metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,3-Di-2-pyridyl­pyrazine-κ2N2,N3)di­iodidoplatinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 May 2012; accepted 23 May 2012; online 31 May 2012)

The PtII ion in the title complex, [PtI2(C14H10N4)], exists in a distorted square-planar environment defined by the two pyridine N atoms of the chelating 2,3-di-2-pyridyl­pyrazine ligand and two iodide anions. The pyridine rings are inclined to the least-squares plane of the PtI2N2 unit [maximum deviation = 0.070 (3) Å] at 66.1 (2) and 65.9 (2)°; the pyrazine ring is perpendicular to this plane [dihedral angle = 89.7 (2)°]. Two inter­molecular C—H⋯I hydrogen bonds, both involving the same I atom as hydrogen-bond acceptor, generate a layer structure extending parallel to (001). Mol­ecules are stacked in columns along the a axis. Along the b axis, successive mol­ecules stack in opposite directions.

Related literature

For [PtBr2(dpp)] and [PdI2(dpp)] (dpp = 2,3-di-2-pyridyl­pyrazine), see: Ha (2011a[Ha, K. (2011a). Acta Cryst. E67, m1307.],b[Ha, K. (2011b). Acta Cryst. E67, m1626.]).

[Scheme 1]

Experimental

Crystal data
  • [PtI2(C14H10N4)]

  • Mr = 683.15

  • Monoclinic, P 21 /n

  • a = 8.7600 (7) Å

  • b = 15.4750 (12) Å

  • c = 12.5004 (10) Å

  • β = 102.660 (2)°

  • V = 1653.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.22 mm−1

  • T = 200 K

  • 0.26 × 0.23 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.551, Tmax = 1.000

  • 10058 measured reflections

  • 3215 independent reflections

  • 2807 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.07

  • 3215 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N4 2.030 (6)
Pt1—N3 2.036 (5)
Pt1—I1 2.5805 (6)
Pt1—I2 2.5930 (6)
N4—Pt1—N3 87.2 (2)
I1—Pt1—I2 93.14 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯I1i 0.95 3.04 3.694 (7) 127
C11—H11⋯I1ii 0.95 3.01 3.813 (8) 143
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtI2(dpp)] (dpp = 2,3-di-2-pyridylpyrazine, C14H10N4), is a structural isomer of the previously reported PtII and PdII complexes, [PtBr2(dpp)] and [PdI2(dpp)] (Ha, 2011a,b).

The PtII ion has a slightly distorted square-planar environment defined by the two pyridine N atoms of the chelating dpp ligand and two iodide anions (Fig. 1). The N3—Pt1—N4 chelate angle of 87.2 (2)° and I—I repelling contribute the distortion of square, and therefore the trans axes are slightly bent [<I1—Pt1—N4 = 174.46 (16)° and <I2—Pt1—N3 = 176.99 (15)°]. The Pt—N and Pt—I bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the two pyridine rings are considerably inclined to the least-squares plane of the PtI2N2 unit [maximum deviation = 0.070 (3) Å], with dihedral angles of 66.1 (2)° and 65.9 (2)°. The nearly planar pyrazine ring [maximum deviation = 0.014 (5) Å] is perpendicular to the unit plane, with a dihedral angle of 89.7 (2)°. The dihedral angle between the two pyridine rings is 80.0 (2)°. Two independent weak intermolecular C—H···I hydrogen bonds, both involving the same I atom as a hydrogen-bond acceptor, give rise to chains running along the a and b axes, generating a layer structure extending parallel to the ab plane (Fig. 2 and Table 2). The complexes are stacked in columns along the a axis. When viewed down the b axis, the successive complexes stack in opposite directions. In the columns, numerous inter- and intramolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.935 (4) Å.

Related literature top

For [PtBr2(dpp)] and [PdI2(dpp)] (dpp = 2,3-di-2-pyridylpyrazine), see: Ha (2011a,b).

Experimental top

The title complex was obtained as a byproduct from the reaction of K2PtCl4 (0.2089 g, 0.503 mmol) with 2,3-di-2-pyridylpyrazine (0.1198 g, 0.511 mmol) and KI (0.6785 g, 4.087 mmol) in H2O (20 ml)/MeOH (30 ml). The reaction mixture was stirred for 6 h at room temperature; the precipitate that formd was separated by filtration, washed with H2O and MeOH, and then collected to give the main product as a reddish brown powder (0.2638 g). The yellow by-product (0.0388 g) was obtained from the mixture of filtrate and washing solution. Crystals were obtained by slow evaporation from a CH3NO2 solution of the by-product.

Refinement top

H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The highest peak (1.30 e Å-3) and the deepest hole (-1.26 e Å-3) in the difference Fourier map are located 0.26 Å and 0.63 Å, respectively, from the atoms Pt1 and I1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the hydrogen-bond interactions of the title complex. Hydrogen-bonds are drawn with dashed lines.
(2,3-Di-2-pyridylpyrazine-κ2N2,N3)diiodidoplatinum(II) top
Crystal data top
[PtI2(C14H10N4)]F(000) = 1224
Mr = 683.15Dx = 2.744 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6167 reflections
a = 8.7600 (7) Åθ = 2.6–26.0°
b = 15.4750 (12) ŵ = 12.22 mm1
c = 12.5004 (10) ÅT = 200 K
β = 102.660 (2)°Block, yellow
V = 1653.4 (2) Å30.26 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3215 independent reflections
Radiation source: fine-focus sealed tube2807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.551, Tmax = 1.000k = 1913
10058 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0341P)2 + 4.3824P]
where P = (Fo2 + 2Fc2)/3
3215 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.30 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[PtI2(C14H10N4)]V = 1653.4 (2) Å3
Mr = 683.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7600 (7) ŵ = 12.22 mm1
b = 15.4750 (12) ÅT = 200 K
c = 12.5004 (10) Å0.26 × 0.23 × 0.19 mm
β = 102.660 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3215 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2807 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 1.000Rint = 0.034
10058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.07Δρmax = 1.30 e Å3
3215 reflectionsΔρmin = 1.26 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.47513 (3)0.062468 (17)0.68112 (2)0.02787 (10)
I10.62382 (6)0.08242 (3)0.69367 (4)0.04126 (14)
I20.73035 (6)0.15223 (4)0.73544 (4)0.04772 (16)
N10.1840 (7)0.0062 (4)0.9040 (5)0.0373 (14)
N20.2411 (8)0.1831 (4)0.9096 (5)0.0425 (15)
N30.2701 (6)0.0044 (3)0.6444 (4)0.0280 (12)
N40.3445 (7)0.1720 (4)0.6578 (5)0.0369 (14)
C10.2034 (8)0.0481 (4)0.8137 (6)0.0308 (15)
C20.2337 (8)0.1370 (4)0.8164 (6)0.0331 (15)
C30.2248 (10)0.1399 (5)0.9984 (6)0.047 (2)
H30.23300.17031.06540.056*
C40.1965 (10)0.0532 (5)0.9959 (6)0.047 (2)
H40.18530.02511.06130.057*
C50.1726 (7)0.0069 (4)0.7139 (5)0.0286 (14)
C60.0443 (8)0.0605 (5)0.6955 (6)0.0375 (17)
H60.02240.06170.74600.045*
C70.0125 (8)0.1121 (5)0.6041 (7)0.0444 (19)
H70.07520.14980.59130.053*
C80.1095 (8)0.1086 (5)0.5310 (6)0.0383 (17)
H80.08900.14340.46680.046*
C90.2355 (9)0.0544 (5)0.5521 (6)0.0343 (16)
H90.30120.05130.50110.041*
C100.2419 (8)0.1915 (4)0.7201 (6)0.0322 (15)
C110.1480 (9)0.2633 (5)0.6997 (7)0.0432 (19)
H110.07690.27610.74500.052*
C120.1573 (10)0.3169 (5)0.6127 (7)0.052 (2)
H120.09250.36660.59700.062*
C130.2640 (11)0.2964 (5)0.5491 (6)0.053 (2)
H130.27350.33220.48910.064*
C140.3539 (10)0.2253 (5)0.5731 (6)0.0449 (19)
H140.42650.21200.52910.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03372 (16)0.02391 (16)0.02724 (15)0.00575 (11)0.00941 (11)0.00250 (10)
I10.0362 (3)0.0397 (3)0.0496 (3)0.0012 (2)0.0132 (2)0.0003 (2)
I20.0505 (3)0.0517 (3)0.0432 (3)0.0247 (3)0.0152 (2)0.0113 (2)
N10.046 (3)0.029 (3)0.040 (3)0.003 (3)0.016 (3)0.000 (3)
N20.061 (4)0.030 (3)0.037 (3)0.000 (3)0.012 (3)0.008 (3)
N30.035 (3)0.019 (3)0.030 (3)0.000 (2)0.006 (2)0.001 (2)
N40.055 (4)0.020 (3)0.034 (3)0.004 (3)0.005 (3)0.004 (2)
C10.031 (4)0.026 (4)0.035 (4)0.002 (3)0.007 (3)0.005 (3)
C20.039 (4)0.024 (4)0.034 (4)0.003 (3)0.002 (3)0.006 (3)
C30.065 (5)0.039 (5)0.036 (4)0.005 (4)0.012 (4)0.010 (4)
C40.066 (5)0.045 (5)0.034 (4)0.003 (4)0.019 (4)0.002 (4)
C50.031 (3)0.021 (3)0.033 (3)0.002 (3)0.006 (3)0.001 (3)
C60.032 (4)0.039 (4)0.042 (4)0.005 (3)0.011 (3)0.006 (3)
C70.030 (4)0.044 (5)0.058 (5)0.008 (4)0.007 (3)0.006 (4)
C80.042 (4)0.028 (4)0.041 (4)0.001 (3)0.002 (3)0.012 (3)
C90.043 (4)0.032 (4)0.025 (3)0.001 (3)0.002 (3)0.006 (3)
C100.041 (4)0.019 (3)0.034 (4)0.004 (3)0.005 (3)0.002 (3)
C110.046 (4)0.025 (4)0.055 (5)0.005 (3)0.004 (4)0.000 (3)
C120.060 (5)0.025 (4)0.060 (5)0.004 (4)0.007 (4)0.006 (4)
C130.090 (7)0.029 (4)0.035 (4)0.008 (5)0.002 (4)0.002 (4)
C140.071 (5)0.032 (4)0.032 (4)0.007 (4)0.012 (4)0.003 (3)
Geometric parameters (Å, º) top
Pt1—N42.030 (6)C4—H40.9500
Pt1—N32.036 (5)C5—C61.375 (10)
Pt1—I12.5805 (6)C6—C71.372 (11)
Pt1—I22.5930 (6)C6—H60.9500
N1—C41.343 (10)C7—C81.379 (11)
N1—C11.345 (9)C7—H70.9500
N2—C31.329 (10)C8—C91.366 (10)
N2—C21.355 (9)C8—H80.9500
N3—C51.346 (8)C9—H90.9500
N3—C91.366 (8)C10—C111.373 (10)
N4—C101.346 (9)C11—C121.384 (11)
N4—C141.360 (9)C11—H110.9500
C1—C21.400 (10)C12—C131.391 (13)
C1—C51.486 (9)C12—H120.9500
C2—C101.485 (10)C13—C141.347 (12)
C3—C41.364 (11)C13—H130.9500
C3—H30.9500C14—H140.9500
N4—Pt1—N387.2 (2)C6—C5—C1118.5 (6)
N4—Pt1—I1174.46 (16)C7—C6—C5120.0 (7)
N3—Pt1—I188.89 (15)C7—C6—H6120.0
N4—Pt1—I290.97 (17)C5—C6—H6120.0
N3—Pt1—I2176.99 (15)C6—C7—C8119.2 (7)
I1—Pt1—I293.14 (2)C6—C7—H7120.4
C4—N1—C1117.0 (6)C8—C7—H7120.4
C3—N2—C2117.3 (6)C9—C8—C7119.0 (7)
C5—N3—C9118.3 (6)C9—C8—H8120.5
C5—N3—Pt1121.5 (4)C7—C8—H8120.5
C9—N3—Pt1120.0 (5)N3—C9—C8122.1 (7)
C10—N4—C14118.5 (6)N3—C9—H9118.9
C10—N4—Pt1122.1 (5)C8—C9—H9118.9
C14—N4—Pt1119.4 (5)N4—C10—C11121.5 (7)
N1—C1—C2120.8 (6)N4—C10—C2119.9 (6)
N1—C1—C5113.3 (6)C11—C10—C2118.5 (7)
C2—C1—C5125.6 (6)C10—C11—C12119.7 (8)
N2—C2—C1120.7 (7)C10—C11—H11120.2
N2—C2—C10113.4 (6)C12—C11—H11120.2
C1—C2—C10125.5 (6)C11—C12—C13118.3 (8)
N2—C3—C4121.9 (7)C11—C12—H12120.8
N2—C3—H3119.1C13—C12—H12120.8
C4—C3—H3119.1C14—C13—C12119.5 (8)
N1—C4—C3122.2 (7)C14—C13—H13120.2
N1—C4—H4118.9C12—C13—H13120.2
C3—C4—H4118.9C13—C14—N4122.5 (8)
N3—C5—C6121.4 (6)C13—C14—H14118.8
N3—C5—C1120.1 (6)N4—C14—H14118.8
N4—Pt1—N3—C571.2 (5)N1—C1—C5—C643.3 (9)
I1—Pt1—N3—C5112.7 (5)C2—C1—C5—C6130.3 (8)
N4—Pt1—N3—C9114.8 (5)N3—C5—C6—C70.7 (11)
I1—Pt1—N3—C961.4 (5)C1—C5—C6—C7180.0 (7)
N3—Pt1—N4—C1062.0 (5)C5—C6—C7—C80.8 (12)
I2—Pt1—N4—C10115.6 (5)C6—C7—C8—C90.6 (12)
N3—Pt1—N4—C14114.3 (6)C5—N3—C9—C82.5 (10)
I2—Pt1—N4—C1468.1 (5)Pt1—N3—C9—C8171.7 (5)
C4—N1—C1—C20.5 (10)C7—C8—C9—N31.1 (11)
C4—N1—C1—C5174.5 (6)C14—N4—C10—C110.0 (10)
C3—N2—C2—C12.6 (11)Pt1—N4—C10—C11176.3 (5)
C3—N2—C2—C10175.9 (7)C14—N4—C10—C2177.2 (6)
N1—C1—C2—N21.3 (11)Pt1—N4—C10—C26.5 (8)
C5—C1—C2—N2171.8 (7)N2—C2—C10—N4129.3 (7)
N1—C1—C2—C10173.8 (7)C1—C2—C10—N457.7 (10)
C5—C1—C2—C100.6 (11)N2—C2—C10—C1147.9 (9)
C2—N2—C3—C42.1 (12)C1—C2—C10—C11125.1 (8)
C1—N1—C4—C31.1 (12)N4—C10—C11—C120.5 (11)
N2—C3—C4—N10.2 (14)C2—C10—C11—C12177.7 (7)
C9—N3—C5—C62.3 (9)C10—C11—C12—C130.6 (12)
Pt1—N3—C5—C6171.8 (5)C11—C12—C13—C140.3 (12)
C9—N3—C5—C1178.3 (6)C12—C13—C14—N40.1 (12)
Pt1—N3—C5—C17.5 (8)C10—N4—C14—C130.3 (11)
N1—C1—C5—N3136.1 (6)Pt1—N4—C14—C13176.1 (6)
C2—C1—C5—N350.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···I1i0.953.043.694 (7)127
C11—H11···I1ii0.953.013.813 (8)143
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[PtI2(C14H10N4)]
Mr683.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.7600 (7), 15.4750 (12), 12.5004 (10)
β (°) 102.660 (2)
V3)1653.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)12.22
Crystal size (mm)0.26 × 0.23 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.551, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10058, 3215, 2807
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.07
No. of reflections3215
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 1.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—N42.030 (6)Pt1—I12.5805 (6)
Pt1—N32.036 (5)Pt1—I22.5930 (6)
N4—Pt1—N387.2 (2)I1—Pt1—I293.14 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···I1i0.953.043.694 (7)127.2
C11—H11···I1ii0.953.013.813 (8)143.0
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011a). Acta Cryst. E67, m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011b). Acta Cryst. E67, m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds