organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-1H-1,2,4-triazole-5(4H)-thione

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650504, People's Republic of China
*Correspondence e-mail: zaxchem@126.com

(Received 9 May 2012; accepted 15 May 2012; online 19 May 2012)

The mol­ecule of the title compound, C4H7N3S, exists as the thione tautomer in the solid state. The asymmetric unit consits of one mol­ecule in which all atoms are located on a crystallographic mirror plane. In the crystal, adjacent mol­ecules are linked by N—H⋯N and N—H⋯S hydrogen bonds into chains running along the a axis. ππ stacking inter­actions between the triazole rings [centroid–centroid distance = 3.740 (1) Å and inter­planar distance = 3.376 Å] may further stabilize the structure.

Related literature

For applications of thione-substituted triazoles and its derivatives in coordination chemistry, see: Shivarama et al. (2006[Shivarama, H. B., Sooryanarayana, R. B., Sarojini, B. K., Akberali, P. M. & Suchetha, K. N. (2006). Eur. J. Med. Chem. 41, 657-663.]); Wujec et al. (2007[Wujec, M., Kosikowska, U., Paneth, P. & Malm, A. (2007). Heterocycles, 71, 2617-2626.]); Ghassemzadeh et al. (2008[Ghassemzadeh, M., Fallahnedjad, L., Heravi, M. M. & Neumüller, B. (2008). Polyhedron, 27, 1655-1664.]); Zhang et al. (2008[Zhang, R.-B., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y., Zhang, J. & Yao, Y.-G. (2008). Cryst. Growth Des. 8, 2562-2573.]). For crystal structure reports of 3-(alkyl or ar­yl)-1,2,4-triazole-5-thione compounds, see: Buzykin et al. (2008[Buzykin, B. I., Mironova, E. V., Gubaidullin, A. T., Litvinov, I. A. & Nabiullin, V. N. (2008). Russ. J. Gen. Chem. 78, 634-648.]); Pachuta-Stec et al. (2009[Pachuta-Stec, A., Rzymowska, J., Mazur, L., Mendyk, E., Pitucha, M. & Rzączyńska, Z. (2009). Eur. J. Med. Chem. 44, 3788-3793.]). For related structures of thione-substituted 1,2,4-triazole compounds, see: Kajdan et al. (2000[Kajdan, T. W., Squattrito, P. J. & Dubey, S. N. (2000). Inorg. Chim. Acta, 300-302, 1082-1089.]). For the previous synthesis of the title compound, see: Jones & Ainsworth (1955[Jones, R. G. & Ainsworth, C. (1955). J. Am. Chem. Soc., 77, 1538-1540.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N3S

  • Mr = 129.19

  • Monoclinic, P 21 /m

  • a = 5.0922 (10) Å

  • b = 6.7526 (14) Å

  • c = 8.6578 (17) Å

  • β = 90.17 (3)°

  • V = 297.70 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.26 × 0.21 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.896, Tmax = 0.954

  • 2467 measured reflections

  • 637 independent reflections

  • 590 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.09

  • 637 reflections

  • 49 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯S1i 0.86 2.50 3.270 (2) 150
N3—H3A⋯N2ii 0.86 2.08 2.914 (3) 162
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thione-substituted triazoles have attracted increasing attention as important class of N, S-donor ligands owing to biological activity as well as the coordination properties combing heterocyclic nitrogen and exocyclic sulfur donor atoms for the construction of novel mononuclear, polynuclear, and multi-dimensional triazolate coordination compounds with interesting optical properties (Shivarama et al. 2006; Wujec et al. 2007; Ghassemzadeh et al. 2008; Zhang et al. 2008). Although there are many crystal structure of thione-substituted 1,2,4-triazoles compounds reported in the literature, most of them are based on 4-amino 3-(aryl or alkyl)-1,2,4-triazole-5-thione. Up to now, there are only a few crystal structure reports of 3-(alkyl or aryl)-1,2,4-triazole-5-thione compounds (Buzykin et al.2008; Pachuta-Stec et al. 2009). Herein we report the synthesis and the crystal structure of the title compound.

The title molecule exists as the thione tautomer in the solid state (Fig. 1), with the H atom H3 at the nitrogen adjacent to the C—S group. The bond lengths and angles are comparable to that reported in related compounds (Kajdan et al. 2000). All atoms of the title compound are lcoated on a crystallographic mirror plane and therefore, the molecule is planar. In the crystal structure the molecules are linked by Adjacent molecules are linked by intermolecular N—H···N and N—H···S hydrogen bonding into chains that are running along the crystallographic a axis (Fig. 2 and Table 1)). There are pi-pi stacking interactions between the triazole rings of neighbouring chains (centroid-centroid distance = 3.740 (1) Å, interplanar distance 3.376 Å) which may further stabilize the structure.

Related literature top

For applications of thione-substituted triazoles and its derivatives in coordination chemistry, see: Shivarama et al. (2006); Wujec et al. (2007); Ghassemzadeh et al. (2008); Zhang et al. (2008). For crystal structure reports of 3-(alkyl or aryl)-1,2,4-triazole-5-thione compounds, see: Buzykin et al. (2008); Pachuta-Stec et al. (2009). For related structures of thione-substituted 1,2,4-triazole compounds, see: Kajdan et al. (2000). For the previous synthesis of the title compound, see: Jones & Ainsworth (1955).

Experimental top

The ligand 3-ethyl-1H-1,2,4-triazole-5(4H)-thione was synthesized according to the literature method (Jones & Ainsworth 1955). A mixture of 3-ethyl-1H-1,2,4-triazole-5(4H)-thione (12.9 mg, 0.1 mmol) and water (5 ml) was placed in a Teflon-lined stainless steel vessel (15 ml) and heated at 413 K for 48 h and then cooled to room temperature at a rate of 5 K h-1. From the resulting colorless solution the solvent was slowly evaporated in air for over a week which results in the formation of colorless rod like crystals of the title compound suitable for single crystal X-ray diffraction.

Refinement top

All H atoms were located in difference map but were placed in idealized positions (N—H = 0.86 Å and C—H = 0.96-0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C, N) (1.5 for methyl H atoms).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. View of a chain showing the hydrogen bonding interactions as dashed lines.
3-Ethyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C4H7N3SZ = 2
Mr = 129.19F(000) = 136
Monoclinic, P21/mDx = 1.441 Mg m3
Hall symbol: -P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.0922 (10) ŵ = 0.43 mm1
b = 6.7526 (14) ÅT = 293 K
c = 8.6578 (17) ÅRod, colorless
β = 90.17 (3)°0.26 × 0.21 × 0.11 mm
V = 297.70 (10) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
637 independent reflections
Radiation source: fine-focus sealed tube590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.896, Tmax = 0.954k = 87
2467 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.4796P]
where P = (Fo2 + 2Fc2)/3
637 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C4H7N3SV = 297.70 (10) Å3
Mr = 129.19Z = 2
Monoclinic, P21/mMo Kα radiation
a = 5.0922 (10) ŵ = 0.43 mm1
b = 6.7526 (14) ÅT = 293 K
c = 8.6578 (17) Å0.26 × 0.21 × 0.11 mm
β = 90.17 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
637 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
590 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.954Rint = 0.034
2467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.09Δρmax = 0.50 e Å3
637 reflectionsΔρmin = 0.30 e Å3
49 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.45391 (12)0.25000.74979 (7)0.03824 (18)
N10.0168 (4)0.25000.5691 (3)0.0384 (6)
H1D0.08900.25000.64640.046*
N20.0665 (4)0.25000.4165 (2)0.0344 (5)
N30.3624 (4)0.25000.4359 (2)0.0347 (5)
H3A0.52440.25000.40820.042*
C10.0885 (5)0.25000.0845 (3)0.0447 (8)
H1A0.06160.25000.02520.067*
H1B0.18550.36610.11350.067*0.50
H1C0.18550.13390.11350.067*0.50
C20.1729 (5)0.25000.1657 (3)0.0377 (7)
H2A0.27100.13400.13360.045*0.50
H2B0.27100.36600.13360.045*0.50
C30.1532 (5)0.25000.3376 (3)0.0311 (6)
C40.2769 (5)0.25000.5841 (3)0.0345 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (3)0.0578 (4)0.0299 (3)0.0000.0018 (2)0.000
N10.0287 (10)0.0526 (14)0.0338 (11)0.0000.0008 (9)0.000
N20.0258 (9)0.0435 (12)0.0339 (11)0.0000.0006 (8)0.000
N30.0204 (9)0.0486 (13)0.0349 (11)0.0000.0017 (8)0.000
C10.0332 (13)0.0639 (19)0.0368 (14)0.0000.0086 (11)0.000
C20.0276 (11)0.0535 (16)0.0321 (12)0.0000.0014 (10)0.000
C30.0229 (10)0.0334 (13)0.0368 (12)0.0000.0025 (9)0.000
C40.0274 (11)0.0368 (13)0.0393 (13)0.0000.0003 (10)0.000
Geometric parameters (Å, º) top
S1—C41.692 (3)C1—C21.504 (4)
N1—C41.330 (3)C1—H1A0.9600
N1—N21.386 (3)C1—H1B0.9600
N1—H1D0.8600C1—H1C0.9600
N2—C31.312 (3)C2—C31.492 (4)
N3—C41.356 (3)C2—H2A0.9700
N3—C31.362 (3)C2—H2B0.9700
N3—H3A0.8600
C4—N1—N2113.2 (2)C3—C2—C1113.8 (2)
C4—N1—H1D123.4C3—C2—H2A108.8
N2—N1—H1D123.4C1—C2—H2A108.8
C3—N2—N1103.7 (2)C3—C2—H2B108.8
C4—N3—C3109.8 (2)C1—C2—H2B108.8
C4—N3—H3A125.1H2A—C2—H2B107.7
C3—N3—H3A125.1N2—C3—N3109.9 (2)
C2—C1—H1A109.5N2—C3—C2125.4 (2)
C2—C1—H1B109.5N3—C3—C2124.6 (2)
H1A—C1—H1B109.5N1—C4—N3103.3 (2)
C2—C1—H1C109.5N1—C4—S1127.6 (2)
H1A—C1—H1C109.5N3—C4—S1129.07 (19)
H1B—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···S1i0.862.503.270 (2)150
N3—H3A···N2ii0.862.082.914 (3)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC4H7N3S
Mr129.19
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)5.0922 (10), 6.7526 (14), 8.6578 (17)
β (°) 90.17 (3)
V3)297.70 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.26 × 0.21 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.896, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
2467, 637, 590
Rint0.034
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.09
No. of reflections637
No. of parameters49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.30

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···S1i0.862.503.270 (2)150.0
N3—H3A···N2ii0.862.082.914 (3)161.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Science Foundation of the Education Department (2010Y004) as well as the Science and Technology Department (2010ZC070) of Yunnan Province for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuzykin, B. I., Mironova, E. V., Gubaidullin, A. T., Litvinov, I. A. & Nabiullin, V. N. (2008). Russ. J. Gen. Chem. 78, 634–648.  Web of Science CrossRef CAS Google Scholar
First citationGhassemzadeh, M., Fallahnedjad, L., Heravi, M. M. & Neumüller, B. (2008). Polyhedron, 27, 1655–1664.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJones, R. G. & Ainsworth, C. (1955). J. Am. Chem. Soc., 77, 1538–1540.  CrossRef CAS Web of Science Google Scholar
First citationKajdan, T. W., Squattrito, P. J. & Dubey, S. N. (2000). Inorg. Chim. Acta, 300–302, 1082–1089.  Web of Science CSD CrossRef CAS Google Scholar
First citationPachuta-Stec, A., Rzymowska, J., Mazur, L., Mendyk, E., Pitucha, M. & Rzączyńska, Z. (2009). Eur. J. Med. Chem. 44, 3788–3793.  Web of Science PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarama, H. B., Sooryanarayana, R. B., Sarojini, B. K., Akberali, P. M. & Suchetha, K. N. (2006). Eur. J. Med. Chem. 41, 657–663.  PubMed Google Scholar
First citationWujec, M., Kosikowska, U., Paneth, P. & Malm, A. (2007). Heterocycles, 71, 2617–2626.  CrossRef CAS Google Scholar
First citationZhang, R.-B., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y., Zhang, J. & Yao, Y.-G. (2008). Cryst. Growth Des. 8, 2562–2573.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds