organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2,6-diiso­propyl­phen­yl)-1H-imidazol-3-ium chloride di­chloro­methane disolvate

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 10 May 2012; accepted 16 May 2012; online 23 May 2012)

In the title compound, C27H37N2+·Cl·2CH2Cl2, the cation and the anion are each located on a crystallographic mirror plane. Both of the dichloro­methane solvent mol­ecules show a disorder across a mirror plane over two equally occupied positions. Additionally, one isopropyl group is also disordered. In the crystal, the cations are connected to the chloride ions via C—H⋯Cl hydrogen bonds.

Related literature

For the preparation of imidazolium salts, see: Arduengo et al. (1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.], 1999[Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.]); Hinter­mann (2007[Hintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. doi:10.1186/1860-5397-3-22.]). For structures with the same cation but different anions, see: Stasch et al. (2004[Stasch, A., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2004). Eur. J. Inorg. Chem. pp. 4052-4055.]); Blue et al. (2006[Blue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988-5993.]); Berger et al. (2012[Berger, M., Auner, N., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, o1845.]). For compounds with the 1,3-bis-(2,6-diisopropyl­phen­yl)imidazolium unit, see: Ikhile et al. (2010[Ikhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, o3121.]); Giffin et al. (2010[Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090-o2091.]).

[Scheme 1]

Experimental

Crystal data
  • C27H37N2+·Cl·2CH2Cl2

  • Mr = 594.89

  • Monoclinic, P 21 /m

  • a = 9.1117 (4) Å

  • b = 16.4990 (8) Å

  • c = 10.8875 (6) Å

  • β = 101.068 (4)°

  • V = 1606.32 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 173 K

  • 0.32 × 0.29 × 0.14 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.864, Tmax = 0.937

  • 17793 measured reflections

  • 2934 independent reflections

  • 2648 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.184

  • S = 1.04

  • 2934 reflections

  • 185 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −1.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.95 2.50 3.447 (4) 176

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazolium salts are precursors for the synthesis of N-heterocyclic carbenes (NHC) and can be prepared according to Arduengo et al. (1995, 1999) and Hintermann (2007). Deprotonation by strong bases gives the free stable NHC, which is widely used as ligands.

The title compound crystallizes with discrete cations, anions and solvent dichloromethane molecules. Both cations and anions are located on a crystallographic mirror plane. Both dichloromethane molecules show a disorder across a mirror plane over two equally occupied positions. Additionally, one isopropyl group is disordered as well. The Cl anions are connnected to the cations via C—H···Cl hydrogen bonds. Structures with the same cation, but with different anions and solvent molecules, have been determined by Stasch et al. (2004), Blue et al. (2006) and Berger et al. (2012). For the compounds with 1,3-bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile et al. (2010) and Giffin et al. (2010).

Related literature top

For the preparation of imidazolium salts, see: Arduengo et al. (1995, 1999); Hintermann (2007). For structures with the same cation but different anions, see: Stasch et al. (2004); Blue et al. (2006); Berger et al. (2012). For compounds with the 1,3-bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile et al. (2010); Giffin et al. (2010).

Experimental top

1,3-Bis(2,6-di-isopropylphenyl)1H-imidazol-3-ium chloride chloroform disolvate was prepared by reacting 0.05 g of 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene with 0.05 ml of SiCl4 in deuterated dichloromethane. After two weeks at 253 K colorless needles of the title compound crystallized in the NMR-Tube.

Refinement top

H atoms were refined using a riding model, with C—H ranging from 0.95 Å to 1.00 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The C—Cl distances of the dichloromethane molecules were restrained to be equal within an effective e.s.d. of 0.02 Å.

The highest maximum (1.34 e/Å3) in the final difference map is at 0.82 Å from Cl41 and the deepest hole (-1.59 e/Å3) is at 0.40 Å from Cl41.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. The minor occupied methyl groups, H atoms not involved in hydrogen bonding and dichloromethane molecules are omitted for clarity. Atoms labelled with suffix A were generated by the symmetry operator x, -y + 3/2, z.
1,3-Bis(2,6-diisopropylphenyl)-1H-imidazol-3-ium chloride dichloromethane disolvate top
Crystal data top
C27H37N2+·Cl·2CH2Cl2F(000) = 628
Mr = 594.89Dx = 1.230 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 27732 reflections
a = 9.1117 (4) Åθ = 3.3–28.0°
b = 16.4990 (8) ŵ = 0.47 mm1
c = 10.8875 (6) ÅT = 173 K
β = 101.068 (4)°Plate, colourless
V = 1606.32 (14) Å30.32 × 0.29 × 0.14 mm
Z = 2
Data collection top
Stoe IPDS II two-circle
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed tube2648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1010
Tmin = 0.864, Tmax = 0.937k = 1919
17793 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0696P)2 + 3.4645P]
where P = (Fo2 + 2Fc2)/3
2934 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 1.36 e Å3
6 restraintsΔρmin = 1.60 e Å3
Crystal data top
C27H37N2+·Cl·2CH2Cl2V = 1606.32 (14) Å3
Mr = 594.89Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.1117 (4) ŵ = 0.47 mm1
b = 16.4990 (8) ÅT = 173 K
c = 10.8875 (6) Å0.32 × 0.29 × 0.14 mm
β = 101.068 (4)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2648 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.937Rint = 0.067
17793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0756 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.04Δρmax = 1.36 e Å3
2934 reflectionsΔρmin = 1.60 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.66661 (12)0.25000.57563 (10)0.0339 (3)
N10.2042 (3)0.31549 (14)0.5835 (2)0.0248 (5)
C10.2891 (4)0.25000.5788 (3)0.0245 (8)
H10.39180.25000.57300.029*
C20.0606 (3)0.29075 (18)0.5907 (3)0.0289 (6)
H20.02220.32500.59480.035*
C110.2556 (3)0.39874 (17)0.5807 (3)0.0298 (6)
C120.2225 (4)0.44066 (19)0.4672 (3)0.0356 (7)
C130.2757 (4)0.5201 (2)0.4671 (3)0.0484 (9)
H130.25470.55100.39210.058*
C140.3582 (5)0.5546 (2)0.5738 (4)0.0571 (10)
H140.39550.60810.57110.068*
C150.3866 (5)0.5115 (2)0.6843 (4)0.0503 (9)
H150.44190.53650.75740.060*
C160.3359 (4)0.43202 (18)0.6913 (3)0.0358 (7)
C210.1357 (4)0.4026 (2)0.3483 (3)0.0386 (7)
H210.10640.34680.37030.046*
C220.2339 (9)0.3934 (6)0.2452 (8)0.054 (2)*0.50
H22A0.30480.34870.26760.081*0.50
H22B0.28900.44380.23930.081*0.50
H22C0.16910.38200.16430.081*0.50
C230.0049 (9)0.4473 (5)0.2962 (8)0.0508 (18)*0.50
H23A0.00030.50210.33140.076*0.50
H23B0.09050.41850.31800.076*0.50
H23C0.01690.45050.20490.076*0.50
C22'0.2392 (8)0.3593 (5)0.2818 (7)0.0421 (16)*0.50
H22D0.19950.36060.19160.063*0.50
H22E0.24950.30290.31050.063*0.50
H22F0.33730.38580.29940.063*0.50
C23'0.0432 (10)0.4686 (5)0.2642 (8)0.055 (2)*0.50
H23D0.04770.44420.21570.082*0.50
H23E0.10350.49120.20690.082*0.50
H23F0.01590.51200.31710.082*0.50
C610.3705 (4)0.3863 (2)0.8146 (3)0.0405 (8)
H610.31600.33340.80340.049*
C620.5383 (5)0.3685 (3)0.8486 (3)0.0561 (10)
H62A0.56000.33880.92810.084*
H62B0.59410.41960.85710.084*
H62C0.56800.33560.78260.084*
C630.3195 (4)0.4323 (2)0.9205 (3)0.0484 (9)
H63A0.34460.40080.99810.073*
H63B0.21110.44060.89950.073*
H63C0.37010.48490.93210.073*
C30.8708 (8)0.2675 (6)0.8843 (7)0.065 (4)0.50
H3A0.82240.26140.79530.078*0.50
H3B0.79400.25720.93550.078*0.50
Cl310.9337 (5)0.3663 (3)0.9093 (4)0.1291 (19)0.50
Cl321.0117 (5)0.1947 (4)0.9208 (3)0.149 (2)0.50
C40.7100 (8)0.2771 (5)1.2652 (7)0.059 (2)0.50
H4A0.71240.33671.27590.070*0.50
H4B0.72190.25261.34950.070*0.50
Cl410.8547 (2)0.25001.20316 (19)0.1263 (12)
Cl420.53459 (19)0.25001.18007 (18)0.0806 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0375 (6)0.0356 (6)0.0296 (5)0.0000.0092 (4)0.000
N10.0280 (12)0.0222 (11)0.0227 (11)0.0004 (9)0.0016 (9)0.0000 (9)
C10.027 (2)0.0238 (19)0.0214 (18)0.0000.0013 (15)0.000
C20.0276 (14)0.0323 (14)0.0268 (14)0.0045 (12)0.0057 (11)0.0000 (12)
C110.0357 (15)0.0213 (14)0.0319 (15)0.0007 (12)0.0049 (12)0.0020 (11)
C120.0413 (17)0.0313 (16)0.0339 (16)0.0033 (13)0.0068 (13)0.0055 (13)
C130.065 (2)0.0337 (18)0.046 (2)0.0017 (17)0.0090 (17)0.0153 (15)
C140.078 (3)0.0266 (17)0.064 (2)0.0151 (18)0.007 (2)0.0070 (17)
C150.067 (2)0.0305 (17)0.048 (2)0.0128 (17)0.0005 (18)0.0024 (15)
C160.0461 (18)0.0249 (15)0.0341 (16)0.0035 (13)0.0021 (13)0.0012 (12)
C210.0444 (18)0.0400 (18)0.0304 (16)0.0031 (14)0.0048 (13)0.0074 (13)
C610.057 (2)0.0294 (16)0.0303 (16)0.0070 (15)0.0027 (14)0.0027 (13)
C620.071 (3)0.058 (2)0.0366 (19)0.023 (2)0.0040 (17)0.0019 (17)
C630.050 (2)0.054 (2)0.0386 (18)0.0005 (17)0.0038 (15)0.0060 (16)
C30.046 (4)0.102 (14)0.044 (3)0.020 (5)0.001 (3)0.011 (5)
Cl310.089 (3)0.175 (5)0.109 (3)0.071 (3)0.017 (2)0.025 (3)
Cl320.116 (3)0.282 (7)0.0525 (16)0.131 (4)0.0274 (17)0.040 (2)
C40.073 (5)0.061 (6)0.051 (4)0.013 (4)0.034 (4)0.012 (3)
Cl410.0594 (11)0.259 (4)0.0599 (11)0.0000.0088 (9)0.000
Cl420.0583 (10)0.1116 (15)0.0758 (11)0.0000.0227 (8)0.000
Geometric parameters (Å, º) top
N1—C11.335 (3)C22'—H22D0.9800
N1—C21.388 (4)C22'—H22E0.9800
N1—C111.453 (4)C22'—H22F0.9800
C1—N1i1.335 (3)C23'—H23D0.9800
C1—H10.9500C23'—H23E0.9800
C2—C2i1.345 (6)C23'—H23F0.9800
C2—H20.9500C61—C631.525 (5)
C11—C161.395 (4)C61—C621.531 (5)
C11—C121.398 (4)C61—H611.0000
C12—C131.398 (5)C62—H62A0.9800
C12—C211.517 (4)C62—H62B0.9800
C13—C141.379 (5)C62—H62C0.9800
C13—H130.9500C63—H63A0.9800
C14—C151.378 (5)C63—H63B0.9800
C14—H140.9500C63—H63C0.9800
C15—C161.398 (5)C3—Cl311.732 (11)
C15—H150.9500C3—Cl321.748 (9)
C16—C611.519 (4)C3—H3A0.9900
C21—C22'1.479 (8)C3—H3B0.9900
C21—C231.493 (8)Cl31—Cl32i1.225 (7)
C21—C23'1.562 (9)Cl32—Cl31i1.225 (7)
C21—C221.572 (9)Cl32—C3i1.414 (9)
C21—H211.0000Cl32—Cl32i1.825 (13)
C22—H22A0.9800C4—Cl411.654 (7)
C22—H22B0.9800C4—Cl421.744 (7)
C22—H22C0.9800C4—H4A0.9900
C23—H23A0.9800C4—H4B0.9900
C23—H23B0.9800Cl41—C4i1.654 (7)
C23—H23C0.9800Cl42—C4i1.744 (7)
C1—N1—C2108.9 (2)C21—C23—H23C109.5
C1—N1—C11124.9 (2)H23A—C23—H23C109.5
C2—N1—C11126.2 (2)H23B—C23—H23C109.5
N1i—C1—N1108.0 (3)C21—C22'—H22D109.5
N1i—C1—H1126.0C21—C22'—H22E109.5
N1—C1—H1126.0H22D—C22'—H22E109.5
C2i—C2—N1107.11 (15)C21—C22'—H22F109.5
C2i—C2—H2126.4H22D—C22'—H22F109.5
N1—C2—H2126.4H22E—C22'—H22F109.5
C16—C11—C12123.8 (3)C21—C23'—H23D109.5
C16—C11—N1118.1 (3)C21—C23'—H23E109.5
C12—C11—N1118.1 (3)H23D—C23'—H23E109.5
C11—C12—C13116.7 (3)C21—C23'—H23F109.5
C11—C12—C21122.6 (3)H23D—C23'—H23F109.5
C13—C12—C21120.8 (3)H23E—C23'—H23F109.5
C14—C13—C12121.2 (3)C16—C61—C63112.3 (3)
C14—C13—H13119.4C16—C61—C62109.7 (3)
C12—C13—H13119.4C63—C61—C62110.4 (3)
C15—C14—C13120.3 (3)C16—C61—H61108.1
C15—C14—H14119.9C63—C61—H61108.1
C13—C14—H14119.9C62—C61—H61108.1
C14—C15—C16121.5 (3)C61—C62—H62A109.5
C14—C15—H15119.3C61—C62—H62B109.5
C16—C15—H15119.3H62A—C62—H62B109.5
C11—C16—C15116.5 (3)C61—C62—H62C109.5
C11—C16—C61123.6 (3)H62A—C62—H62C109.5
C15—C16—C61119.9 (3)H62B—C62—H62C109.5
C22'—C21—C23129.3 (5)C61—C63—H63A109.5
C22'—C21—C12109.9 (4)C61—C63—H63B109.5
C23—C21—C12112.9 (4)H63A—C63—H63B109.5
C22'—C21—C23'111.9 (5)C61—C63—H63C109.5
C12—C21—C23'110.2 (4)H63A—C63—H63C109.5
C23—C21—C22109.9 (5)H63B—C63—H63C109.5
C12—C21—C22112.0 (4)Cl31—C3—Cl32113.9 (5)
C23'—C21—C2288.0 (5)Cl31—C3—H3A108.8
C22'—C21—H2184.1Cl32—C3—H3A108.8
C23—C21—H21107.2Cl31—C3—H3B108.8
C12—C21—H21107.2Cl32—C3—H3B108.8
C23'—C21—H21130.0H3A—C3—H3B107.7
C22—C21—H21107.2Cl32i—Cl31—C353.9 (4)
C21—C22—H22A109.5Cl31i—Cl32—C3i81.7 (5)
C21—C22—H22B109.5Cl31i—Cl32—C398.9 (5)
H22A—C22—H22B109.5Cl31i—Cl32—Cl32i145.3 (3)
C21—C22—H22C109.5Cl41—C4—Cl42115.8 (4)
H22A—C22—H22C109.5Cl41—C4—H4A108.3
H22B—C22—H22C109.5Cl42—C4—H4A108.3
C21—C23—H23A109.5Cl41—C4—H4B108.3
C21—C23—H23B109.5Cl42—C4—H4B108.3
H23A—C23—H23B109.5H4A—C4—H4B107.4
C2—N1—C1—N1i0.4 (4)C14—C15—C16—C110.1 (6)
C11—N1—C1—N1i179.95 (19)C14—C15—C16—C61179.5 (4)
C1—N1—C2—C2i0.3 (2)C11—C12—C21—C22'87.2 (5)
C11—N1—C2—C2i179.9 (2)C13—C12—C21—C22'91.7 (5)
C1—N1—C11—C1679.7 (4)C11—C12—C21—C23120.6 (5)
C2—N1—C11—C16100.8 (3)C13—C12—C21—C2360.5 (6)
C1—N1—C11—C12100.0 (4)C11—C12—C21—C23'149.1 (5)
C2—N1—C11—C1279.6 (4)C13—C12—C21—C23'32.1 (5)
C16—C11—C12—C130.7 (5)C11—C12—C21—C22114.7 (5)
N1—C11—C12—C13178.9 (3)C13—C12—C21—C2264.2 (5)
C16—C11—C12—C21179.6 (3)C11—C16—C61—C63125.9 (3)
N1—C11—C12—C210.0 (4)C15—C16—C61—C6354.7 (5)
C11—C12—C13—C140.7 (5)C11—C16—C61—C62110.9 (4)
C21—C12—C13—C14178.2 (4)C15—C16—C61—C6268.4 (4)
C12—C13—C14—C151.7 (7)Cl32—C3—Cl31—Cl32i4.6 (3)
C13—C14—C15—C161.2 (7)Cl31—C3—Cl32—Cl31i172.1 (6)
C12—C11—C16—C151.1 (5)Cl31—C3—Cl32—C3i176.6 (3)
N1—C11—C16—C15178.5 (3)Cl31—C3—Cl32—Cl32i3.4 (3)
C12—C11—C16—C61179.5 (3)Cl42—C4—Cl41—C4i64.5 (5)
N1—C11—C16—C610.9 (5)Cl41—C4—Cl42—C4i64.0 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.952.503.447 (4)176

Experimental details

Crystal data
Chemical formulaC27H37N2+·Cl·2CH2Cl2
Mr594.89
Crystal system, space groupMonoclinic, P21/m
Temperature (K)173
a, b, c (Å)9.1117 (4), 16.4990 (8), 10.8875 (6)
β (°) 101.068 (4)
V3)1606.32 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.32 × 0.29 × 0.14
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.864, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
17793, 2934, 2648
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.184, 1.04
No. of reflections2934
No. of parameters185
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 1.60

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.952.503.447 (4)175.7
 

References

First citationArduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerger, M., Auner, N., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, o1845.  CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988–5993.  Web of Science CSD CrossRef CAS Google Scholar
First citationGiffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090–o2091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. doi:10.1186/1860-5397-3-22.  Google Scholar
First citationIkhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStasch, A., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2004). Eur. J. Inorg. Chem. pp. 4052–4055.  Web of Science CSD CrossRef Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds