organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­piperazin-4-ium-1-yl)di­thio­carbamate sesquihydrate

aDepartment of Inorganic Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland
*Correspondence e-mail: anna.mietlarek-kropidlowska@pg.gda.pl

(Received 26 April 2012; accepted 7 May 2012; online 12 May 2012)

In the crystal structure of the title compound, C6H13N3S2·1.5H2O, weak N—H⋯S inter­actions between the zwitterionic mol­ecules are observed, leading to an extensively folded layered arrangement parallel to (100). There are three crystallographically independent water mol­ecules in the asymmetric unit, which are disordered and only half occupied.

Related literature

For the synthesis and structures of a series of S2CNR-type zwitterionic dithio­carbamic acids, see: Schramm et al. (1984[Schramm, V., Kokkou, S. C. & Karagiannidis, P. (1984). Acta Cryst. C40, 149-151.]) for R = C3H6NH+(Me)2; Kokkou et al. (1988[Kokkou, S. C., Cheer, C. J., Rentzeperis, P. J. & Karagiannidis, P. (1988). Acta Cryst. C44, 1984-1987.]) for R = C3H6NH+(Et)2 and R=C2H4NH+(Et)2; Stergioudis et al. (1989[Stergioudis, G. A., Kokkou, S. C. & Karagiannidis, P. (1989). Acta Cryst. C45, 140-142.]) for R=C2H4NH+(Me)2; Yamin et al. (2002[Yamin, B. M., Kadir, M. A., Zin, M. Z. M., Usman, A., Razak, I. A. & Fun, H.-K. (2002). Acta Cryst. E58, o293-o295.]) for R=C2H4NH3+. For structures of dithio­carbamates incorporating a hydrazine-based skeleton, see: Braibanti et al. (1969[Braibanti, A., Lanfredi, A. M. M. & Logiudice, F. (1969). Acta Cryst. B25, 93-99.]); Mattes & Füsser (1984[Mattes, R. & Füsser, B. (1984). Z. Naturforsch. Teil B, 39, 1-5.]); Kiel et al. (1985[Kiel, G., Gattow, G. & Lotz, S. (1985). Z. Anorg. Allg. Chem. 531, 89-96.]). For the synthesis of dithio­carba­mates, see: Coucouvanis (1979[Coucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301-469.]); Hogarth (2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]); Eul et al. (1987[Eul, W., Kiel, G. & Gattow, G. (1987). Z. Anorg. Allg. Chem. 544, 149-158.]); Hulanicki (1967[Hulanicki, A. (1967). Talanta, 14, 1371-1392.]); Ivanov et al. (1999[Ivanov, A. V., Mitrofanova, V. I., Kritikos, M. & Antzutkin, O. N. (1999). Polyhedron, 18, 2069-2078.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N3S2·1.5H2O

  • Mr = 218.34

  • Monoclinic, C 2/c

  • a = 23.3560 (18) Å

  • b = 6.8191 (3) Å

  • c = 15.7067 (10) Å

  • β = 119.920 (9)°

  • V = 2168.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 120 K

  • 0.48 × 0.23 × 0.21 mm

Data collection
  • Kuma KM-4-CCD Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction, Abingdon, England.]) Tmin = 0.952, Tmax = 1

  • 3755 measured reflections

  • 2024 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.08

  • 2024 reflections

  • 140 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2i 0.80 (3) 2.60 (3) 3.375 (2) 164 (2)
N3—H3N⋯S1ii 0.76 (2) 2.67 (2) 3.3131 (18) 143 (2)
N3—H3N⋯S2ii 0.76 (2) 2.67 (2) 3.2846 (18) 140 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

During our work on the synthesis of organic molecules which may serve as building blocks of more complex structures (e.g. coordination compounds) we have focused on dithiocarbamates. These are known to be versatile ligands (Coucouvanis, 1979; Hogarth, 2005) easily bonding to metal soft centres, as well as to be potentially useful chemotherapeutics, pesti- and fungicides (Hulanicki, 1967; Ivanov et al., 1999). Dithiocarbamates (dtc) are amongst the most frequently used bidentate sulfur ligands. More than 2500 compounds with at least one such dtc group can be found in the Cambridge Structural Database (Version 5.33, Nov. 2011, updated to Feb. 2012; Allen, 2002). However, the number of structurally characterized dithiocarbamic acids (invariably present in a form of zwitterionic species) is surprisingly small. These include compounds of -S2CNR type with R = C3H6NH+(Me)2 (Schramm et al., 1984), R = C3H6NH+(Et)2 and R=C2H4NH+(Et)2 (Kokkou et al., 1988), R=C2H4NH+(Me)2 (Stergioudis et al., 1989), R=C2H4NH3+ (Yamin et al., 2002) and N-acetimidoyl dithiocarbamic acid (Eul et al., 1987). Here we describe the structure of new, 1-(4H,4-methylpiperazinium)dithiocarbamate sesquihydrate, the first zwitterionic species with N—N bond. The only other structurally characterized dithiocarbamates incorporating hydrazine-based skeleton are salts with potassium (Mattes & Füsser, 1984; Kiel et al., 1985) or hydrazinium (Braibanti et al., 1969) cations.

There are no significant differences in NCS2 group geometry compared to other compounds of this type. The notable feature of the title compound is the presence of the intermolecular interactions (Table 1). Eeach molecule of the title compound serves to its close neighbors as a hydrogen bond donor (via N—H groups) and acceptor (via S atoms, see Figure 2). As a result, all of the NH-groups are engaged in the formation of the network of N—H···S interactions between the pairs of antiparallel chains what leads to the extensively folded layered arrangement observed within the crystal. Additional water molecules are present in vicinity of the twofold axis and are disordered (see experimental refinement section for details).

Related literature top

For the synthesis and structures of a series of zwitterionic dithiocarbamic acids of the -S2CNR type, see: Schramm et al. (1984) for R = C3H6NH+(Me)2 ; Kokkou et al. (1988) for R = C3H6NH+(Et)2 and R=C2H4NH+(Et)2; Stergioudis et al. (1989) for R=C2H4NH+(Me)2; Yamin et al. (2002) for R=C2H4NH3+. The structures of dithiocarbamates incorporating a hydrazine-based skeleton are described by Braibanti et al. (1969); Mattes & Füsser (1984); Kiel et al. (1985). For the synthesis of dithiocarbamates, see: Coucouvanis (1979); Hogarth (2005); Eul et al. (1987); Hulanicki (1967); Ivanov et al. (1999). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A stoichiometric amount (0.325 g, 0.26 cm3) of carbon disulfide, CS2, was added dropwise to a methanol/H2O (10:1, v/v) solution containing 0.5 g (0.52 cm3) 1-amino-4-methylpiperazine and 0.24 g potassium hydroxide. The mixture had been stirred for ca 25 min until a white precipitate appeared. The clear filtrate was then left at temperature of 5°C for crystallization. After 5 days, well shaped, colorless needle-like crystals suitable for X-ray analysis were collected. Then, the mother liquor was concentrated and after few days more product was isolated. The overall yield was ca 50%. The presence of O—H groups was confirmed by FTIR analysis of single crystals taken from the mother liquor using Mattson Genesis II Gold spectrometer equipped with Momentum Microscope as detector (a broad maximum of absorption at 3434 cm-1 together with a sharp one at 3239 cm-1). However, the product, when taken from the mother liquor and dried using the filter paper, changes - becomes at first opaque and finally takes the form of a powder (most probably because of the removal of the solvent molecules). The microanalysis of such product was also conducted using Vario El Cube CHNS, Elementar (found: %H 6.55, %N 17.04, %C 29.82; calc. for C6H13N3S2.1.5H2O: %H 7.38, %N 19.24, %C 33.00). The melting point for the title compound (for 10 °/min heating rate) was determined to be 129°C.

Refinement top

All C—H atoms were placed in calculated positions (methyl H atoms allowed to rotate but not to tip) and refined as riding on their carrier atoms with respective bond lengths and Uiso(H) values: C—H = 0.96 Å (CH3) and Uiso(H) = 1.5 Ueq(C), C—H = 0.97 Å (CH2) and Uiso(H) = 1.2 Ueq(C). Refirement of N—H was carried out withouth restrains.

After refinement of the zwitterionic molecule three electron density peaks are observed that were assigned to three disordered and half-occupied oxygen atoms with distances O1—O2 and O2—O3 2.734 (5) and 2.845 (5) Å, respectively. The symmetry equivalent atoms constitute the second disorder part. The connectivity table was adjusted by using PART -1 SHELX instruction to avoid creating bonds to symmetry equivalent oxygen atoms (generated by the twofold axis). Hydrogen atoms bound to O1 and O2 are directed towards acceptor atoms and could have been found and refined as restrained. Positions of H3C and H3D hydrogen atoms were restrained to target 0.85 (2) Å O—H bond lengths and to 1.300 Å H3C—H3D distance to maintain proper H—O—H valence angle.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom-numbering scheme for the title compound with displacement ellipsoids drawn at 50% probability level. H atoms are represented as arbitrary circles. Only one set of disordered half-occupied water molecules is shown for clarity.
[Figure 2] Fig. 2. Hydrogen bond network within the crystal of C6N3H13S2×1.5H2O. Dashed lines denote the assumed N—H···S hydrogen bonds. Water molecules are omitted for clarity. [Symmetry codes: (i) 1/2-x, 1.5-y, 2-z; (ii) x, 1-y, -1/2+z); (iii) x, 1-y, 1/2+z.]
N-(4-Methylpiperazin-4-ium-1-yl)dithiocarbamate sesquihydrate top
Crystal data top
C6H13N3S2·1.5H2OF(000) = 936
Mr = 218.34Dx = 1.338 Mg m3
Monoclinic, C2/cMelting point: 402 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.3560 (18) ÅCell parameters from 2050 reflections
b = 6.8191 (3) Åθ = 2.6–28.7°
c = 15.7067 (10) ŵ = 0.46 mm1
β = 119.920 (9)°T = 120 K
V = 2168.2 (2) Å3Block, colourless
Z = 80.48 × 0.23 × 0.21 mm
Data collection top
Kuma KM-4-CCD Sapphire2
diffractometer
2024 independent reflections
Radiation source: fine-focus sealed tube1674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.1883 pixels mm-1θmax = 25.5°, θmin = 2.7°
ω scansh = 1828
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
k = 87
Tmin = 0.952, Tmax = 1l = 1911
3755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0755P)2]
where P = (Fo2 + 2Fc2)/3
2024 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.60 e Å3
5 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H13N3S2·1.5H2OV = 2168.2 (2) Å3
Mr = 218.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.3560 (18) ŵ = 0.46 mm1
b = 6.8191 (3) ÅT = 120 K
c = 15.7067 (10) Å0.48 × 0.23 × 0.21 mm
β = 119.920 (9)°
Data collection top
Kuma KM-4-CCD Sapphire2
diffractometer
2024 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
1674 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 1Rint = 0.021
3755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0415 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.60 e Å3
2024 reflectionsΔρmin = 0.21 e Å3
140 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Oxford Diffraction, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.11286 (3)0.40172 (9)1.02811 (4)0.0315 (2)
S20.21612 (3)0.71645 (9)1.10583 (4)0.0325 (2)
N10.18466 (9)0.5160 (3)0.94834 (12)0.0253 (4)
H1N0.2097 (12)0.592 (4)0.9456 (16)0.030*
N20.14708 (9)0.3938 (3)0.86627 (11)0.0228 (4)
N30.10268 (9)0.2586 (3)0.67082 (12)0.0219 (4)
H3N0.1226 (12)0.321 (4)0.6552 (17)0.026*
C10.17032 (10)0.5395 (3)1.02061 (13)0.0237 (5)
C20.19188 (11)0.2838 (3)0.84347 (14)0.0262 (5)
H2A0.22370.20770.90170.031*
H2B0.21720.37590.82600.031*
C30.15206 (11)0.1465 (3)0.75862 (14)0.0267 (5)
H3A0.18200.07420.74220.032*
H3B0.12890.04970.77770.032*
C40.06052 (11)0.3844 (3)0.69519 (14)0.0267 (5)
H4A0.03240.30030.71070.032*
H4B0.03120.46640.63770.032*
C50.10291 (10)0.5152 (3)0.78231 (13)0.0237 (5)
H5A0.12910.60540.76570.028*
H5B0.07440.59500.79890.028*
C60.06125 (13)0.1260 (4)0.58698 (16)0.0375 (6)
H6A0.08990.04430.57250.056*
H6B0.03210.20460.52900.056*
H6C0.03450.04200.60420.056*
O10.1228 (2)0.9907 (5)0.9238 (3)0.0331 (8)0.50
H1A0.14080.90930.96820.050*0.50
H1B0.10381.09040.92700.050*0.50
O20.00204 (19)0.8579 (6)0.8020 (3)0.0426 (8)0.50
H2C0.027 (3)0.891 (10)0.742 (2)0.064*0.50
H2D0.0350 (19)0.920 (9)0.834 (4)0.064*0.50
O30.0827 (2)0.9861 (6)0.6047 (3)0.0323 (8)0.50
H3C0.10540.89030.57050.048*0.50
H3D0.11271.07310.58440.048*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0393 (4)0.0359 (3)0.0276 (3)0.0079 (3)0.0229 (3)0.0077 (2)
S20.0284 (3)0.0499 (4)0.0237 (3)0.0104 (3)0.0164 (2)0.0164 (2)
N10.0264 (9)0.0334 (11)0.0183 (8)0.0050 (9)0.0127 (7)0.0060 (7)
N20.0284 (9)0.0253 (9)0.0162 (8)0.0016 (8)0.0123 (7)0.0031 (6)
N30.0251 (10)0.0253 (9)0.0183 (8)0.0077 (8)0.0130 (7)0.0053 (7)
C10.0226 (11)0.0309 (11)0.0170 (9)0.0063 (9)0.0094 (8)0.0007 (8)
C20.0302 (12)0.0306 (11)0.0176 (9)0.0090 (10)0.0117 (9)0.0012 (8)
C30.0385 (13)0.0234 (10)0.0258 (10)0.0027 (10)0.0217 (10)0.0003 (9)
C40.0221 (11)0.0350 (12)0.0240 (10)0.0003 (10)0.0123 (9)0.0060 (9)
C50.0242 (10)0.0247 (11)0.0206 (10)0.0033 (9)0.0101 (8)0.0027 (8)
C60.0364 (13)0.0467 (15)0.0334 (12)0.0175 (12)0.0204 (11)0.0225 (11)
O10.053 (2)0.0193 (16)0.0324 (19)0.001 (2)0.025 (2)0.0003 (14)
O20.035 (2)0.040 (2)0.048 (2)0.0038 (17)0.0176 (18)0.0047 (17)
O30.040 (2)0.0276 (18)0.0301 (19)0.005 (2)0.0184 (18)0.0021 (14)
Geometric parameters (Å, º) top
S1—C11.690 (2)C4—C51.516 (3)
S2—C11.721 (2)C4—H4A0.9900
N1—C11.344 (2)C4—H4B0.9900
N1—N21.413 (2)C5—H5A0.9900
N1—H1N0.80 (3)C5—H5B0.9900
N2—C51.460 (2)C6—H6A0.9800
N2—C21.470 (3)C6—H6B0.9800
N3—C61.489 (3)C6—H6C0.9800
N3—C41.492 (3)O1—O22.724 (5)
N3—C31.493 (3)O1—H1A0.8236
N3—H3N0.76 (2)O1—H1B0.8269
C2—C31.510 (3)O2—O32.845 (5)
C2—H2A0.9900O2—H2C0.86 (2)
C2—H2B0.9900O2—H2D0.86 (2)
C3—H3A0.9900O3—H3C0.8435
C3—H3B0.9900O3—H3D0.8498
C1—N1—N2122.54 (18)N3—C4—H4A109.5
C1—N1—H1N117.8 (17)C5—C4—H4A109.5
N2—N1—H1N118.1 (17)N3—C4—H4B109.5
N1—N2—C5109.09 (16)C5—C4—H4B109.5
N1—N2—C2109.24 (16)H4A—C4—H4B108.1
C5—N2—C2109.73 (14)N2—C5—C4109.32 (17)
C6—N3—C4110.78 (17)N2—C5—H5A109.8
C6—N3—C3111.58 (18)C4—C5—H5A109.8
C4—N3—C3111.21 (15)N2—C5—H5B109.8
C6—N3—H3N106.9 (18)C4—C5—H5B109.8
C4—N3—H3N110.4 (19)H5A—C5—H5B108.3
C3—N3—H3N105.7 (19)N3—C6—H6A109.5
N1—C1—S1122.25 (16)N3—C6—H6B109.5
N1—C1—S2114.87 (16)H6A—C6—H6B109.5
S1—C1—S2122.86 (11)N3—C6—H6C109.5
N2—C2—C3109.37 (18)H6A—C6—H6C109.5
N2—C2—H2A109.8H6B—C6—H6C109.5
C3—C2—H2A109.8O2—O1—H1A106.6
N2—C2—H2B109.8O2—O1—H1B84.1
C3—C2—H2B109.8H1A—O1—H1B124.5
H2A—C2—H2B108.2O1—O2—O3123.96 (18)
N3—C3—C2110.47 (17)O1—O2—H2C126 (4)
N3—C3—H3A109.6O3—O2—H2D114 (4)
C2—C3—H3A109.6H2C—O2—H2D116 (6)
N3—C3—H3B109.6O2—O3—H3C108.7
C2—C3—H3B109.6O2—O3—H3D126.7
H3A—C3—H3B108.1H3C—O3—H3D99.4
N3—C4—C5110.62 (17)
C1—N1—N2—C5101.4 (2)C4—N3—C3—C253.9 (2)
C1—N1—N2—C2138.6 (2)N2—C2—C3—N358.0 (2)
N2—N1—C1—S18.7 (3)C6—N3—C4—C5178.46 (17)
N2—N1—C1—S2172.63 (15)C3—N3—C4—C553.8 (2)
N1—N2—C2—C3177.53 (16)N1—N2—C5—C4177.72 (15)
C5—N2—C2—C362.9 (2)C2—N2—C5—C462.6 (2)
C6—N3—C3—C2178.18 (17)N3—C4—C5—N257.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.80 (3)2.60 (3)3.375 (2)164 (2)
N3—H3N···S1ii0.76 (2)2.67 (2)3.3131 (18)143 (2)
N3—H3N···S2ii0.76 (2)2.67 (2)3.2846 (18)140 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H13N3S2·1.5H2O
Mr218.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)23.3560 (18), 6.8191 (3), 15.7067 (10)
β (°) 119.920 (9)
V3)2168.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.48 × 0.23 × 0.21
Data collection
DiffractometerKuma KM-4-CCD Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
Tmin, Tmax0.952, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
3755, 2024, 1674
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.08
No. of reflections2024
No. of parameters140
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.80 (3)2.60 (3)3.375 (2)164 (2)
N3—H3N···S1ii0.76 (2)2.67 (2)3.3131 (18)143 (2)
N3—H3N···S2ii0.76 (2)2.67 (2)3.2846 (18)140 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y+1, z1/2.
 

Acknowledgements

The research was supported by a grant from the Polish Ministry of Education and Science (grant No. N N204 1502370).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBraibanti, A., Lanfredi, A. M. M. & Logiudice, F. (1969). Acta Cryst. B25, 93–99.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCoucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301–469.  CrossRef CAS Google Scholar
First citationEul, W., Kiel, G. & Gattow, G. (1987). Z. Anorg. Allg. Chem. 544, 149–158.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationHulanicki, A. (1967). Talanta, 14, 1371–1392.  CrossRef PubMed CAS Web of Science Google Scholar
First citationIvanov, A. V., Mitrofanova, V. I., Kritikos, M. & Antzutkin, O. N. (1999). Polyhedron, 18, 2069–2078.  Web of Science CSD CrossRef CAS Google Scholar
First citationKiel, G., Gattow, G. & Lotz, S. (1985). Z. Anorg. Allg. Chem. 531, 89–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationKokkou, S. C., Cheer, C. J., Rentzeperis, P. J. & Karagiannidis, P. (1988). Acta Cryst. C44, 1984–1987.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMattes, R. & Füsser, B. (1984). Z. Naturforsch. Teil B, 39, 1–5.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationSchramm, V., Kokkou, S. C. & Karagiannidis, P. (1984). Acta Cryst. C40, 149–151.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStergioudis, G. A., Kokkou, S. C. & Karagiannidis, P. (1989). Acta Cryst. C45, 140–142.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYamin, B. M., Kadir, M. A., Zin, M. Z. M., Usman, A., Razak, I. A. & Fun, H.-K. (2002). Acta Cryst. E58, o293–o295.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds