organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[Hy­dr­oxy(4-meth­­oxy­phen­yl)methyl­­idene]indane-1,3-dione

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China.
*Correspondence e-mail: gzubxzhu@126.com

(Received 23 April 2012; accepted 14 May 2012; online 26 May 2012)

In the title compound, C17H12O4, there is an intra­molecular O—H⋯O hydrogen bond. The dihedral angle between the indane ring system [maximun deviation = 0.023 (2) Å] and the benzene ring is 37.42 (9)°.

Related literature

For general background to the synthesis and pharmacological properties of 1,3-indandione derivatives, see: Cheng et al. (2011[Cheng, C., Jiang, B., Tu, S.-J. & Li, G.-G. (2011). Green Chem. 13, 2107-2115.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O4

  • Mr = 280.27

  • Monoclinic, P 21 /n

  • a = 17.779 (4) Å

  • b = 3.8405 (9) Å

  • c = 19.026 (4) Å

  • β = 92.984 (8)°

  • V = 1297.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.982

  • 10521 measured reflections

  • 2311 independent reflections

  • 1553 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 0.97

  • 2311 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.78 2.539 (2) 152

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In general, 1,3-indandione derivatives demonstrate an anticoagulant properties. The synthesis and pharmacological properties of some chemicals of this category have been reported (Dolmella et al., 1961). The prepare of derivatives containing 2H-indene-1,3-dione unit have received very substantial attention (Cheng et al., 2011). In view of this biological importance a part of our ongoing studies of 1,3-indandione derivatives includes the crystal structure determination of the title compound. The molecule of the title compound shows non-coplanar structure (Fig. 1). An intramolecular O—H···O hydrogen bonds is observed (Table 1), which links the hydroxyl oxygen to the nearby keto-oxygen atom of the 2H-indene-1,3-dione unit, forming a planar six-membered ring. The dihedral angle between the six-membered ring and the plane of 2H-indene-1,3-dione unit is 173.94°, and the dihedral angle between the six-membered ring and the benzene ring is 148.51°.

Related literature top

For general background to the synthesis and pharmacological properties of 1,3-indandione derivatives, see: Dolmella et al. (1961); Cheng et al. (2011).

Experimental top

p-methoxy-acetophenone (166 mg, 1.2 mmol) in tetrahydrofuran (15 ml) was added slowly with stirring to dimethyl phthalate(232.8 mg, 1.2 mmol) and NaH (120 mg, 5 mmol) in THF (30 ml) and the mixture was heated at reflux for 12 h. The solution was allowed to cool and the THF was removed partly under reduced pressure. The precipitate was collected by filtration and washed with waterand dried; the residue was crystallized from CHCl3 to afford the title compound as a yellow solid [yield 65%, m.p. 398–400 K]. Single crystal suitable for X-ray diffraction was prepared by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were geometrically positioned(C—H = 0.93–0.96 Å) and treated as riding, with Uiso(H) = 1.2–1.5 Ueq.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-[Hydroxy(4-methoxyphenyl)methylidene]indane-1,3-dione top
Crystal data top
C17H12O4F(000) = 584
Mr = 280.27Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2311 reflections
a = 17.779 (4) Åθ = 1.5–25.1°
b = 3.8405 (9) ŵ = 0.10 mm1
c = 19.026 (4) ÅT = 293 K
β = 92.984 (8)°Block, colorless
V = 1297.4 (5) Å30.23 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube1553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scanθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2119
Tmin = 0.977, Tmax = 0.982k = 44
10521 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H12O4V = 1297.4 (5) Å3
Mr = 280.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.779 (4) ŵ = 0.10 mm1
b = 3.8405 (9) ÅT = 293 K
c = 19.026 (4) Å0.23 × 0.19 × 0.18 mm
β = 92.984 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2311 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1553 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.982Rint = 0.077
10521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.97Δρmax = 0.21 e Å3
2311 reflectionsΔρmin = 0.17 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51739 (13)0.1113 (6)0.36369 (11)0.0431 (6)
C20.44114 (13)0.2488 (6)0.37373 (11)0.0407 (6)
C30.40844 (16)0.3680 (6)0.43398 (12)0.0551 (7)
H30.43470.36470.47750.066*
C40.33527 (16)0.4919 (7)0.42678 (14)0.0561 (7)
H40.31190.57340.46620.067*
C50.29666 (15)0.4961 (6)0.36209 (13)0.0513 (7)
H50.24770.58170.35870.062*
C60.32898 (13)0.3762 (6)0.30215 (12)0.0448 (6)
H60.30260.38100.25860.054*
C70.40147 (12)0.2492 (5)0.30887 (10)0.0370 (5)
C80.44965 (13)0.1018 (5)0.25401 (11)0.0366 (5)
C90.52302 (12)0.0199 (5)0.28999 (10)0.0353 (5)
C100.59134 (12)0.0856 (5)0.26557 (11)0.0374 (6)
C110.61151 (12)0.1687 (5)0.19378 (10)0.0338 (5)
C120.56158 (12)0.3235 (5)0.14478 (11)0.0375 (5)
H120.51250.36930.15680.045*
C130.58354 (13)0.4110 (5)0.07820 (11)0.0378 (6)
H130.54950.51740.04620.045*
C140.65592 (12)0.3404 (5)0.05943 (10)0.0363 (5)
C150.70668 (12)0.1831 (6)0.10769 (11)0.0401 (6)
H150.75520.13150.09490.048*
C160.68528 (12)0.1036 (5)0.17427 (11)0.0391 (6)
H160.72010.00570.20670.047*
C170.63265 (14)0.5648 (7)0.05674 (12)0.0503 (7)
H17A0.65870.60580.09890.075*
H17B0.59150.40730.06670.075*
H17C0.61360.78130.03980.075*
O10.65026 (9)0.1081 (5)0.31159 (8)0.0537 (5)
H10.63680.06360.35120.081*
O20.56922 (10)0.0915 (5)0.40994 (8)0.0609 (5)
O30.42812 (9)0.0644 (4)0.19222 (8)0.0477 (5)
O40.68340 (9)0.4164 (4)0.00444 (7)0.0470 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (15)0.0397 (14)0.0407 (13)0.0010 (11)0.0010 (12)0.0020 (10)
C20.0521 (15)0.0316 (13)0.0389 (12)0.0033 (11)0.0086 (11)0.0000 (10)
C30.0693 (19)0.0524 (16)0.0443 (14)0.0007 (14)0.0100 (13)0.0003 (12)
C40.0665 (19)0.0485 (16)0.0553 (16)0.0035 (14)0.0233 (14)0.0022 (12)
C50.0532 (16)0.0361 (14)0.0661 (18)0.0039 (12)0.0179 (14)0.0051 (12)
C60.0484 (15)0.0346 (14)0.0520 (14)0.0016 (11)0.0074 (12)0.0033 (10)
C70.0459 (15)0.0246 (12)0.0407 (12)0.0029 (10)0.0057 (11)0.0026 (9)
C80.0479 (14)0.0245 (12)0.0376 (13)0.0026 (10)0.0037 (11)0.0050 (9)
C90.0403 (14)0.0312 (12)0.0344 (12)0.0012 (10)0.0010 (10)0.0003 (9)
C100.0414 (14)0.0291 (12)0.0410 (12)0.0007 (10)0.0053 (11)0.0015 (9)
C110.0369 (13)0.0255 (11)0.0389 (12)0.0034 (10)0.0010 (10)0.0034 (9)
C120.0366 (13)0.0303 (12)0.0459 (13)0.0029 (10)0.0048 (11)0.0022 (10)
C130.0431 (14)0.0307 (12)0.0393 (12)0.0037 (10)0.0000 (11)0.0017 (9)
C140.0418 (14)0.0281 (12)0.0390 (12)0.0042 (10)0.0035 (11)0.0043 (9)
C150.0336 (13)0.0383 (13)0.0488 (13)0.0013 (10)0.0052 (11)0.0060 (10)
C160.0379 (13)0.0350 (13)0.0438 (13)0.0011 (10)0.0045 (11)0.0022 (10)
C170.0592 (16)0.0494 (16)0.0423 (13)0.0001 (12)0.0042 (12)0.0057 (11)
O10.0471 (10)0.0711 (13)0.0420 (9)0.0095 (9)0.0056 (8)0.0058 (8)
O20.0582 (12)0.0835 (14)0.0400 (9)0.0096 (10)0.0059 (9)0.0056 (8)
O30.0501 (10)0.0543 (11)0.0384 (9)0.0066 (8)0.0017 (8)0.0009 (7)
O40.0474 (10)0.0535 (11)0.0406 (9)0.0002 (8)0.0073 (8)0.0030 (7)
Geometric parameters (Å, º) top
C1—O21.243 (3)C10—C111.465 (3)
C1—C91.454 (3)C11—C121.387 (3)
C1—C21.476 (3)C11—C161.404 (3)
C2—C71.389 (3)C12—C131.386 (3)
C2—C31.390 (3)C12—H120.9300
C3—C41.385 (4)C13—C141.380 (3)
C3—H30.9300C13—H130.9300
C4—C51.378 (3)C14—O41.365 (2)
C4—H40.9300C14—C151.392 (3)
C5—C61.382 (3)C15—C161.376 (3)
C5—H50.9300C15—H150.9300
C6—C71.378 (3)C16—H160.9300
C6—H60.9300C17—O41.427 (3)
C7—C81.496 (3)C17—H17A0.9600
C8—O31.226 (2)C17—H17B0.9600
C8—C91.475 (3)C17—H17C0.9600
C9—C101.384 (3)O1—H10.8200
C10—O11.333 (2)
O2—C1—C9125.6 (2)O1—C10—C11112.11 (19)
O2—C1—C2125.6 (2)C9—C10—C11129.68 (19)
C9—C1—C2108.71 (19)C12—C11—C16118.2 (2)
C7—C2—C3121.2 (2)C12—C11—C10122.7 (2)
C7—C2—C1108.22 (19)C16—C11—C10119.01 (19)
C3—C2—C1130.6 (2)C13—C12—C11121.1 (2)
C4—C3—C2117.6 (2)C13—C12—H12119.4
C4—C3—H3121.2C11—C12—H12119.4
C2—C3—H3121.2C14—C13—C12120.0 (2)
C5—C4—C3120.9 (2)C14—C13—H13120.0
C5—C4—H4119.5C12—C13—H13120.0
C3—C4—H4119.5O4—C14—C13124.76 (19)
C4—C5—C6121.6 (2)O4—C14—C15115.50 (19)
C4—C5—H5119.2C13—C14—C15119.7 (2)
C6—C5—H5119.2C16—C15—C14120.2 (2)
C7—C6—C5117.9 (2)C16—C15—H15119.9
C7—C6—H6121.0C14—C15—H15119.9
C5—C6—H6121.0C15—C16—C11120.7 (2)
C6—C7—C2120.8 (2)C15—C16—H16119.6
C6—C7—C8129.5 (2)C11—C16—H16119.6
C2—C7—C8109.7 (2)O4—C17—H17A109.5
O3—C8—C9130.1 (2)O4—C17—H17B109.5
O3—C8—C7123.5 (2)H17A—C17—H17B109.5
C9—C8—C7106.35 (17)O4—C17—H17C109.5
C10—C9—C1120.02 (19)H17A—C17—H17C109.5
C10—C9—C8132.62 (19)H17B—C17—H17C109.5
C1—C9—C8107.00 (19)C10—O1—H1109.5
O1—C10—C9118.17 (18)C14—O4—C17117.63 (17)
O2—C1—C2—C7176.0 (2)C7—C8—C9—C10172.1 (2)
C9—C1—C2—C71.1 (2)O3—C8—C9—C1179.1 (2)
O2—C1—C2—C33.3 (4)C7—C8—C9—C10.9 (2)
C9—C1—C2—C3179.6 (2)C1—C9—C10—O11.6 (3)
C7—C2—C3—C40.9 (4)C8—C9—C10—O1173.8 (2)
C1—C2—C3—C4178.3 (2)C1—C9—C10—C11175.8 (2)
C2—C3—C4—C50.0 (4)C8—C9—C10—C113.6 (4)
C3—C4—C5—C60.3 (4)O1—C10—C11—C12148.4 (2)
C4—C5—C6—C70.3 (3)C9—C10—C11—C1234.1 (3)
C5—C6—C7—C21.3 (3)O1—C10—C11—C1628.8 (3)
C5—C6—C7—C8179.4 (2)C9—C10—C11—C16148.8 (2)
C3—C2—C7—C61.6 (3)C16—C11—C12—C130.2 (3)
C1—C2—C7—C6177.80 (19)C10—C11—C12—C13177.40 (18)
C3—C2—C7—C8179.0 (2)C11—C12—C13—C140.8 (3)
C1—C2—C7—C81.6 (2)C12—C13—C14—O4179.78 (18)
C6—C7—C8—O32.3 (4)C12—C13—C14—C150.4 (3)
C2—C7—C8—O3178.4 (2)O4—C14—C15—C16178.35 (18)
C6—C7—C8—C9177.8 (2)C13—C14—C15—C161.1 (3)
C2—C7—C8—C91.6 (2)C14—C15—C16—C112.2 (3)
O2—C1—C9—C103.0 (3)C12—C11—C16—C151.7 (3)
C2—C1—C9—C10174.07 (19)C10—C11—C16—C15179.00 (18)
O2—C1—C9—C8177.0 (2)C13—C14—O4—C173.1 (3)
C2—C1—C9—C80.1 (2)C15—C14—O4—C17177.49 (19)
O3—C8—C9—C108.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.782.539 (2)152

Experimental details

Crystal data
Chemical formulaC17H12O4
Mr280.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)17.779 (4), 3.8405 (9), 19.026 (4)
β (°) 92.984 (8)
V3)1297.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.977, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10521, 2311, 1553
Rint0.077
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 0.97
No. of reflections2311
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.7832.539 (2)152.37
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 21061003) and the Inter­national Cooperation Foundation of Guizhou Province (No. 2009700104).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C., Jiang, B., Tu, S.-J. & Li, G.-G. (2011). Green Chem. 13, 2107–2115.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds