metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)zinc]-μ-furan-2,5-di­carboxyl­ato-κ4O2,O2′:O5,O5′]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 30 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title coordination polymer, [Zn(C6H2O5)(C12H8N2)]n, an infinite chain is formed along [010] by linking the chelated {Zn(phen)} entities (phen is 1,10-phenanthroline) with two carboxyl­ate groups of the furan-2,5-dicarboxyl­ate ligand. The ZnII atom shows trigonal–prismatic coordination.

Related literature

For related structures, see: Li, Gao et al. (2012[Li, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012). Acta Cryst. E68, m445.]); Li, Xu et al. (2012[Li, Y.-F., Xu, Y., Qin, X.-L., Gao, W.-Y. & Gao, Y. (2012). Acta Cryst. E68, m659.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H2O5)(C12H8N2)]

  • Mr = 399.67

  • Monoclinic, P 21 /c

  • a = 5.8725 (10) Å

  • b = 15.013 (3) Å

  • c = 19.241 (8) Å

  • β = 104.42 (3)°

  • V = 1642.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.16 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.792, Tmax = 0.838

  • 14467 measured reflections

  • 3688 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.121

  • S = 1.04

  • 3688 reflections

  • 235 parameters

  • 156 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we utilized furan-2,5-dicarboxyl icacid as the ligand to constructed the MOFs (Li, Gao et al. 2012; Li, Xu et al., 2012). In this work, a chainlike compound, [Zn(C12H8N2)(C6H2O5)]n (I), is reported.

The asymmetric unit consists of one Zn cation, one furan-2,5-dicarboxylate anion and one C12H8N2 (Fig.1). The Zn cation is coordinated by four carboxylate O atoms, two nitrogen of one C12H8N2, exhibiting triganol prismatic coordination. The furan-2,5-dicarboxylate shows a µ2:η1,η1;η1,η1 coordinating mode. The dihedral angles of two furan rings versus. C6H2O5 ring and two furan rings, which are coordinated to the same Zn cation, are 52.06 (12)°, 62.18 (11)° and 88.27 (12)°, respectively.

TheZn cations are linked by two carboxylate of furan-2,5-dicarboxylate to give rise to an infinite chain (Fig. 2). The adjacent chains are piled up along [100] through π-π interactions between C12H8N2 molecules of different chains. vVan der Waals forces exist between the layers (Fig. 3).

Related literature top

For related structures, see: Li, Gao et al. (2012); Li, Xu et al. (2012).

Experimental top

Furan-2,5-dicarboxylic acid (0.0156 g, 0.10 mmol), Zn(NO3)2.6H2O (0.0298 g, 0.10 mmol), and C12H8N2 (0.0198, 0.11 mmol) were dissolved in DMF (5 ml, 48 mmol) under stirring. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Zn(NO3)2.6H2O): 1.1 (C12H8N2): 480 DMI was heated under 120°C for 2 days. Colorless blocks were collected as a single phase.

Refinement top

The carbon H-atoms were placed in calculated positions (C—H (furan ring and phen ring) = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1 - x, -0.5 + y, 0.5 - z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the infinite chain along [010] direction formed by linking the Zn with two carboxyls of furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. The ball-stick packing diagram of (I). The adjacent chains are piled up along [100] through π-π interactions between C12H8N2 molecules of different chains.
catena-Poly[[(1,10-phenanthroline-κ2N,N')zinc]- µ-furan-2,5-dicarboxylato- κ4O2,O2':O5,O5'] top
Crystal data top
[Zn(C6H2O5)(C12H8N2)]F(000) = 808
Mr = 399.67Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 5.8725 (10) Åθ = 3.5–27.5°
b = 15.013 (3) ŵ = 1.53 mm1
c = 19.241 (8) ÅT = 293 K
β = 104.42 (3)°Block, colorless
V = 1642.9 (8) Å30.16 × 0.13 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.792, Tmax = 0.838l = 2424
14467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0305P)2 + 1.7497P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.37 e Å3
156 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn(C6H2O5)(C12H8N2)]V = 1642.9 (8) Å3
Mr = 399.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8725 (10) ŵ = 1.53 mm1
b = 15.013 (3) ÅT = 293 K
c = 19.241 (8) Å0.16 × 0.13 × 0.12 mm
β = 104.42 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2166 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.838Rint = 0.066
14467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055156 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
3688 reflectionsΔρmin = 0.37 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.35240 (10)0.25875 (4)0.08732 (3)0.0611 (2)
O10.6391 (5)0.3452 (2)0.11677 (17)0.0704 (9)
O20.3330 (5)0.3794 (2)0.15596 (16)0.0662 (9)
O30.5760 (4)0.51458 (17)0.23919 (13)0.0448 (6)
O40.8463 (5)0.6748 (2)0.36985 (15)0.0636 (8)
O50.4722 (5)0.6501 (2)0.32328 (16)0.0686 (9)
N10.1045 (7)0.3030 (3)0.00407 (19)0.0614 (9)
N20.4670 (6)0.1904 (3)0.00778 (18)0.0606 (10)
C10.5395 (7)0.3928 (3)0.1538 (2)0.0503 (10)
C20.6835 (6)0.4618 (3)0.1988 (2)0.0437 (9)
C30.9155 (7)0.4798 (3)0.2139 (2)0.0565 (11)
H31.02590.45320.19330.068*
C40.9582 (7)0.5469 (3)0.2670 (2)0.0544 (11)
H41.10280.57240.28860.065*
C50.7492 (6)0.5669 (3)0.28057 (19)0.0444 (9)
C60.6828 (7)0.6332 (3)0.3271 (2)0.0484 (10)
C70.0749 (10)0.3570 (4)0.0079 (3)0.0833 (16)
H70.09920.38160.03400.100*
C80.2319 (10)0.3783 (4)0.0746 (4)0.0997 (19)
H80.35710.41700.07670.120*
C90.1958 (10)0.3409 (4)0.1357 (3)0.0943 (19)
H90.29910.35390.17970.113*
C100.0086 (9)0.2843 (4)0.1334 (3)0.0711 (14)
C110.0446 (11)0.2424 (4)0.1952 (2)0.0849 (17)
H110.05320.25240.24050.102*
C120.2292 (12)0.1902 (4)0.1882 (3)0.0942 (18)
H120.26310.16670.22930.113*
C130.3771 (10)0.1689 (4)0.1206 (3)0.0757 (14)
C140.5738 (13)0.1132 (5)0.1103 (4)0.107 (2)
H140.61250.08740.14970.129*
C150.7072 (12)0.0968 (5)0.0442 (4)0.112 (2)
H150.85340.06660.03030.135*
C160.6508 (9)0.1371 (4)0.0144 (3)0.0880 (17)
H160.74590.12620.06010.106*
C170.1378 (7)0.2662 (3)0.0654 (2)0.0542 (11)
C180.3306 (8)0.2074 (3)0.0590 (2)0.0574 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0831 (4)0.0578 (3)0.0401 (3)0.0158 (3)0.0106 (2)0.0017 (2)
O10.0689 (19)0.066 (2)0.082 (2)0.0051 (16)0.0292 (17)0.0279 (17)
O20.0538 (18)0.079 (2)0.068 (2)0.0167 (15)0.0205 (15)0.0220 (16)
O30.0420 (14)0.0468 (16)0.0452 (14)0.0007 (11)0.0099 (11)0.0086 (12)
O40.0610 (18)0.064 (2)0.0605 (18)0.0104 (15)0.0055 (14)0.0212 (15)
O50.0543 (18)0.082 (2)0.0668 (19)0.0076 (16)0.0109 (15)0.0272 (17)
N10.071 (2)0.061 (2)0.054 (2)0.0000 (19)0.0195 (18)0.0055 (18)
N20.062 (2)0.063 (2)0.053 (2)0.0052 (19)0.0054 (18)0.0020 (18)
C10.056 (2)0.048 (2)0.045 (2)0.0009 (19)0.0110 (19)0.0012 (18)
C20.046 (2)0.043 (2)0.044 (2)0.0021 (16)0.0130 (17)0.0064 (17)
C30.045 (2)0.058 (3)0.068 (3)0.0036 (19)0.018 (2)0.004 (2)
C40.042 (2)0.055 (3)0.063 (3)0.0041 (18)0.008 (2)0.007 (2)
C50.045 (2)0.042 (2)0.043 (2)0.0048 (17)0.0061 (17)0.0030 (16)
C60.052 (2)0.047 (2)0.045 (2)0.0031 (18)0.0118 (19)0.0031 (17)
C70.092 (4)0.085 (4)0.083 (4)0.008 (3)0.040 (3)0.012 (3)
C80.083 (4)0.101 (5)0.117 (5)0.020 (3)0.028 (4)0.033 (4)
C90.082 (4)0.109 (5)0.080 (4)0.005 (3)0.002 (3)0.031 (3)
C100.075 (3)0.073 (3)0.057 (3)0.015 (3)0.002 (2)0.016 (2)
C110.113 (4)0.096 (4)0.037 (2)0.030 (3)0.002 (3)0.001 (3)
C120.141 (5)0.094 (4)0.051 (3)0.019 (4)0.030 (3)0.010 (3)
C130.101 (4)0.064 (3)0.065 (3)0.014 (3)0.027 (3)0.012 (2)
C140.137 (5)0.091 (4)0.108 (5)0.007 (4)0.056 (4)0.022 (4)
C150.110 (5)0.107 (5)0.129 (5)0.028 (4)0.046 (4)0.001 (4)
C160.076 (3)0.086 (4)0.096 (4)0.009 (3)0.009 (3)0.003 (3)
C170.065 (3)0.057 (3)0.039 (2)0.014 (2)0.0092 (19)0.0027 (18)
C180.072 (3)0.056 (3)0.045 (2)0.016 (2)0.015 (2)0.0059 (19)
Geometric parameters (Å, º) top
Zn1—O4i2.027 (3)C5—C61.455 (5)
Zn1—N22.089 (4)C7—C81.418 (7)
Zn1—O12.090 (3)C7—H70.9300
Zn1—N12.092 (4)C8—C91.367 (8)
Zn1—O22.261 (3)C8—H80.9300
Zn1—O5i2.408 (3)C9—C101.381 (8)
O1—C11.252 (5)C9—H90.9300
O2—C11.240 (5)C10—C171.401 (6)
O3—C21.369 (4)C10—C111.447 (7)
O3—C51.372 (4)C11—C121.317 (8)
O4—C61.263 (4)C11—H110.9300
O5—C61.246 (4)C12—C131.410 (7)
N1—C71.316 (6)C12—H120.9300
N1—C171.361 (5)C13—C141.399 (8)
N2—C161.324 (6)C13—C181.405 (6)
N2—C181.358 (5)C14—C151.341 (9)
C1—C21.475 (5)C14—H140.9300
C2—C31.347 (5)C15—C161.390 (8)
C3—C41.413 (6)C15—H150.9487
C3—H30.9300C16—H160.9300
C4—C51.351 (5)C17—C181.416 (6)
C4—H40.9300
O4i—Zn1—N2108.37 (14)C4—C3—H3126.7
O4i—Zn1—O1141.51 (13)C5—C4—C3107.0 (4)
N2—Zn1—O196.85 (13)C5—C4—H4126.5
O4i—Zn1—N1100.88 (13)C3—C4—H4126.5
N2—Zn1—N179.86 (15)C4—C5—O3109.8 (3)
O1—Zn1—N1112.06 (14)C4—C5—C6131.8 (4)
O4i—Zn1—O298.21 (12)O3—C5—C6118.4 (3)
N2—Zn1—O2153.40 (13)O5—C6—O4121.3 (4)
O1—Zn1—O259.89 (11)O5—C6—C5121.1 (4)
N1—Zn1—O296.36 (14)O4—C6—C5117.5 (3)
O4i—Zn1—O5i58.36 (10)O5—C6—Zn1ii69.4 (2)
N2—Zn1—O5i91.83 (13)O4—C6—Zn1ii51.9 (2)
O1—Zn1—O5i93.13 (12)C5—C6—Zn1ii169.1 (3)
N1—Zn1—O5i154.14 (13)N1—C7—C8121.4 (5)
O2—Zn1—O5i101.54 (12)N1—C7—H7119.3
O4i—Zn1—C1121.27 (13)C8—C7—H7119.3
N2—Zn1—C1126.34 (14)C9—C8—C7118.8 (6)
O1—Zn1—C130.16 (12)C9—C8—H8120.6
N1—Zn1—C1107.51 (14)C7—C8—H8120.6
O2—Zn1—C129.78 (11)C8—C9—C10121.1 (5)
O5i—Zn1—C197.18 (12)C8—C9—H9119.4
O4i—Zn1—C6i29.39 (11)C10—C9—H9119.4
N2—Zn1—C6i101.69 (14)C9—C10—C17116.6 (5)
O1—Zn1—C6i118.33 (13)C9—C10—C11125.1 (5)
N1—Zn1—C6i128.86 (14)C17—C10—C11118.3 (5)
O2—Zn1—C6i101.04 (13)C12—C11—C10121.1 (5)
O5i—Zn1—C6i28.98 (10)C12—C11—H11119.4
C1—Zn1—C6i111.29 (13)C10—C11—H11119.4
C1—O1—Zn192.8 (2)C11—C12—C13122.1 (6)
C1—O2—Zn185.3 (2)C11—C12—H12119.0
C2—O3—C5106.3 (3)C13—C12—H12119.0
C6—O4—Zn1ii98.7 (2)C14—C13—C18116.9 (5)
C6—O5—Zn1ii81.6 (2)C14—C13—C12124.3 (6)
C7—N1—C17119.2 (4)C18—C13—C12118.7 (5)
C7—N1—Zn1128.5 (4)C15—C14—C13120.8 (6)
C17—N1—Zn1112.3 (3)C15—C14—H14119.6
C16—N2—C18118.7 (4)C13—C14—H14119.6
C16—N2—Zn1129.0 (4)C14—C15—C16119.2 (6)
C18—N2—Zn1112.3 (3)C14—C15—H15129.0
O2—C1—O1121.8 (4)C16—C15—H15111.2
O2—C1—C2121.1 (4)N2—C16—C15122.5 (6)
O1—C1—C2117.0 (4)N2—C16—H16118.7
O2—C1—Zn164.9 (2)C15—C16—H16118.7
O1—C1—Zn157.0 (2)N1—C17—C10122.9 (4)
C2—C1—Zn1170.2 (3)N1—C17—C18117.5 (4)
C3—C2—O3110.2 (3)C10—C17—C18119.6 (4)
C3—C2—C1132.0 (4)N2—C18—C13121.8 (5)
O3—C2—C1117.5 (3)N2—C18—C17118.0 (4)
C2—C3—C4106.7 (4)C13—C18—C17120.1 (4)
C2—C3—H3126.7
O4i—Zn1—O1—C159.7 (3)O2—C1—C2—C3168.7 (4)
N2—Zn1—O1—C1168.9 (3)O1—C1—C2—C37.3 (7)
N1—Zn1—O1—C187.1 (3)O2—C1—C2—O34.5 (6)
O2—Zn1—O1—C12.6 (2)O1—C1—C2—O3179.6 (4)
O5i—Zn1—O1—C198.9 (3)O3—C2—C3—C40.5 (5)
C6i—Zn1—O1—C183.9 (3)C1—C2—C3—C4173.0 (4)
O4i—Zn1—O2—C1143.5 (2)C2—C3—C4—C50.9 (5)
N2—Zn1—O2—C134.5 (4)C3—C4—C5—O30.9 (5)
O1—Zn1—O2—C12.6 (2)C3—C4—C5—C6176.6 (4)
N1—Zn1—O2—C1114.5 (3)C2—O3—C5—C40.6 (4)
O5i—Zn1—O2—C184.3 (3)C2—O3—C5—C6177.3 (3)
C6i—Zn1—O2—C1113.8 (3)Zn1ii—O5—C6—O41.0 (4)
O4i—Zn1—N1—C771.3 (4)Zn1ii—O5—C6—C5176.7 (4)
N2—Zn1—N1—C7178.3 (4)Zn1ii—O4—C6—O51.2 (5)
O1—Zn1—N1—C788.4 (4)Zn1ii—O4—C6—C5176.6 (3)
O2—Zn1—N1—C728.3 (4)C4—C5—C6—O5168.5 (4)
O5i—Zn1—N1—C7105.4 (5)O3—C5—C6—O58.9 (6)
C1—Zn1—N1—C756.6 (4)C4—C5—C6—O49.3 (7)
C6i—Zn1—N1—C781.4 (5)O3—C5—C6—O4173.3 (3)
O4i—Zn1—N1—C17106.0 (3)C4—C5—C6—Zn1ii4.8 (19)
N2—Zn1—N1—C171.0 (3)O3—C5—C6—Zn1ii172.5 (13)
O1—Zn1—N1—C1794.3 (3)C17—N1—C7—C80.8 (7)
O2—Zn1—N1—C17154.4 (3)Zn1—N1—C7—C8178.0 (4)
O5i—Zn1—N1—C1771.9 (4)N1—C7—C8—C90.7 (9)
C1—Zn1—N1—C17126.1 (3)C7—C8—C9—C100.9 (9)
C6i—Zn1—N1—C1795.9 (3)C8—C9—C10—C171.2 (8)
O4i—Zn1—N2—C1684.1 (4)C8—C9—C10—C11179.5 (5)
O1—Zn1—N2—C1666.4 (4)C9—C10—C11—C12179.0 (6)
N1—Zn1—N2—C16177.7 (4)C17—C10—C11—C121.7 (8)
O2—Zn1—N2—C1693.7 (5)C10—C11—C12—C133.3 (9)
O5i—Zn1—N2—C1627.0 (4)C11—C12—C13—C14179.4 (6)
C1—Zn1—N2—C1673.3 (5)C11—C12—C13—C182.5 (9)
C6i—Zn1—N2—C1654.5 (4)C18—C13—C14—C151.2 (9)
O4i—Zn1—N2—C1897.8 (3)C12—C13—C14—C15179.4 (6)
O1—Zn1—N2—C18111.7 (3)C13—C14—C15—C161.2 (11)
N1—Zn1—N2—C180.4 (3)C18—N2—C16—C151.1 (8)
O2—Zn1—N2—C1884.3 (4)Zn1—N2—C16—C15179.1 (5)
O5i—Zn1—N2—C18154.9 (3)C14—C15—C16—N21.2 (10)
C1—Zn1—N2—C18104.8 (3)C7—N1—C17—C101.2 (7)
C6i—Zn1—N2—C18127.5 (3)Zn1—N1—C17—C10178.8 (3)
Zn1—O2—C1—O14.5 (4)C7—N1—C17—C18179.0 (4)
Zn1—O2—C1—C2171.2 (4)Zn1—N1—C17—C181.4 (5)
Zn1—O1—C1—O24.9 (4)C9—C10—C17—N11.4 (7)
Zn1—O1—C1—C2171.0 (3)C11—C10—C17—N1179.2 (4)
O4i—Zn1—C1—O243.5 (3)C9—C10—C17—C18178.9 (4)
N2—Zn1—C1—O2161.7 (2)C11—C10—C17—C180.5 (6)
O1—Zn1—C1—O2175.4 (4)C16—N2—C18—C131.2 (7)
N1—Zn1—C1—O271.5 (3)Zn1—N2—C18—C13179.5 (3)
O5i—Zn1—C1—O2100.7 (2)C16—N2—C18—C17178.5 (4)
C6i—Zn1—C1—O274.5 (3)Zn1—N2—C18—C170.2 (5)
O4i—Zn1—C1—O1141.0 (2)C14—C13—C18—N21.2 (7)
N2—Zn1—C1—O113.8 (3)C12—C13—C18—N2179.5 (5)
N1—Zn1—C1—O1103.9 (3)C14—C13—C18—C17178.5 (5)
O2—Zn1—C1—O1175.4 (4)C12—C13—C18—C170.2 (7)
O5i—Zn1—C1—O183.8 (3)N1—C17—C18—N21.1 (6)
C6i—Zn1—C1—O1110.1 (3)C10—C17—C18—N2179.1 (4)
C5—O3—C2—C30.0 (4)N1—C17—C18—C13178.6 (4)
C5—O3—C2—C1174.6 (3)C10—C17—C18—C131.2 (6)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H2O5)(C12H8N2)]
Mr399.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8725 (10), 15.013 (3), 19.241 (8)
β (°) 104.42 (3)
V3)1642.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.16 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.792, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
14467, 3688, 2166
Rint0.066
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.121, 1.04
No. of reflections3688
No. of parameters235
No. of restraints156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.37

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012). Acta Cryst. E68, m445.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F., Xu, Y., Qin, X.-L., Gao, W.-Y. & Gao, Y. (2012). Acta Cryst. E68, m659.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds