3iv0.892.423.3021 (13)172
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z1; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula(C6H17N3)2[Ge2S6]
Mr600.10
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4985 (1), 8.2709 (1), 10.4177 (1)
α, β, γ (°)72.156 (1), 78.323 (1), 89.792 (1)
V3)601.11 (1)
Z1
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.21 × 0.16 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.568, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
11264, 2756, 2558
Rint0.018
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.04
No. of reflections2756
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S2i0.902.503.3864 (14)170
N1—H1A···S2ii0.902.493.2990 (14)150
N2—H2A···S30.892.433.2781 (13)160
N2—H2C···S2iii0.892.513.3467 (13)157
N2—H2B···S3iv0.892.423.3021 (13)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z1; (iii) x+1, y, z+1; (iv) x+2, y, z+1.
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

References

First citationBedard, R. L., Wilson, S. T., Vail, L. D., Bennettand, J. M. & Flanigen, E. M. (1989). Zeolites Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by P. A. Jacobs & R. A. van Santen, p. 375. Amsterdam: Elsevier.  Google Scholar
First citationBowes, C. L. & Ozin, G. A. (1996). Adv. Mater. 8, 13–18.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaddadpour, S., Melullis, M., Staesche, H., Mariappan, C. R., Roling, B., Clerac, R. & Dehnen, S. (2009). Inorg. Chem. 48, 1689–1695.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJia, D.-X., Dai, J., Zhu, Q.-Y., Cao, L.-H. & Lin, H.-H. (2005). J. Solid State Chem. 178, 874–881.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Zhang, J.-J., Duan, T., Chen, Q. & Zhang, Q.-F. (2012). Acta Cryst. E68, m154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaghi, O. M., Sun, Z., Richardson, D. A. & Groy, T. L. (1994). J. Am. Chem. Soc. 116, 807–808.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, Z., Zhang, J., Wu, T., Bu, X. & Feng, P. (2008). J. Am. Chem. Soc. 130, 15238–15239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, N., Bu, X. & Feng, P. (2005). Chem. Commun. pp. 2805–2806.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds