metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[1-di­phenyl­phosphanyl-3-(phenyl­sulfan­yl)propane-κ2P,S](η5-penta­methyl­cyclo­penta­dien­yl)iridium(III) chloride monohydrate

aInstitut für Chemie – Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Kurt-Mothes-Strasse 2, Germany, and bInstitut für Chemie – Anorganische Chemie, Technische Universät Chemnitz, D-09111 Chemnitz, Strasse der Nationen 62, Germany
*Correspondence e-mail: dirk.steinborn@chemie.uni-halle.de

(Received 3 May 2012; accepted 15 May 2012; online 31 May 2012)

The crystal structure of the title compound, [Ir(C10H15)Cl(C21H21PS)]Cl·H2O, consists of discrete [Ir(η5-C5Me5)Cl{Ph2P(CH2)3SPh-κP,κS}]+ cations, chloride anions and water mol­ecules. The IrIII atom is coordinated by an η5-C5Me5 ligand, a chloride and a Ph2P(CH2)3SPh-κP,κS ligand, leading to a three-legged piano-stool geometry. In the crystal, two water molecules and two chloride anions are linked by weak O—H⋯Cl hydrogen bonding into tetra­mers that are located on centers of inversion. The H atoms of one of the methyl groups are disordered and were refined using a split model.

Related literature

Analogous iridium(III) complexes with Ph2PCH2SPh ligands have been described by Valderrama et al. (1997)[Valderrama, M., Contreras, R. & Boys, D. (1997). Polyhedron, 16, 1811-1817.]. For arene ruthenium(II) complexes having ω-diphenyl­phosphanyl-functionalized alkyl phenyl sulfide ligands Ph2P(CH2)nSPh (n = 1–3), see: Ludwig et al. (2012[Ludwig, G., Kaluđerović, G. N., Bette, M., Block, M., Paschke, R. & Steinborn, D. (2012). J. Inorg. Biochem. In the press. ]). For an overview of the strength of hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. 114, 50-80.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C10H15)Cl(C21H21PS)]Cl·H2O

  • Mr = 752.74

  • Monoclinic, P 21 /n

  • a = 11.0720 (3) Å

  • b = 8.9617 (2) Å

  • c = 30.6266 (7) Å

  • β = 100.000 (2)°

  • V = 2992.72 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.79 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.638, Tmax = 1.000

  • 27405 measured reflections

  • 5513 independent reflections

  • 5098 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.088

  • S = 1.25

  • 5513 reflections

  • 337 parameters

  • 147 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.68 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl2 0.95 (6) 2.27 (6) 3.216 (6) 177 (10)
O1—H2O⋯Cl2i 0.96 (8) 2.26 (11) 3.196 (6) 165 (13)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Reaction of the ω-diphenylphosphanyl-functionalized alkyl phenyl sulfide Ph2P(CH2)3SPh with the dinuclear chlorido-bridged iridium complex [{Ir(η5-C5Me5)Cl2}2] afforded the title compound [Ir(η5-C5Me5)Cl{Ph2P(CH2)3SPh-κP,κS}]Cl.H2O. Similar iridium(III) and ruthenium(II) complexes with ω-diphenylphosphanyl-functionalized alkyl phenyl sulfide ligands Ph2P(CH2)nSPh (n = 1–3) have been reported by Valderrama (1997) and Ludwig (2012). Crystals of the title compound are built up from [Ir(η5-C5Me5)Cl{Ph2P(CH2)3SPh-κP,κS}]+ cations, chloride anions and water molecules. The iridium atom is slightly distorted octahedrally coordinated by a η5-C5Me5, a chlorido, and a chelating Ph2P(CH2)3SPh-κP,κS ligand, which leads to a three-legged piano-stool geometry of the iridium center. The Ir—Cl (2.434 (2) Å), Ir—P (2.312 (2) Å), and Ir—S bond lengths (2.350 (2) Å) are in the expected range. The six-membered IrPC3S iridacycle adopts a chair conformation. In crystals short contacts between the oxygen atoms of the water molecules and the chloride anions (O1···Cl2 3.216 (5) Å; O1···Cl2(1 - x, 2 - y, -z) 3.196 (6) Å) indicate according to Steiner (2002) weak O—H···Cl hydrogen bonds (H10···Cl2 2.27 Å; O1—H10···Cl2 177°; H2O···Cl2(1 - x, 2 - y, -z) 2.26 Å; O1—H2O···Cl2 165°).

Related literature top

Analogous iridium(III) complexes with Ph2PCH2SPh ligands have been described by Valderrama et al. (1997). For arene ruthenium(II) complexes having ω-diphenylphosphanyl-functionalized alkyl phenyl sulfide ligands Ph2P(CH2)nSPh (n = 1–3), see: Ludwig et al. (2012). For an overview of the strength of hydrogen bonds, see: Steiner (2002).

Experimental top

To a methanol solution (30 ml) of [{IrCl2(η5-C5Me5)}2] (0.10 g, 0.16 mmol) Ph2P(CH2)3SPh (0.32 mmol) was added with stirring and then the solution was heated under reflux for three hours. The reaction mixture was cooled down to room temperature, water (2 ml) was added and after storage in a freezer at -70°C overnight the precipitate obtained was filtered off, washed with ether (3 × 2 ml), and dried in vacuum. Crystals of the title compound suitable for X-ray diffraction analysis were obtained from acetone solution at room temperature.

Refinement top

The H atoms, except those from the water molecules, were placed in calculated positions and constrained to ride on their parent atoms. Hydrogen atoms of the water molecules were found in the difference Fourier map and refined using the restraints "DFIX 0.960 0.020 H2O O1" and "DFIX 0.960 0.020 O1 H10". To modulate the anisotropic displacement parameters of the ellipsoids from the pentamethylcyclopentadienyl ligand the restraints "DELU 0.010 0.010 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10", "SIMU 0.040 0.080 1.700 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10" and "ISOR 0.100 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10" were used. The H atoms on C6 have been refined disordered over two equally occupied positions.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of title compound [Ir(η5-C5Me5)Cl{Ph2P(CH2)3SPh-κP,κS}]Cl.H2O. Displacement ellipsoids are drawn at the 50% probability level and the H atoms are shown as small spheres of arbitrary radii. Disordering is shown as full and dashed bonds.
Chlorido[1-diphenylphosphanyl-3-(phenylsulfanyl)propane- κ2P,S](η5-pentamethylcyclopentadienyl)iridium(III) chloride monohydrate top
Crystal data top
[Ir(C10H15)Cl(C21H21PS)]Cl·H2OF(000) = 1496
Mr = 752.74Dx = 1.671 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14059 reflections
a = 11.0720 (3) Åθ = 2.9–28.1°
b = 8.9617 (2) ŵ = 4.79 mm1
c = 30.6266 (7) ÅT = 100 K
β = 100.000 (2)°Block, yellow
V = 2992.72 (13) Å30.25 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S
diffractometer
5098 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.5°, θmin = 2.9°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1010
Tmin = 0.638, Tmax = 1.000l = 3537
27405 measured reflections2 standard reflections every 50 reflections
5513 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.P)2 + 29.4455P]
where P = (Fo2 + 2Fc2)/3
5513 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 1.68 e Å3
147 restraintsΔρmin = 1.50 e Å3
Crystal data top
[Ir(C10H15)Cl(C21H21PS)]Cl·H2OV = 2992.72 (13) Å3
Mr = 752.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0720 (3) ŵ = 4.79 mm1
b = 8.9617 (2) ÅT = 100 K
c = 30.6266 (7) Å0.25 × 0.2 × 0.2 mm
β = 100.000 (2)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
5098 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Rint = 0.047
Tmin = 0.638, Tmax = 1.0002 standard reflections every 50 reflections
27405 measured reflections intensity decay: none
5513 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041147 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.P)2 + 29.4455P]
where P = (Fo2 + 2Fc2)/3
5513 reflectionsΔρmax = 1.68 e Å3
337 parametersΔρmin = 1.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4071 (6)0.1087 (7)0.1078 (2)0.0180 (13)
C20.5278 (6)0.1774 (8)0.1208 (2)0.0196 (13)
C30.5326 (6)0.3021 (7)0.0928 (2)0.0183 (13)
C40.4139 (6)0.3191 (7)0.0648 (2)0.0175 (13)
C50.3395 (6)0.1940 (7)0.0729 (2)0.0192 (13)
C60.3704 (6)0.0502 (7)0.1281 (2)0.0191 (8)
H6A0.43550.08190.15120.029*0.50
H6B0.35770.12390.10510.029*0.50
H6C0.29640.03820.14010.029*0.50
H6D0.29090.08080.11310.029*0.50
H6E0.36870.03880.15920.029*0.50
H6F0.43000.12450.12410.029*0.50
C70.6279 (6)0.1159 (7)0.1545 (2)0.0191 (8)
H7A0.65610.02360.14400.029*
H7B0.59770.09860.18160.029*
H7C0.69450.18590.15980.029*
C80.6406 (6)0.3992 (8)0.0898 (3)0.0263 (16)
H8A0.70060.38840.11630.039*
H8B0.61460.50140.08670.039*
H8C0.67580.37020.06460.039*
C90.3851 (6)0.4222 (7)0.0260 (2)0.0191 (8)
H9A0.40980.37700.00050.029*
H9B0.42840.51440.03270.029*
H9C0.29850.44130.01990.029*
C100.2196 (6)0.1528 (8)0.0457 (2)0.0249 (15)
H10A0.23310.10030.01970.037*
H10B0.17290.24160.03710.037*
H10C0.17520.09000.06280.037*
C110.6084 (6)0.5606 (7)0.1848 (2)0.0197 (14)
C120.6887 (6)0.6611 (8)0.1706 (2)0.0238 (15)
H120.66040.73110.14880.029*
C130.8121 (6)0.6555 (9)0.1895 (2)0.0273 (16)
H130.86680.72190.18010.033*
C140.8542 (6)0.5532 (8)0.2220 (2)0.0253 (16)
H140.93670.55170.23480.030*
C150.7734 (7)0.4523 (8)0.2356 (2)0.0275 (17)
H150.80210.38190.25720.033*
C160.6500 (6)0.4559 (8)0.2171 (2)0.0247 (16)
H160.59570.38860.22630.030*
C170.3816 (6)0.6217 (8)0.2063 (2)0.0219 (15)
H17A0.39650.54260.22820.026*
H17B0.42070.71150.21970.026*
C180.2441 (6)0.6484 (8)0.1944 (2)0.0223 (15)
H18A0.22820.71000.16800.027*
H18B0.21770.70390.21820.027*
C190.1674 (6)0.5070 (8)0.1861 (2)0.0215 (14)
H19A0.08190.53250.18530.026*
H19B0.19140.43920.21070.026*
C200.1165 (6)0.5512 (7)0.0942 (2)0.0190 (14)
C210.1912 (6)0.6303 (7)0.0707 (2)0.0200 (15)
H210.27370.60510.07370.024*
C220.1455 (7)0.7462 (8)0.0428 (2)0.0243 (16)
H220.19640.79780.02680.029*
C230.0225 (7)0.7842 (8)0.0389 (2)0.0269 (17)
H230.00890.86200.02030.032*
C240.0543 (6)0.7077 (7)0.0626 (3)0.0256 (17)
H240.13630.73470.06000.031*
C250.0078 (6)0.5913 (8)0.0899 (2)0.0209 (15)
H250.05900.53910.10560.025*
C260.0716 (6)0.2595 (8)0.1303 (2)0.0201 (14)
C270.0810 (6)0.1559 (9)0.1647 (2)0.0269 (16)
H270.14150.16800.18960.032*
C280.0021 (7)0.0352 (8)0.1624 (3)0.0300 (18)
H280.01000.03350.18540.036*
C290.0886 (6)0.0174 (8)0.1256 (3)0.0279 (17)
H290.14290.06240.12430.034*
C300.0991 (6)0.1177 (8)0.0907 (3)0.0256 (16)
H300.15920.10420.06580.031*
C310.0201 (6)0.2374 (8)0.0931 (2)0.0223 (15)
H310.02780.30470.06970.027*
P10.18229 (15)0.41058 (19)0.13450 (6)0.0167 (4)
S10.45073 (15)0.57108 (18)0.15886 (5)0.0171 (3)
Cl10.38749 (14)0.24277 (19)0.20829 (5)0.0202 (3)
Ir10.38099 (2)0.33401 (3)0.133078 (8)0.01399 (8)
O10.3710 (5)0.8621 (6)0.00804 (19)0.0332 (13)
Cl20.61713 (16)0.8410 (2)0.06493 (6)0.0287 (4)
H1O0.442 (5)0.853 (10)0.014 (2)0.05 (3)*
H2O0.376 (14)0.960 (7)0.020 (5)0.15 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (3)0.012 (3)0.022 (4)0.002 (2)0.004 (3)0.008 (2)
C20.022 (3)0.016 (3)0.021 (3)0.007 (3)0.007 (2)0.005 (3)
C30.018 (3)0.019 (3)0.021 (3)0.000 (2)0.013 (2)0.006 (2)
C40.023 (3)0.015 (3)0.016 (3)0.005 (3)0.008 (2)0.004 (2)
C50.023 (3)0.015 (3)0.020 (3)0.003 (3)0.006 (3)0.007 (2)
C60.021 (2)0.0149 (18)0.023 (2)0.0029 (15)0.0073 (16)0.0067 (15)
C70.021 (2)0.0149 (18)0.023 (2)0.0029 (15)0.0073 (16)0.0067 (15)
C80.025 (4)0.016 (3)0.041 (5)0.004 (3)0.016 (3)0.007 (3)
C90.021 (2)0.0149 (18)0.023 (2)0.0029 (15)0.0073 (16)0.0067 (15)
C100.024 (3)0.025 (4)0.024 (4)0.003 (3)0.001 (3)0.008 (3)
C110.021 (4)0.019 (3)0.018 (4)0.004 (3)0.002 (3)0.006 (3)
C120.028 (4)0.020 (3)0.024 (4)0.004 (3)0.006 (3)0.004 (3)
C130.026 (4)0.027 (4)0.030 (4)0.012 (3)0.010 (3)0.006 (3)
C140.019 (4)0.035 (4)0.021 (4)0.008 (3)0.002 (3)0.005 (3)
C150.027 (4)0.029 (4)0.025 (4)0.003 (3)0.001 (3)0.002 (3)
C160.023 (4)0.025 (4)0.026 (4)0.006 (3)0.002 (3)0.005 (3)
C170.022 (4)0.031 (4)0.014 (4)0.003 (3)0.007 (3)0.008 (3)
C180.028 (4)0.021 (4)0.020 (4)0.000 (3)0.011 (3)0.005 (3)
C190.022 (3)0.023 (4)0.020 (4)0.003 (3)0.007 (3)0.005 (3)
C200.021 (3)0.015 (3)0.020 (4)0.002 (3)0.000 (3)0.002 (3)
C210.023 (4)0.015 (3)0.022 (4)0.001 (3)0.003 (3)0.004 (3)
C220.030 (4)0.019 (4)0.023 (4)0.002 (3)0.002 (3)0.002 (3)
C230.028 (4)0.021 (4)0.030 (4)0.003 (3)0.000 (3)0.000 (3)
C240.016 (3)0.018 (4)0.040 (5)0.006 (3)0.003 (3)0.005 (3)
C250.016 (3)0.023 (4)0.024 (4)0.008 (3)0.004 (3)0.003 (3)
C260.013 (3)0.024 (4)0.025 (4)0.001 (3)0.007 (3)0.000 (3)
C270.021 (4)0.029 (4)0.030 (4)0.006 (3)0.004 (3)0.005 (3)
C280.027 (4)0.022 (4)0.041 (5)0.005 (3)0.006 (3)0.005 (3)
C290.022 (4)0.024 (4)0.039 (5)0.006 (3)0.010 (3)0.002 (3)
C300.017 (3)0.026 (4)0.033 (4)0.000 (3)0.004 (3)0.008 (3)
C310.017 (3)0.022 (4)0.028 (4)0.004 (3)0.005 (3)0.003 (3)
P10.0149 (8)0.0171 (8)0.0187 (9)0.0000 (7)0.0049 (7)0.0000 (7)
S10.0191 (8)0.0135 (8)0.0187 (8)0.0004 (6)0.0035 (6)0.0015 (6)
Cl10.0190 (8)0.0230 (8)0.0187 (9)0.0003 (7)0.0037 (6)0.0050 (7)
Ir10.01420 (13)0.01298 (13)0.01507 (13)0.00024 (10)0.00329 (9)0.00059 (10)
O10.029 (3)0.031 (3)0.038 (3)0.009 (2)0.001 (2)0.002 (3)
Cl20.0347 (10)0.0268 (9)0.0233 (9)0.0056 (8)0.0014 (7)0.0008 (8)
Geometric parameters (Å, º) top
C1—C51.419 (9)C15—C161.386 (10)
C1—C21.462 (9)C15—H150.9300
C1—C61.634 (9)C16—H160.9300
C1—Ir12.199 (6)C17—C181.521 (9)
C2—C31.414 (9)C17—S11.815 (7)
C2—C71.484 (9)C17—H17A0.9700
C2—Ir12.228 (6)C17—H17B0.9700
C3—C41.448 (9)C18—C191.523 (9)
C3—C81.495 (9)C18—H18A0.9700
C3—Ir12.266 (6)C18—H18B0.9700
C4—C51.438 (9)C19—P11.834 (7)
C4—C91.494 (9)C19—H19A0.9700
C4—Ir12.189 (6)C19—H19B0.9700
C5—C101.486 (9)C20—C211.383 (10)
C5—Ir12.212 (6)C20—C251.407 (9)
C6—H6A0.9600C20—P11.824 (7)
C6—H6B0.9600C21—C221.384 (9)
C6—H6C0.9600C21—H210.9300
C6—H6D0.9600C22—C231.389 (10)
C6—H6E0.9600C22—H220.9300
C6—H6F0.9600C23—C241.391 (10)
C7—H7A0.9600C23—H230.9300
C7—H7B0.9600C24—C251.380 (10)
C7—H7C0.9600C24—H240.9300
C8—H8A0.9600C25—H250.9300
C8—H8B0.9600C26—C271.393 (10)
C8—H8C0.9600C26—C311.403 (10)
C9—H9A0.9600C26—P11.816 (7)
C9—H9B0.9600C27—C281.385 (10)
C9—H9C0.9600C27—H270.9300
C10—H10A0.9600C28—C291.381 (11)
C10—H10B0.9600C28—H280.9300
C10—H10C0.9600C29—C301.385 (11)
C11—C161.383 (10)C29—H290.9300
C11—C121.388 (10)C30—C311.378 (10)
C11—S11.790 (7)C30—H300.9300
C12—C131.390 (10)C31—H310.9300
C12—H120.9300P1—Ir12.3121 (17)
C13—C141.372 (11)S1—Ir12.3498 (16)
C13—H130.9300Cl1—Ir12.4337 (16)
C14—C151.387 (10)O1—H1O0.95 (2)
C14—H140.9300O1—H2O0.96 (2)
C5—C1—C2108.4 (6)C18—C17—S1113.0 (5)
C5—C1—C6128.6 (6)C18—C17—H17A109.0
C2—C1—C6122.7 (6)S1—C17—H17A109.0
C5—C1—Ir171.7 (4)C18—C17—H17B109.0
C2—C1—Ir171.8 (3)S1—C17—H17B109.0
C6—C1—Ir1127.6 (4)H17A—C17—H17B107.8
C3—C2—C1107.3 (6)C17—C18—C19114.5 (6)
C3—C2—C7127.8 (6)C17—C18—H18A108.6
C1—C2—C7124.7 (6)C19—C18—H18A108.6
C3—C2—Ir173.1 (4)C17—C18—H18B108.6
C1—C2—Ir169.6 (3)C19—C18—H18B108.6
C7—C2—Ir1126.5 (5)H18A—C18—H18B107.6
C2—C3—C4108.5 (6)C18—C19—P1113.9 (5)
C2—C3—C8127.7 (6)C18—C19—H19A108.8
C4—C3—C8123.7 (6)P1—C19—H19A108.8
C2—C3—Ir170.2 (4)C18—C19—H19B108.8
C4—C3—Ir168.2 (3)P1—C19—H19B108.8
C8—C3—Ir1129.5 (5)H19A—C19—H19B107.7
C5—C4—C3107.6 (6)C21—C20—C25118.9 (6)
C5—C4—C9124.7 (6)C21—C20—P1120.1 (5)
C3—C4—C9125.7 (6)C25—C20—P1120.6 (5)
C5—C4—Ir171.8 (4)C20—C21—C22121.3 (6)
C3—C4—Ir173.9 (4)C20—C21—H21119.3
C9—C4—Ir1132.3 (4)C22—C21—H21119.3
C1—C5—C4107.9 (6)C21—C22—C23118.9 (7)
C1—C5—C10126.3 (6)C21—C22—H22120.5
C4—C5—C10125.5 (6)C23—C22—H22120.5
C1—C5—Ir170.7 (4)C22—C23—C24121.0 (7)
C4—C5—Ir170.1 (4)C22—C23—H23119.5
C10—C5—Ir1130.0 (5)C24—C23—H23119.5
C1—C6—H6A109.5C25—C24—C23119.4 (6)
C1—C6—H6B109.5C25—C24—H24120.3
H6A—C6—H6B109.5C23—C24—H24120.3
C1—C6—H6C109.5C24—C25—C20120.4 (7)
H6A—C6—H6C109.5C24—C25—H25119.8
H6B—C6—H6C109.5C20—C25—H25119.8
C1—C6—H6D109.5C27—C26—C31117.9 (6)
H6A—C6—H6D141.1C27—C26—P1118.9 (5)
H6B—C6—H6D56.3C31—C26—P1123.2 (5)
H6C—C6—H6D56.3C28—C27—C26121.2 (7)
C1—C6—H6E109.5C28—C27—H27119.4
H6A—C6—H6E56.3C26—C27—H27119.4
H6B—C6—H6E141.1C29—C28—C27119.7 (7)
H6C—C6—H6E56.3C29—C28—H28120.2
H6D—C6—H6E109.5C27—C28—H28120.2
C1—C6—H6F109.5C28—C29—C30120.3 (7)
H6A—C6—H6F56.3C28—C29—H29119.8
H6B—C6—H6F56.3C30—C29—H29119.8
H6C—C6—H6F141.1C31—C30—C29119.8 (7)
H6D—C6—H6F109.5C31—C30—H30120.1
H6E—C6—H6F109.5C29—C30—H30120.1
C2—C7—H7A109.5C30—C31—C26121.1 (7)
C2—C7—H7B109.5C30—C31—H31119.5
H7A—C7—H7B109.5C26—C31—H31119.5
C2—C7—H7C109.5C26—P1—C20106.4 (3)
H7A—C7—H7C109.5C26—P1—C19104.6 (3)
H7B—C7—H7C109.5C20—P1—C1999.9 (3)
C3—C8—H8A109.5C26—P1—Ir1114.2 (2)
C3—C8—H8B109.5C20—P1—Ir1117.5 (2)
H8A—C8—H8B109.5C19—P1—Ir1112.6 (2)
C3—C8—H8C109.5C11—S1—C1799.9 (3)
H8A—C8—H8C109.5C11—S1—Ir1109.9 (2)
H8B—C8—H8C109.5C17—S1—Ir1109.6 (2)
C4—C9—H9A109.5C4—Ir1—C163.5 (2)
C4—C9—H9B109.5C4—Ir1—C538.1 (2)
H9A—C9—H9B109.5C1—Ir1—C537.5 (2)
C4—C9—H9C109.5C4—Ir1—C263.4 (2)
H9A—C9—H9C109.5C1—Ir1—C238.5 (2)
H9B—C9—H9C109.5C5—Ir1—C263.5 (2)
C5—C10—H10A109.5C4—Ir1—C337.9 (2)
C5—C10—H10B109.5C1—Ir1—C362.5 (2)
H10A—C10—H10B109.5C5—Ir1—C362.7 (2)
C5—C10—H10C109.5C2—Ir1—C336.7 (2)
H10A—C10—H10C109.5C4—Ir1—P1110.65 (17)
H10B—C10—H10C109.5C1—Ir1—P1117.57 (18)
C16—C11—C12120.8 (6)C5—Ir1—P197.09 (17)
C16—C11—S1122.1 (5)C2—Ir1—P1156.11 (18)
C12—C11—S1117.1 (5)C3—Ir1—P1147.63 (18)
C11—C12—C13118.9 (7)C4—Ir1—S1106.07 (18)
C11—C12—H12120.6C1—Ir1—S1153.20 (18)
C13—C12—H12120.6C5—Ir1—S1143.28 (18)
C14—C13—C12120.8 (7)C2—Ir1—S1114.81 (18)
C14—C13—H13119.6C3—Ir1—S193.77 (17)
C12—C13—H13119.6P1—Ir1—S189.06 (6)
C13—C14—C15119.8 (7)C4—Ir1—Cl1154.38 (17)
C13—C14—H14120.1C1—Ir1—Cl192.31 (19)
C15—C14—H14120.1C5—Ir1—Cl1124.50 (18)
C16—C15—C14120.2 (7)C2—Ir1—Cl192.63 (18)
C16—C15—H15119.9C3—Ir1—Cl1124.70 (18)
C14—C15—H15119.9P1—Ir1—Cl187.35 (6)
C11—C16—C15119.5 (7)S1—Ir1—Cl191.82 (6)
C11—C16—H16120.3H1O—O1—H2O105 (10)
C15—C16—H16120.3
C5—C1—C2—C31.1 (7)C2—C1—Ir1—C5117.3 (6)
C6—C1—C2—C3172.6 (5)C6—C1—Ir1—C5125.1 (7)
Ir1—C1—C2—C363.9 (4)C5—C1—Ir1—C2117.3 (6)
C5—C1—C2—C7176.3 (6)C6—C1—Ir1—C2117.7 (7)
C6—C1—C2—C72.6 (10)C5—C1—Ir1—C380.2 (4)
Ir1—C1—C2—C7120.9 (6)C2—C1—Ir1—C337.1 (4)
C5—C1—C2—Ir162.8 (4)C6—C1—Ir1—C3154.8 (6)
C6—C1—C2—Ir1123.5 (6)C5—C1—Ir1—P163.2 (4)
C1—C2—C3—C44.1 (7)C2—C1—Ir1—P1179.5 (3)
C7—C2—C3—C4179.1 (6)C6—C1—Ir1—P161.9 (6)
Ir1—C2—C3—C457.5 (4)C5—C1—Ir1—S1109.9 (5)
C1—C2—C3—C8173.2 (6)C2—C1—Ir1—S17.3 (7)
C7—C2—C3—C81.8 (11)C6—C1—Ir1—S1125.0 (5)
Ir1—C2—C3—C8125.2 (7)C5—C1—Ir1—Cl1151.4 (4)
C1—C2—C3—Ir161.6 (4)C2—C1—Ir1—Cl191.3 (4)
C7—C2—C3—Ir1123.4 (7)C6—C1—Ir1—Cl126.4 (5)
C2—C3—C4—C55.5 (7)C1—C5—Ir1—C4118.2 (5)
C8—C3—C4—C5171.9 (6)C10—C5—Ir1—C4120.1 (8)
Ir1—C3—C4—C564.3 (4)C4—C5—Ir1—C1118.2 (5)
C2—C3—C4—C9170.2 (6)C10—C5—Ir1—C1121.7 (8)
C8—C3—C4—C97.2 (10)C1—C5—Ir1—C238.2 (4)
Ir1—C3—C4—C9131.0 (6)C4—C5—Ir1—C280.0 (4)
C2—C3—C4—Ir158.8 (4)C10—C5—Ir1—C2159.9 (7)
C8—C3—C4—Ir1123.8 (6)C1—C5—Ir1—C379.5 (4)
C2—C1—C5—C42.3 (7)C4—C5—Ir1—C338.7 (4)
C6—C1—C5—C4175.6 (6)C10—C5—Ir1—C3158.8 (7)
Ir1—C1—C5—C460.5 (4)C1—C5—Ir1—P1127.1 (4)
C2—C1—C5—C10171.1 (6)C4—C5—Ir1—P1114.6 (3)
C6—C1—C5—C102.2 (11)C10—C5—Ir1—P15.5 (6)
Ir1—C1—C5—C10126.1 (7)C1—C5—Ir1—S1134.9 (3)
C2—C1—C5—Ir162.9 (4)C4—C5—Ir1—S116.6 (5)
C6—C1—C5—Ir1123.9 (6)C10—C5—Ir1—S1103.5 (6)
C3—C4—C5—C14.8 (7)C1—C5—Ir1—Cl135.5 (4)
C9—C4—C5—C1169.7 (6)C4—C5—Ir1—Cl1153.7 (3)
Ir1—C4—C5—C160.9 (4)C10—C5—Ir1—Cl186.2 (6)
C3—C4—C5—C10168.6 (6)C3—C2—Ir1—C436.3 (4)
C9—C4—C5—C103.8 (10)C1—C2—Ir1—C480.1 (4)
Ir1—C4—C5—C10125.6 (6)C7—C2—Ir1—C4161.2 (7)
C3—C4—C5—Ir165.8 (4)C3—C2—Ir1—C1116.4 (6)
C9—C4—C5—Ir1129.4 (6)C7—C2—Ir1—C1118.7 (8)
C16—C11—C12—C130.3 (10)C3—C2—Ir1—C579.1 (4)
S1—C11—C12—C13179.3 (5)C1—C2—Ir1—C537.2 (4)
C11—C12—C13—C140.5 (11)C7—C2—Ir1—C5156.0 (7)
C12—C13—C14—C151.1 (11)C1—C2—Ir1—C3116.4 (6)
C13—C14—C15—C161.0 (11)C7—C2—Ir1—C3124.9 (8)
C12—C11—C16—C150.4 (11)C3—C2—Ir1—P1117.4 (5)
S1—C11—C16—C15179.3 (6)C1—C2—Ir1—P11.0 (7)
C14—C15—C16—C110.3 (11)C7—C2—Ir1—P1117.8 (5)
S1—C17—C18—C1976.0 (7)C3—C2—Ir1—S160.0 (4)
C17—C18—C19—P171.0 (7)C1—C2—Ir1—S1176.4 (3)
C25—C20—C21—C220.8 (10)C7—C2—Ir1—S164.9 (6)
P1—C20—C21—C22174.4 (5)C3—C2—Ir1—Cl1153.2 (4)
C20—C21—C22—C230.8 (10)C1—C2—Ir1—Cl190.4 (4)
C21—C22—C23—C240.1 (11)C7—C2—Ir1—Cl128.3 (6)
C22—C23—C24—C250.6 (11)C2—C3—Ir1—C4120.5 (5)
C23—C24—C25—C200.6 (10)C8—C3—Ir1—C4116.4 (8)
C21—C20—C25—C240.1 (10)C2—C3—Ir1—C139.0 (4)
P1—C20—C25—C24173.7 (5)C4—C3—Ir1—C181.4 (4)
C31—C26—C27—C280.3 (11)C8—C3—Ir1—C1162.1 (7)
P1—C26—C27—C28177.4 (6)C2—C3—Ir1—C581.5 (4)
C26—C27—C28—C290.6 (12)C4—C3—Ir1—C538.9 (4)
C27—C28—C29—C301.4 (11)C8—C3—Ir1—C5155.4 (7)
C28—C29—C30—C311.3 (11)C4—C3—Ir1—C2120.5 (5)
C29—C30—C31—C260.3 (10)C8—C3—Ir1—C2123.1 (8)
C27—C26—C31—C300.4 (10)C2—C3—Ir1—P1137.8 (4)
P1—C26—C31—C30177.4 (5)C4—C3—Ir1—P117.3 (5)
C27—C26—P1—C20163.0 (6)C8—C3—Ir1—P199.1 (7)
C31—C26—P1—C2020.1 (7)C2—C3—Ir1—S1128.0 (4)
C27—C26—P1—C1957.8 (6)C4—C3—Ir1—S1111.5 (4)
C31—C26—P1—C19125.3 (6)C8—C3—Ir1—S14.9 (6)
C27—C26—P1—Ir165.7 (6)C2—C3—Ir1—Cl133.2 (4)
C31—C26—P1—Ir1111.2 (6)C4—C3—Ir1—Cl1153.6 (3)
C21—C20—P1—C26142.8 (5)C8—C3—Ir1—Cl189.9 (6)
C25—C20—P1—C2643.7 (6)C26—P1—Ir1—C487.6 (3)
C21—C20—P1—C19108.7 (6)C20—P1—Ir1—C438.0 (3)
C25—C20—P1—C1964.8 (6)C19—P1—Ir1—C4153.3 (3)
C21—C20—P1—Ir113.4 (6)C26—P1—Ir1—C117.6 (3)
C25—C20—P1—Ir1173.1 (5)C20—P1—Ir1—C1108.1 (3)
C18—C19—P1—C26174.6 (5)C19—P1—Ir1—C1136.6 (3)
C18—C19—P1—C2064.6 (5)C26—P1—Ir1—C550.8 (3)
C18—C19—P1—Ir160.9 (5)C20—P1—Ir1—C574.9 (3)
C16—C11—S1—C1764.4 (6)C19—P1—Ir1—C5169.9 (3)
C12—C11—S1—C17116.6 (6)C26—P1—Ir1—C216.9 (5)
C16—C11—S1—Ir150.8 (6)C20—P1—Ir1—C2108.8 (5)
C12—C11—S1—Ir1128.2 (5)C19—P1—Ir1—C2135.9 (5)
C18—C17—S1—C11176.7 (5)C26—P1—Ir1—C398.9 (4)
C18—C17—S1—Ir167.9 (5)C20—P1—Ir1—C326.7 (4)
C5—C4—Ir1—C136.8 (4)C19—P1—Ir1—C3142.0 (4)
C3—C4—Ir1—C178.4 (4)C26—P1—Ir1—S1165.5 (3)
C9—C4—Ir1—C1157.6 (7)C20—P1—Ir1—S168.8 (2)
C3—C4—Ir1—C5115.3 (5)C19—P1—Ir1—S146.5 (2)
C9—C4—Ir1—C5120.8 (8)C26—P1—Ir1—Cl173.7 (3)
C5—C4—Ir1—C280.1 (4)C20—P1—Ir1—Cl1160.7 (2)
C3—C4—Ir1—C235.1 (4)C19—P1—Ir1—Cl145.4 (2)
C9—C4—Ir1—C2159.1 (7)C11—S1—Ir1—C491.0 (3)
C5—C4—Ir1—C3115.3 (5)C17—S1—Ir1—C4160.2 (3)
C9—C4—Ir1—C3124.0 (8)C11—S1—Ir1—C128.3 (5)
C5—C4—Ir1—P174.6 (4)C17—S1—Ir1—C1137.2 (5)
C3—C4—Ir1—P1170.2 (3)C11—S1—Ir1—C5101.6 (4)
C9—C4—Ir1—P146.2 (6)C17—S1—Ir1—C5149.6 (4)
C5—C4—Ir1—S1169.7 (3)C11—S1—Ir1—C223.3 (3)
C3—C4—Ir1—S175.0 (4)C17—S1—Ir1—C2132.2 (3)
C9—C4—Ir1—S149.0 (6)C11—S1—Ir1—C354.5 (3)
C5—C4—Ir1—Cl157.6 (6)C17—S1—Ir1—C3163.4 (3)
C3—C4—Ir1—Cl157.6 (6)C11—S1—Ir1—P1157.8 (2)
C9—C4—Ir1—Cl1178.4 (4)C17—S1—Ir1—P148.9 (2)
C5—C1—Ir1—C437.4 (4)C11—S1—Ir1—Cl170.5 (2)
C2—C1—Ir1—C479.8 (4)C17—S1—Ir1—Cl138.4 (2)
C6—C1—Ir1—C4162.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl20.95 (6)2.27 (6)3.216 (6)177 (10)
O1—H2O···Cl2i0.96 (8)2.26 (11)3.196 (6)165 (13)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Ir(C10H15)Cl(C21H21PS)]Cl·H2O
Mr752.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.0720 (3), 8.9617 (2), 30.6266 (7)
β (°) 100.000 (2)
V3)2992.72 (13)
Z4
Radiation typeMo Kα
µ (mm1)4.79
Crystal size (mm)0.25 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.638, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27405, 5513, 5098
Rint0.047
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.088, 1.25
No. of reflections5513
No. of parameters337
No. of restraints147
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.P)2 + 29.4455P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.68, 1.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl20.95 (6)2.27 (6)3.216 (6)177 (10)
O1—H2O···Cl2i0.96 (8)2.26 (11)3.196 (6)165 (13)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

Financial support from the Graduiertenförderung des Landes Sachsen-Anhalt is gratefully acknowledged.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLudwig, G., Kaluđerović, G. N., Bette, M., Block, M., Paschke, R. & Steinborn, D. (2012). J. Inorg. Biochem. In the press.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. 114, 50–80.  CrossRef Google Scholar
First citationValderrama, M., Contreras, R. & Boys, D. (1997). Polyhedron, 16, 1811–1817.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds