organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­hydro­cryptopine

aCollege of Science, Northwest Agriculture and Forestry University, Yangling 712100, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn

(Received 7 March 2012; accepted 20 April 2012; online 16 May 2012)

In the crystal structure of the title compound [systematic name: 6,7-dimeth­oxy-12-methyl-16,18-dioxa-12-aza­tetra­cyclo­[12.7.0.04,9.015,19]henicosa-1(21),4,6,8,14,19-hexaen-3-ol], C21H25NO5, the benzene rings exhibits a dihedral angle of 14.95 (4)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonding into inversion dimers. These dimers are further connected by C—H⋯O inter­actions.

Related literature

For the synthesis of the title compound, see: Wada et al. (2007[Wada, Y., Kaga, H., Uchiito, S., Kumazawa, E., Tomiki, M., Onozaki, Y., Kurono, N., Tokuda, M., Ohkuma, T. & Orit, K. (2007). J. Org. Chem. 72, 7301-7306.]). For the biological activity of cryptopine derivatives, see: Morteza et al. (2003[Morteza, K., Amin, G., Shidfar, M. R., Hadizadeh, H. & Shafiee, A. (2003). Fitoterapia, 74, 493-496.]); Yang et al. (2009[Yang, M., Sun, J. H., Lu, Z. Q., Chen, G. T., Guan, S. H., Liu, X., Jiang, B. H., Ye, M. & Guo, D. A. (2009). J. Chromatogr. A, 1216, 2045-2062.]); Capasso et al. (1997[Capasso, A., Piacente, S. & Pizza, C. (1997). Planta Med. 63, 326-328.]); Jeong et al. (2009[Jeong, E. J., Ma, C. J., Lee, K. Y., Kim, S. H., Sung, S. H. & Kim, Y. C. (2009). J. Ethnopharmacol. 121, 98-105.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO5

  • Mr = 371.42

  • Monoclinic, P 21 /c

  • a = 9.5810 (16) Å

  • b = 6.7405 (12) Å

  • c = 28.886 (5) Å

  • β = 92.164 (2)°

  • V = 1864.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.983

  • 13267 measured reflections

  • 3460 independent reflections

  • 2721 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.02

  • 3460 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 2.31 3.0924 (16) 159
C1—H1A⋯O3ii 0.97 2.41 3.367 (2) 170
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The cryptopine derivatives have recently attracted great attention due to their antifungal (Morteza et al. 2003) and antibacterial activity (Yang et al. 2009), their analgesic effect (Capasso et al. 1997) and anti-dementia prperties (Jeong et al. 2009). In this context we are interested in the synthesis of cryptopine derivatives with biological activity. Within this project the crystal structure of the title compound was determined.

The molecule of the title compound is characterized by the presence of a ten-membered ring (hexahydrodibenzo[c,g]azecine) with a methylated tertiary nitrogen atom and a hydroxyl group fused to two aryl moieties (Fig. 1). In general, the title compound have two oxygenated substituents on the benzene ring and two methoxyl on the other benzene ring.Benzene rings C2/C3/C4/C5/C6/C7 and C11/C12/C16/C17/C18/C19 are inclined with respect to one another with a dihedral angle of 19.949 (41)°.

In the crystal structure, two adjacent molecules are linked by intermolecular O—H···O hydrogen bond into centrosymmetrically dimers that are further connected into layers by weak C—H···O interactions (Table 1).

Related literature top

For the synthesis of the title compound, see: Wada et al. (2007). For the biological activity of cryptopine derivatives, see: Morteza et al. (2003); Yang et al. (2009); Capasso et al. (1997); Jeong et al. (2009).

Experimental top

The title compound was synthesized according to the literature procedure (Wada et al. 2007), and crystals were obtained from a solution in methanol by slow evaporation of the solvent at room temperature.

Refinement top

H atoms were positioned geometrically (O-H H atoms allowed to rotate but not to tip) and treated as riding, with C—H bond lengths constrained to 0.93 (aromatic CH), or 0.97 Å (methylene CH2), or 0.96Å (methyl CH3), and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
6,7-dimethoxy-12-methyl-16,18-dioxa-12- azatetracyclo[12.7.0.04,9.015,19]henicosa-1(21),4,6,8,14,19-hexaen-3-ol top
Crystal data top
C21H25NO5F(000) = 792
Mr = 371.42Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5810 (16) ÅCell parameters from 4124 reflections
b = 6.7405 (12) Åθ = 2.5–26.5°
c = 28.886 (5) ŵ = 0.09 mm1
β = 92.164 (2)°T = 296 K
V = 1864.2 (6) Å3Block, colourless
Z = 40.26 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3460 independent reflections
Radiation source: fine-focus sealed tube2721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.976, Tmax = 0.983k = 88
13267 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.3327P]
where P = (Fo2 + 2Fc2)/3
3460 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H25NO5V = 1864.2 (6) Å3
Mr = 371.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5810 (16) ŵ = 0.09 mm1
b = 6.7405 (12) ÅT = 296 K
c = 28.886 (5) Å0.26 × 0.21 × 0.18 mm
β = 92.164 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3460 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2721 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.021
13267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
3460 reflectionsΔρmin = 0.18 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7221 (2)0.5338 (3)0.34220 (6)0.0678 (5)
H1A0.65760.62820.35500.081*
H1B0.80160.52030.36380.081*
C20.72327 (15)0.4630 (2)0.26692 (5)0.0479 (4)
C30.65789 (15)0.3100 (3)0.28885 (5)0.0487 (4)
C40.60582 (15)0.1506 (2)0.26509 (5)0.0487 (4)
H40.56410.04450.27980.058*
C50.61899 (14)0.1562 (2)0.21705 (5)0.0422 (3)
H50.58370.05030.19960.051*
C60.68174 (13)0.3111 (2)0.19394 (5)0.0377 (3)
C70.73928 (15)0.4729 (2)0.21985 (5)0.0431 (3)
C80.80651 (18)0.6541 (2)0.19944 (5)0.0548 (4)
H8A0.73370.74190.18730.066*
H8B0.85790.72440.22390.066*
C90.92335 (19)0.7795 (2)0.13244 (6)0.0612 (5)
H9A1.00440.75490.11410.073*
H9B0.94290.89540.15150.073*
C100.79804 (19)0.8230 (2)0.09997 (6)0.0576 (4)
H10A0.71650.83920.11850.069*
H10B0.81410.94850.08460.069*
C110.76530 (15)0.6684 (2)0.06336 (5)0.0446 (4)
C120.67469 (14)0.5083 (2)0.06902 (5)0.0410 (3)
C130.60773 (14)0.4639 (2)0.11475 (5)0.0411 (3)
H130.60670.58520.13340.049*
C140.68894 (14)0.3028 (2)0.14177 (4)0.0390 (3)
H14A0.65430.17440.13140.047*
H14B0.78630.31100.13380.047*
C151.03219 (19)0.5291 (4)0.18198 (7)0.0806 (6)
H15A1.09630.50890.15770.121*
H15B1.01450.40480.19690.121*
H15C1.07180.62080.20420.121*
C160.64789 (15)0.3799 (2)0.03173 (5)0.0435 (3)
H160.58740.27370.03540.052*
C170.70861 (15)0.4061 (2)0.01042 (5)0.0450 (4)
C180.80076 (15)0.5652 (2)0.01613 (5)0.0462 (4)
C190.82693 (16)0.6915 (2)0.02052 (5)0.0490 (4)
H190.88820.79670.01670.059*
C200.5989 (2)0.1198 (3)0.04403 (6)0.0634 (5)
H20A0.64080.03190.02140.095*
H20B0.58880.05240.07320.095*
H20C0.50870.16060.03420.095*
C210.95733 (18)0.7328 (3)0.06464 (6)0.0669 (5)
H21A0.91470.86010.06050.100*
H21B0.99290.72460.09520.100*
H21C1.03260.71590.04210.100*
N10.90152 (13)0.60922 (19)0.16244 (4)0.0504 (3)
O10.76747 (15)0.6038 (2)0.29889 (4)0.0766 (4)
O20.65523 (14)0.3471 (2)0.33582 (4)0.0720 (4)
O30.46774 (10)0.39104 (16)0.10842 (4)0.0531 (3)
H30.41650.48130.09920.080*
O40.68526 (12)0.28907 (18)0.04891 (3)0.0598 (3)
O50.85638 (11)0.58148 (19)0.05891 (4)0.0626 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0611 (11)0.0995 (15)0.0425 (9)0.0074 (10)0.0007 (8)0.0176 (9)
C20.0436 (8)0.0566 (9)0.0436 (8)0.0013 (7)0.0005 (6)0.0111 (7)
C30.0411 (8)0.0690 (10)0.0361 (8)0.0084 (8)0.0029 (6)0.0023 (7)
C40.0416 (8)0.0584 (10)0.0463 (9)0.0007 (7)0.0048 (6)0.0102 (7)
C50.0381 (7)0.0437 (8)0.0448 (8)0.0007 (6)0.0017 (6)0.0003 (6)
C60.0329 (7)0.0396 (8)0.0409 (7)0.0039 (6)0.0043 (6)0.0019 (6)
C70.0400 (8)0.0468 (8)0.0430 (8)0.0008 (6)0.0057 (6)0.0055 (6)
C80.0655 (10)0.0488 (9)0.0507 (9)0.0124 (8)0.0105 (8)0.0138 (7)
C90.0698 (11)0.0517 (10)0.0631 (11)0.0270 (9)0.0159 (9)0.0119 (8)
C100.0734 (11)0.0354 (8)0.0653 (10)0.0082 (8)0.0201 (9)0.0018 (7)
C110.0473 (8)0.0383 (8)0.0488 (8)0.0014 (6)0.0082 (7)0.0079 (6)
C120.0406 (8)0.0402 (8)0.0425 (8)0.0027 (6)0.0071 (6)0.0061 (6)
C130.0421 (8)0.0388 (8)0.0431 (8)0.0021 (6)0.0090 (6)0.0005 (6)
C140.0413 (8)0.0360 (7)0.0403 (8)0.0014 (6)0.0076 (6)0.0042 (6)
C150.0506 (11)0.1104 (17)0.0806 (14)0.0113 (11)0.0011 (9)0.0008 (12)
C160.0426 (8)0.0462 (8)0.0420 (8)0.0050 (6)0.0053 (6)0.0063 (6)
C170.0411 (8)0.0558 (9)0.0381 (8)0.0007 (7)0.0018 (6)0.0054 (7)
C180.0405 (8)0.0589 (10)0.0396 (8)0.0001 (7)0.0062 (6)0.0131 (7)
C190.0458 (8)0.0465 (9)0.0553 (9)0.0043 (7)0.0082 (7)0.0147 (7)
C200.0755 (12)0.0650 (11)0.0500 (10)0.0126 (9)0.0076 (8)0.0057 (8)
C210.0538 (10)0.0878 (13)0.0600 (10)0.0096 (9)0.0150 (8)0.0255 (10)
N10.0459 (7)0.0517 (8)0.0541 (8)0.0122 (6)0.0078 (6)0.0070 (6)
O10.0940 (10)0.0879 (9)0.0483 (7)0.0248 (8)0.0078 (6)0.0235 (6)
O20.0812 (9)0.0981 (10)0.0369 (6)0.0062 (8)0.0049 (6)0.0039 (6)
O30.0399 (6)0.0642 (7)0.0555 (7)0.0020 (5)0.0074 (5)0.0149 (5)
O40.0663 (7)0.0753 (8)0.0382 (6)0.0172 (6)0.0086 (5)0.0013 (5)
O50.0566 (7)0.0870 (9)0.0451 (6)0.0144 (6)0.0139 (5)0.0140 (6)
Geometric parameters (Å, º) top
C1—O11.420 (2)C12—C161.398 (2)
C1—O21.422 (2)C12—C131.5200 (19)
C1—H1A0.9700C13—O31.4335 (17)
C1—H1B0.9700C13—C141.5322 (19)
C2—C31.374 (2)C13—H130.9800
C2—C71.376 (2)C14—H14A0.9700
C2—O11.3793 (18)C14—H14B0.9700
C3—C41.360 (2)C15—N11.457 (2)
C3—O21.3807 (17)C15—H15A0.9600
C4—C51.399 (2)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.388 (2)C16—C171.3805 (19)
C5—H50.9300C16—H160.9300
C6—C71.422 (2)C17—O41.3745 (18)
C6—C141.5122 (18)C17—C181.403 (2)
C7—C81.511 (2)C18—O51.3685 (17)
C8—N11.4617 (19)C18—C191.374 (2)
C8—H8A0.9700C19—H190.9300
C8—H8B0.9700C20—O41.420 (2)
C9—N11.458 (2)C20—H20A0.9600
C9—C101.524 (3)C20—H20B0.9600
C9—H9A0.9700C20—H20C0.9600
C9—H9B0.9700C21—O51.419 (2)
C10—C111.509 (2)C21—H21A0.9600
C10—H10A0.9700C21—H21B0.9600
C10—H10B0.9700C21—H21C0.9600
C11—C191.400 (2)O3—H30.8200
C11—C121.398 (2)
O1—C1—O2109.34 (13)O3—C13—C14106.08 (11)
O1—C1—H1A109.8C12—C13—C14111.07 (11)
O2—C1—H1A109.8O3—C13—H13109.1
O1—C1—H1B109.8C12—C13—H13109.1
O2—C1—H1B109.8C14—C13—H13109.1
H1A—C1—H1B108.3C6—C14—C13116.11 (11)
C3—C2—C7124.18 (14)C6—C14—H14A108.3
C3—C2—O1109.97 (13)C13—C14—H14A108.3
C7—C2—O1125.84 (15)C6—C14—H14B108.3
C4—C3—C2121.71 (14)C13—C14—H14B108.3
C4—C3—O2128.23 (15)H14A—C14—H14B107.4
C2—C3—O2110.07 (14)N1—C15—H15A109.5
C3—C4—C5115.72 (14)N1—C15—H15B109.5
C3—C4—H4122.1H15A—C15—H15B109.5
C5—C4—H4122.1N1—C15—H15C109.5
C6—C5—C4123.69 (14)H15A—C15—H15C109.5
C6—C5—H5118.2H15B—C15—H15C109.5
C4—C5—H5118.2C17—C16—C12121.96 (14)
C5—C6—C7119.32 (13)C17—C16—H16119.0
C5—C6—C14119.24 (12)C12—C16—H16119.0
C7—C6—C14121.44 (12)O4—C17—C16125.38 (14)
C2—C7—C6115.33 (13)O4—C17—C18115.30 (12)
C2—C7—C8119.32 (13)C16—C17—C18119.31 (14)
C6—C7—C8125.25 (13)O5—C18—C19125.45 (14)
N1—C8—C7113.84 (12)O5—C18—C17115.85 (14)
N1—C8—H8A108.8C19—C18—C17118.70 (13)
C7—C8—H8A108.8C18—C19—C11122.79 (14)
N1—C8—H8B108.8C18—C19—H19118.6
C7—C8—H8B108.8C11—C19—H19118.6
H8A—C8—H8B107.7O4—C20—H20A109.5
N1—C9—C10112.95 (13)O4—C20—H20B109.5
N1—C9—H9A109.0H20A—C20—H20B109.5
C10—C9—H9A109.0O4—C20—H20C109.5
N1—C9—H9B109.0H20A—C20—H20C109.5
C10—C9—H9B109.0H20B—C20—H20C109.5
H9A—C9—H9B107.8O5—C21—H21A109.5
C11—C10—C9115.88 (14)O5—C21—H21B109.5
C11—C10—H10A108.3H21A—C21—H21B109.5
C9—C10—H10A108.3O5—C21—H21C109.5
C11—C10—H10B108.3H21A—C21—H21C109.5
C9—C10—H10B108.3H21B—C21—H21C109.5
H10A—C10—H10B107.4C9—N1—C15112.43 (14)
C19—C11—C12118.27 (14)C9—N1—C8112.27 (13)
C19—C11—C10117.35 (13)C15—N1—C8110.06 (14)
C12—C11—C10124.35 (13)C2—O1—C1105.37 (14)
C16—C12—C11118.97 (13)C3—O2—C1105.22 (13)
C16—C12—C13118.44 (12)C13—O3—H3109.5
C11—C12—C13122.55 (13)C17—O4—C20117.30 (12)
O3—C13—C12112.35 (11)C18—O5—C21116.96 (13)
C7—C2—C3—C41.7 (2)C5—C6—C14—C13115.88 (14)
O1—C2—C3—C4179.25 (14)C7—C6—C14—C1364.86 (17)
C7—C2—C3—O2178.17 (14)O3—C13—C14—C686.03 (14)
O1—C2—C3—O20.91 (18)C12—C13—C14—C6151.62 (12)
C2—C3—C4—C52.1 (2)C11—C12—C16—C170.2 (2)
O2—C3—C4—C5177.69 (14)C13—C12—C16—C17177.67 (13)
C3—C4—C5—C60.6 (2)C12—C16—C17—O4178.53 (13)
C4—C5—C6—C71.4 (2)C12—C16—C17—C180.4 (2)
C4—C5—C6—C14179.36 (13)O4—C17—C18—O50.76 (19)
C3—C2—C7—C60.4 (2)C16—C17—C18—O5179.84 (13)
O1—C2—C7—C6178.53 (14)O4—C17—C18—C19178.58 (13)
C3—C2—C7—C8176.81 (15)C16—C17—C18—C190.5 (2)
O1—C2—C7—C82.1 (2)O5—C18—C19—C11179.15 (14)
C5—C6—C7—C21.82 (19)C17—C18—C19—C110.1 (2)
C14—C6—C7—C2178.92 (13)C12—C11—C19—C180.8 (2)
C5—C6—C7—C8177.99 (14)C10—C11—C19—C18177.30 (15)
C14—C6—C7—C82.8 (2)C10—C9—N1—C15161.30 (15)
C2—C7—C8—N1139.97 (14)C10—C9—N1—C873.96 (17)
C6—C7—C8—N144.0 (2)C7—C8—N1—C9158.57 (14)
N1—C9—C10—C1166.69 (18)C7—C8—N1—C1575.39 (18)
C9—C10—C11—C1991.15 (17)C3—C2—O1—C11.83 (18)
C9—C10—C11—C1290.89 (19)C7—C2—O1—C1177.23 (16)
C19—C11—C12—C160.8 (2)O2—C1—O1—C22.09 (18)
C10—C11—C12—C16177.11 (14)C4—C3—O2—C1179.40 (16)
C19—C11—C12—C13176.99 (13)C2—C3—O2—C10.42 (17)
C10—C11—C12—C135.1 (2)O1—C1—O2—C31.56 (18)
C16—C12—C13—O338.64 (17)C16—C17—O4—C204.4 (2)
C11—C12—C13—O3143.52 (14)C18—C17—O4—C20176.55 (14)
C16—C12—C13—C1479.99 (16)C19—C18—O5—C215.0 (2)
C11—C12—C13—C1497.85 (15)C17—C18—O5—C21175.74 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.313.0924 (16)159
C1—H1A···O3ii0.972.413.367 (2)170
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO5
Mr371.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5810 (16), 6.7405 (12), 28.886 (5)
β (°) 92.164 (2)
V3)1864.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
13267, 3460, 2721
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.02
No. of reflections3460
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.313.0924 (16)159
C1—H1A···O3ii0.972.413.367 (2)170
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSF; Nos. 31172365 and 31101469).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapasso, A., Piacente, S. & Pizza, C. (1997). Planta Med. 63, 326–328.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeong, E. J., Ma, C. J., Lee, K. Y., Kim, S. H., Sung, S. H. & Kim, Y. C. (2009). J. Ethnopharmacol. 121, 98–105.  Web of Science CrossRef PubMed Google Scholar
First citationMorteza, K., Amin, G., Shidfar, M. R., Hadizadeh, H. & Shafiee, A. (2003). Fitoterapia, 74, 493–496.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWada, Y., Kaga, H., Uchiito, S., Kumazawa, E., Tomiki, M., Onozaki, Y., Kurono, N., Tokuda, M., Ohkuma, T. & Orit, K. (2007). J. Org. Chem. 72, 7301–7306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, M., Sun, J. H., Lu, Z. Q., Chen, G. T., Guan, S. H., Liu, X., Jiang, B. H., Ye, M. & Guo, D. A. (2009). J. Chromatogr. A, 1216, 2045–2062.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds