organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­bromo-2,7-di-tert-butyl-9,9-di­methyl-9H-thioxanthene

aDepartamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos, 37008 Salamanca, Spain, bServicio Difracción de Rayos X, Universidad de Salamanca, Plaza de los Caídos, 37008 Salamanca, Spain, and cInstituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049 Madrid, Spain
*Correspondence e-mail: romoran@usal.es

(Received 3 April 2012; accepted 7 May 2012; online 19 May 2012)

In the title compound, C23H28Br2S, the thioxanthene unit is twisted, showing a dihedral angle of 29.3 (5)° between the benzene rings. When projected along [001], the packing shows two types of channels. The crystal studied was a racemic twin.

Related literature

For the preparation, see: Emslie et al. (2006[Emslie, D. J. H., Blackwell, J. M., Britten, J. F. & Harrington, L. E. (2006). Organometallics, 25, 2412-2414.]). For the use of the title compound as a starting material in the preparation of rigid ligands for different transition metals, see: Emslie et al. (2008[Emslie, D. J. H., Harrington, L. E., Jenkins, H. A., Robertson, C. M. & Britten, J. F. (2008). Organometallics, 27, 5317-5325.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28Br2S

  • Mr = 496.33

  • Tetragonal, I 41 c d

  • a = 21.8234 (2) Å

  • c = 18.8025 (5) Å

  • V = 8954.9 (3) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 5.48 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.544, Tmax = 0.645

  • 26972 measured reflections

  • 3272 independent reflections

  • 3038 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.08

  • 3272 reflections

  • 243 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.83 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2739 Friedel pairs

  • Flack parameter: 0.49 (3)

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thioxanthenes are very valuable building blocks for several purposes. Specifically, the compound described in this paper has been used as a starting material in the preparation of rigid ligands for different transitions metals as Ni, Pd, Fe, etc (Emslie et al., 2008).

The crystal contains an unique molecule as the asymmetric unit. The molecule consists of a thioxanthene framework with a tert-butyl group at C2 and C8, two methyl groups at C5 and a bromine atom at C10 and C13 as susbtituents.The thioxanthene core is twisted with a torsion angle of 29.3 (5)° (C11—S1—C12—C4). All the bond lengths and angles are within the normal ranges. The S1—C11 and S1—C12 bond lengths are 1.751 (5) Å and 1.769 (5) Å, and the C11—S1—C12 angle are 99.5 (2)°. The bromine atoms are coplanar with the thioxanthene framework; the Br1—C13—C1—C2 and Br2—C10—C9—C8 torsion angles are 179.8 (2)° and -179.8 (9)°, respectively.

The molecules in the cell unit are orientated in opposite directions forming parallel sheets along the a and b axes, which intersect perpendicularly originating two types of channels A and B, as is shown in Fig. 2 and 3.

Related literature top

For the preparation, see: Emslie et al. (2006). For the use of the title compound as a starting material in the preparation of rigid ligands for different transition metals, see: Emslie et al. (2008).

Experimental top

The title compound was obtained from thioxanthone according to a method described previously (Emslie et al., 2006). Thioxanthone reacted with AlMe3 to gave 9,9-dimethylthioxanthene. This compound (0.75 g, 3.31 mmol) was mixed with 2-chloro-2-methylpropane (1.04 ml, 9.56 mmol) in chloroform (18 ml) at 273 K and aluminium trichloride (0.26 g, 1.95 mmol) was added in a Friedel-Crafts procedure. Reaction of this compound (0.57 g, 1.68 mmol) with bromine (0.34 ml, 6.64 mmol) in a mixture of glacial acetic acid (6.8 ml) and dichloromethane (3 ml) gave 2,7-di-tert-butyl-4,5-dibromo-9,9-dimethylthioxanthene. Crystals were obtained from a dichloromethane solution and their characterization was in agreement with the reported data.

Refinement top

The hydrogen atoms were positioned geometrically, with C—H distances constrained to 0.93 Å (aromatic CH) and 0.96 Å (methyl CH3) and refined in riding mode with Uiso(H) = xUeq(C), where x =1.5 for methyl H atoms and x = 1.2 for all other atoms.

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C23H28Br2S. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of C23H28Br2S view along c-axis, showing two kind of channels.
[Figure 3] Fig. 3. Crystal packing showed in Figure 2 moved along x axis.
4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene top
Crystal data top
C23H28Br2SDx = 1.473 Mg m3
Mr = 496.33Cu Kα radiation, λ = 1.54178 Å
Tetragonal, I41cdCell parameters from 6340 reflections
Hall symbol: I 4bw -2cθ = 4.1–65.0°
a = 21.8234 (2) ŵ = 5.48 mm1
c = 18.8025 (5) ÅT = 298 K
V = 8954.9 (3) Å3Prism, brown
Z = 160.12 × 0.10 × 0.08 mm
F(000) = 4032
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3272 independent reflections
Radiation source: fine-focus sealed tube3038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 67.1°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2424
Tmin = 0.544, Tmax = 0.645k = 2524
26972 measured reflectionsl = 2119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.069P)2 + 8.551P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3272 reflectionsΔρmax = 0.34 e Å3
243 parametersΔρmin = 0.83 e Å3
1 restraintAbsolute structure: Flack (1983), 2739 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.49 (3)
Crystal data top
C23H28Br2SZ = 16
Mr = 496.33Cu Kα radiation
Tetragonal, I41cdµ = 5.48 mm1
a = 21.8234 (2) ÅT = 298 K
c = 18.8025 (5) Å0.12 × 0.10 × 0.08 mm
V = 8954.9 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3272 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3038 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.645Rint = 0.045
26972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.34 e Å3
S = 1.08Δρmin = 0.83 e Å3
3272 reflectionsAbsolute structure: Flack (1983), 2739 Friedel pairs
243 parametersAbsolute structure parameter: 0.49 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00721 (3)0.08500 (2)0.15791 (4)0.0637 (2)
Br20.01257 (4)0.08030 (3)0.44522 (4)0.0759 (3)
S10.01309 (5)0.15662 (5)0.30465 (9)0.0469 (3)
C10.0512 (2)0.1937 (2)0.1083 (2)0.0399 (10)
H10.05390.17230.06570.048*
C20.07413 (19)0.2520 (2)0.1132 (3)0.0397 (10)
C30.0652 (2)0.2836 (2)0.1773 (3)0.0396 (10)
H30.07960.32350.18080.048*
C40.03594 (19)0.25826 (19)0.2354 (3)0.0351 (9)
C50.0220 (2)0.29427 (18)0.3048 (3)0.0414 (9)
C60.0430 (2)0.2563 (2)0.3677 (2)0.0377 (10)
C70.07826 (19)0.2811 (2)0.4233 (3)0.0416 (10)
H70.09160.32140.41920.050*
C80.0943 (2)0.2484 (2)0.4845 (3)0.0417 (10)
C90.0731 (2)0.1878 (2)0.4897 (3)0.0463 (11)
H90.08150.16450.52990.056*
C100.0395 (2)0.1630 (2)0.4339 (3)0.0442 (11)
C110.02527 (19)0.1948 (2)0.3734 (3)0.0393 (10)
C120.0171 (2)0.1968 (2)0.2308 (3)0.0384 (10)
C130.02398 (19)0.1666 (2)0.1671 (3)0.0416 (10)
C140.1076 (2)0.2842 (2)0.0513 (3)0.0436 (9)
C150.1193 (3)0.2409 (3)0.0107 (3)0.0638 (15)
H15A0.14180.26210.04710.096*
H15B0.14270.20640.00550.096*
H15C0.08090.22700.02960.096*
C160.0707 (3)0.3385 (3)0.0251 (3)0.0598 (15)
H16A0.06290.36590.06400.090*
H16B0.09330.35960.01130.090*
H16C0.03240.32440.00590.090*
C170.1701 (2)0.3078 (3)0.0782 (3)0.0581 (14)
H17A0.16390.33420.11840.087*
H17B0.19510.27360.09210.087*
H17C0.19020.33020.04100.087*
C180.0481 (2)0.3047 (2)0.3083 (3)0.0550 (12)
H18A0.05770.33030.34830.083*
H18B0.06160.32430.26540.083*
H18C0.06860.26600.31340.083*
C190.0520 (3)0.35770 (19)0.3027 (4)0.0557 (12)
H19A0.09560.35320.29750.084*
H19B0.03610.38050.26320.084*
H19C0.04330.37910.34610.084*
C200.1332 (2)0.2772 (3)0.5422 (3)0.0521 (13)
C210.1930 (3)0.3015 (4)0.5106 (4)0.080 (2)
H21A0.21880.31640.54820.119*
H21B0.21360.26910.48570.119*
H21C0.18410.33430.47820.119*
C220.0982 (3)0.3323 (4)0.5735 (5)0.093 (3)
H22A0.06220.31800.59770.140*
H22B0.12410.35370.60650.140*
H22C0.08650.35960.53580.140*
C230.1493 (4)0.2334 (4)0.6019 (4)0.091 (2)
H23A0.11320.22440.62910.136*
H23B0.16550.19620.58230.136*
H23C0.17950.25200.63220.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0755 (4)0.0508 (3)0.0647 (5)0.0202 (2)0.0148 (4)0.0147 (3)
Br20.1107 (6)0.0513 (3)0.0655 (5)0.0278 (3)0.0034 (5)0.0074 (3)
S10.0510 (6)0.0474 (5)0.0423 (6)0.0192 (4)0.0057 (7)0.0050 (6)
C10.045 (2)0.046 (2)0.029 (2)0.0015 (18)0.0009 (19)0.0120 (19)
C20.035 (2)0.045 (2)0.039 (3)0.0011 (16)0.0009 (19)0.001 (2)
C30.044 (2)0.036 (2)0.039 (3)0.0047 (17)0.002 (2)0.0038 (18)
C40.036 (2)0.036 (2)0.033 (2)0.0014 (16)0.0028 (17)0.0045 (19)
C50.049 (2)0.0350 (19)0.040 (2)0.0015 (15)0.000 (2)0.008 (2)
C60.040 (2)0.038 (2)0.035 (2)0.0025 (16)0.0108 (19)0.0035 (18)
C70.044 (2)0.038 (2)0.043 (3)0.0067 (16)0.005 (2)0.006 (2)
C80.039 (2)0.049 (2)0.037 (3)0.0031 (18)0.0048 (18)0.003 (2)
C90.052 (3)0.044 (2)0.043 (3)0.0006 (19)0.007 (2)0.002 (2)
C100.050 (2)0.038 (2)0.045 (3)0.0033 (18)0.009 (2)0.002 (2)
C110.035 (2)0.043 (2)0.039 (3)0.0047 (17)0.0084 (19)0.008 (2)
C120.037 (2)0.043 (2)0.035 (3)0.0047 (17)0.0027 (19)0.005 (2)
C130.040 (2)0.036 (2)0.049 (3)0.0064 (16)0.002 (2)0.005 (2)
C140.048 (2)0.048 (2)0.035 (2)0.0067 (18)0.000 (3)0.001 (2)
C150.082 (4)0.067 (3)0.042 (3)0.023 (3)0.015 (3)0.010 (3)
C160.063 (3)0.069 (4)0.048 (3)0.010 (3)0.005 (3)0.013 (3)
C170.043 (3)0.088 (4)0.043 (3)0.016 (3)0.001 (2)0.001 (3)
C180.055 (3)0.059 (3)0.051 (3)0.012 (2)0.012 (3)0.004 (3)
C190.084 (3)0.034 (2)0.048 (3)0.009 (2)0.001 (3)0.006 (3)
C200.049 (2)0.063 (3)0.044 (3)0.011 (2)0.009 (2)0.006 (2)
C210.061 (4)0.099 (5)0.078 (5)0.027 (3)0.011 (3)0.007 (4)
C220.086 (5)0.103 (5)0.091 (6)0.004 (4)0.021 (4)0.059 (5)
C230.103 (5)0.102 (5)0.066 (4)0.035 (5)0.030 (4)0.010 (4)
Geometric parameters (Å, º) top
Br1—C131.915 (4)C14—C171.543 (6)
Br2—C101.909 (4)C15—H15A0.9600
S1—C111.751 (5)C15—H15B0.9600
S1—C121.769 (5)C15—H15C0.9600
C1—C21.371 (7)C16—H16A0.9600
C1—C131.386 (7)C16—H16B0.9600
C1—H10.9300C16—H16C0.9600
C2—C31.402 (7)C17—H17A0.9600
C2—C141.544 (7)C17—H17B0.9600
C3—C41.381 (7)C17—H17C0.9600
C3—H30.9300C18—H18A0.9600
C4—C121.406 (7)C18—H18B0.9600
C4—C51.553 (7)C18—H18C0.9600
C5—C61.515 (7)C19—H19A0.9600
C5—C191.532 (6)C19—H19B0.9600
C5—C181.549 (6)C19—H19C0.9600
C6—C111.400 (7)C20—C231.515 (10)
C6—C71.406 (7)C20—C211.529 (8)
C7—C81.397 (7)C20—C221.542 (9)
C7—H70.9300C21—H21A0.9600
C8—C91.405 (7)C21—H21B0.9600
C8—C201.514 (7)C21—H21C0.9600
C9—C101.389 (7)C22—H22A0.9600
C9—H90.9300C22—H22B0.9600
C10—C111.369 (7)C22—H22C0.9600
C12—C131.376 (7)C23—H23A0.9600
C14—C161.516 (8)C23—H23B0.9600
C14—C151.522 (8)C23—H23C0.9600
C11—S1—C1299.5 (2)C14—C15—H15C109.5
C2—C1—C13119.9 (4)H15A—C15—H15C109.5
C2—C1—H1120.0H15B—C15—H15C109.5
C13—C1—H1120.0C14—C16—H16A109.5
C1—C2—C3117.6 (4)C14—C16—H16B109.5
C1—C2—C14123.0 (4)H16A—C16—H16B109.5
C3—C2—C14119.4 (4)C14—C16—H16C109.5
C4—C3—C2123.3 (4)H16A—C16—H16C109.5
C4—C3—H3118.4H16B—C16—H16C109.5
C2—C3—H3118.4C14—C17—H17A109.5
C3—C4—C12117.9 (4)C14—C17—H17B109.5
C3—C4—C5123.6 (4)H17A—C17—H17B109.5
C12—C4—C5118.5 (4)C14—C17—H17C109.5
C6—C5—C19112.7 (4)H17A—C17—H17C109.5
C6—C5—C18110.3 (4)H17B—C17—H17C109.5
C19—C5—C18106.9 (4)C5—C18—H18A109.5
C6—C5—C4108.6 (3)C5—C18—H18B109.5
C19—C5—C4110.6 (4)H18A—C18—H18B109.5
C18—C5—C4107.7 (4)C5—C18—H18C109.5
C11—C6—C7117.5 (4)H18A—C18—H18C109.5
C11—C6—C5120.0 (4)H18B—C18—H18C109.5
C7—C6—C5122.4 (4)C5—C19—H19A109.5
C8—C7—C6123.6 (4)C5—C19—H19B109.5
C8—C7—H7118.2H19A—C19—H19B109.5
C6—C7—H7118.2C5—C19—H19C109.5
C7—C8—C9117.0 (4)H19A—C19—H19C109.5
C7—C8—C20121.3 (4)H19B—C19—H19C109.5
C9—C8—C20121.7 (5)C8—C20—C23113.6 (5)
C10—C9—C8119.3 (5)C8—C20—C21110.1 (5)
C10—C9—H9120.4C23—C20—C21108.0 (5)
C8—C9—H9120.4C8—C20—C22108.6 (5)
C11—C10—C9123.3 (4)C23—C20—C22108.9 (6)
C11—C10—Br2120.2 (4)C21—C20—C22107.5 (6)
C9—C10—Br2116.5 (4)C20—C21—H21A109.5
C10—C11—C6119.2 (4)C20—C21—H21B109.5
C10—C11—S1118.7 (4)H21A—C21—H21B109.5
C6—C11—S1122.1 (4)C20—C21—H21C109.5
C13—C12—C4118.6 (4)H21A—C21—H21C109.5
C13—C12—S1119.2 (3)H21B—C21—H21C109.5
C4—C12—S1122.2 (4)C20—C22—H22A109.5
C12—C13—C1122.5 (4)C20—C22—H22B109.5
C12—C13—Br1119.0 (3)H22A—C22—H22B109.5
C1—C13—Br1118.5 (4)C20—C22—H22C109.5
C16—C14—C15109.0 (5)H22A—C22—H22C109.5
C16—C14—C17108.4 (4)H22B—C22—H22C109.5
C15—C14—C17108.1 (4)C20—C23—H23A109.5
C16—C14—C2110.4 (4)C20—C23—H23B109.5
C15—C14—C2112.0 (4)H23A—C23—H23B109.5
C17—C14—C2108.8 (4)C20—C23—H23C109.5
C14—C15—H15A109.5H23A—C23—H23C109.5
C14—C15—H15B109.5H23B—C23—H23C109.5
H15A—C15—H15B109.5

Experimental details

Crystal data
Chemical formulaC23H28Br2S
Mr496.33
Crystal system, space groupTetragonal, I41cd
Temperature (K)298
a, c (Å)21.8234 (2), 18.8025 (5)
V3)8954.9 (3)
Z16
Radiation typeCu Kα
µ (mm1)5.48
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.544, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
26972, 3272, 3038
Rint0.045
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.08
No. of reflections3272
No. of parameters243
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.83
Absolute structureFlack (1983), 2739 Friedel pairs
Absolute structure parameter0.49 (3)

Computer programs: APEX2 (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank the Spanish Dirección General de Investigación, Ciencia y Tecnología (DGI–CYT; CTQ2010–19906/BQU) and the Junta de Castilla y León (SA223A11–2) for their support of this work. The Spanish Ministerio de Educación (MEC) is acknowledged for a fellowship to ALFA.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmslie, D. J. H., Blackwell, J. M., Britten, J. F. & Harrington, L. E. (2006). Organometallics, 25, 2412–2414.  Web of Science CrossRef CAS Google Scholar
First citationEmslie, D. J. H., Harrington, L. E., Jenkins, H. A., Robertson, C. M. & Britten, J. F. (2008). Organometallics, 27, 5317–5325.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds