organic compounds
4-Phenyl-1H-imidazole-2(3H)-thione
aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl
In the 9H8N2S, there are four symmetry-independent molecules (Z′ = 4). The geometrical features of these molecules are quite similar: in the normal probability plots the R2 correlation factors for bond lengths and angles are generally around 0.95. The twist angles between the imidazole and phenyl rings (which are planar within 3σ) range from 9.0 (6) to 13.1 (5)°. In the crystal, pairs of independent molecules are joined by linear N—H⋯S and weak C—H⋯S hydrogen bonds, forming infinite ribbons, of the type ∼ABABAB∼ and ∼CDCDCD∼, propagating along [110]. Second-order hydrogen-bonded R22(8) rings are formed via interweaving infinite C22(8) chains.
of the title compound, CRelated literature
For related structures, see: Conde et al. (1977); Raper et al. (1984). For general background to thioamides, see: Martindale (1982); Hussain et al. (1990); Buxeraud (1995). For normal probability plots, see: Abrahams & Keve (1971); International Tables for X-ray Crystallography (1974). For a description of the Cambridge Structural Database, see: Allen (2002). For graph-set notation, see: Bernstein et al. (1995); Etter et al. (1990).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812020090/nk2157sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020090/nk2157Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020090/nk2157Isup3.cml
The title compound was prepared by adding hydrochloric acid to acetonitrile solution of 4-phenyl-imidazole-2-thiol in molar ratio 1:1. After a few minutes colourless, thin crystals of 1, suitable for single-crystal X-ray analysis appeared and were filtered off.
Hydrogen atoms were put in the idealized positions, and refined as riding model. Their isotropic thermal parameters were set at 1.2 times Ueq's of appropriate carrier atoms.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Anisotropic displacement ellipsoid representation of the molecule 1 A,The ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The hydrogen-bonded ribbon of molecules A and B (molecules C and D are joined into almost identical structure). Hydrogen bonds are shown as dashed lines, symmetry codes:; (i) -1/2 + x,-1/2 + y,z; (ii) 1/2 + x,1/2 + y,z.. | |
Fig. 3. The crystal packing as seen approximately along c-direction, hydrogen bonds are drawn as dashed lines. Symmetry-independent molecules are shown with different colours. |
C9H8N2S | F(000) = 1472 |
Mr = 176.23 | Dx = 1.343 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 4788 reflections |
a = 11.7578 (5) Å | θ = 2.4–26.9° |
b = 11.8071 (5) Å | µ = 0.31 mm−1 |
c = 25.1339 (18) Å | T = 295 K |
β = 91.858 (6)° | Plate, yellow |
V = 3487.4 (3) Å3 | 0.2 × 0.16 × 0.03 mm |
Z = 16 |
Xcalibur, Eos diffractometer | 5247 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4168 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 27.0°, θmin = 2.5° |
ω–scan | h = −14→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −14→14 |
Tmin = 0.928, Tmax = 1.000 | l = −30→30 |
11682 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.165 | w = 1/[σ2(Fo2) + (0.073P)2 + 5.346P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
5247 reflections | Δρmax = 0.80 e Å−3 |
433 parameters | Δρmin = −0.27 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1447 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (13) |
C9H8N2S | V = 3487.4 (3) Å3 |
Mr = 176.23 | Z = 16 |
Monoclinic, Cc | Mo Kα radiation |
a = 11.7578 (5) Å | µ = 0.31 mm−1 |
b = 11.8071 (5) Å | T = 295 K |
c = 25.1339 (18) Å | 0.2 × 0.16 × 0.03 mm |
β = 91.858 (6)° |
Xcalibur, Eos diffractometer | 5247 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4168 reflections with I > 2σ(I) |
Tmin = 0.928, Tmax = 1.000 | Rint = 0.045 |
11682 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.165 | Δρmax = 0.80 e Å−3 |
S = 1.08 | Δρmin = −0.27 e Å−3 |
5247 reflections | Absolute structure: Flack (1983), 1447 Friedel pairs |
433 parameters | Absolute structure parameter: 0.01 (13) |
2 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.4989 (5) | 0.4546 (4) | 0.8218 (2) | 0.0444 (12) | |
H1A | 0.4424 | 0.4129 | 0.8115 | 0.053* | |
C2A | 0.5332 (5) | 0.5485 (5) | 0.7969 (3) | 0.0345 (13) | |
S2A | 0.47435 (12) | 0.60428 (14) | 0.74045 (7) | 0.0458 (4) | |
N3A | 0.6236 (4) | 0.5869 (4) | 0.8257 (2) | 0.0371 (11) | |
H3A | 0.6619 | 0.6464 | 0.8179 | 0.045* | |
C4A | 0.6471 (5) | 0.5183 (5) | 0.8695 (2) | 0.0360 (13) | |
C41A | 0.7430 (6) | 0.5375 (5) | 0.9085 (3) | 0.0411 (15) | |
C42A | 0.8265 (8) | 0.6105 (8) | 0.8996 (4) | 0.070 (3) | |
H42A | 0.8229 | 0.6528 | 0.8684 | 0.084* | |
C43A | 0.9180 (9) | 0.6267 (9) | 0.9345 (4) | 0.079 (3) | |
H43A | 0.9745 | 0.6785 | 0.9263 | 0.095* | |
C44A | 0.9258 (7) | 0.5679 (8) | 0.9802 (4) | 0.067 (2) | |
H44A | 0.9857 | 0.5797 | 1.0046 | 0.080* | |
C45A | 0.8436 (9) | 0.4911 (8) | 0.9894 (4) | 0.072 (3) | |
H45A | 0.8495 | 0.4460 | 1.0197 | 0.086* | |
C46A | 0.7474 (7) | 0.4777 (7) | 0.9534 (3) | 0.0558 (19) | |
H46A | 0.6890 | 0.4280 | 0.9613 | 0.067* | |
C5A | 0.5680 (6) | 0.4349 (5) | 0.8665 (3) | 0.0428 (14) | |
H5A | 0.5613 | 0.3750 | 0.8902 | 0.051* | |
N1B | 0.0966 (4) | 0.3495 (5) | 0.7179 (2) | 0.0435 (13) | |
H1B | 0.0559 | 0.2940 | 0.7286 | 0.052* | |
C2B | 0.1929 (5) | 0.3860 (5) | 0.7428 (2) | 0.0378 (14) | |
S2B | 0.25122 (12) | 0.33365 (14) | 0.79993 (7) | 0.0466 (4) | |
N3B | 0.2285 (4) | 0.4711 (4) | 0.7131 (2) | 0.0358 (11) | |
H3B | 0.2896 | 0.5091 | 0.7199 | 0.043* | |
C4B | 0.1546 (5) | 0.4916 (5) | 0.6695 (2) | 0.0348 (13) | |
C41B | 0.1702 (6) | 0.5816 (6) | 0.6307 (3) | 0.0422 (15) | |
C42B | 0.2505 (8) | 0.6634 (9) | 0.6382 (4) | 0.076 (3) | |
H42B | 0.2988 | 0.6638 | 0.6682 | 0.091* | |
C43B | 0.2579 (9) | 0.7492 (9) | 0.5979 (5) | 0.096 (4) | |
H43B | 0.3120 | 0.8059 | 0.6032 | 0.116* | |
C44B | 0.1938 (8) | 0.7536 (9) | 0.5539 (4) | 0.062 (2) | |
H44B | 0.2034 | 0.8092 | 0.5283 | 0.075* | |
C45B | 0.1127 (9) | 0.6719 (8) | 0.5484 (4) | 0.076 (3) | |
H45B | 0.0639 | 0.6736 | 0.5186 | 0.091* | |
C46B | 0.0997 (8) | 0.5848 (7) | 0.5859 (3) | 0.067 (2) | |
H46B | 0.0439 | 0.5298 | 0.5805 | 0.081* | |
C5B | 0.0719 (6) | 0.4130 (5) | 0.6731 (3) | 0.0442 (15) | |
H5B | 0.0098 | 0.4034 | 0.6496 | 0.053* | |
N1C | 0.5331 (4) | 0.2879 (4) | 0.7138 (2) | 0.0469 (13) | |
H1C | 0.5905 | 0.3287 | 0.7238 | 0.056* | |
C2C | 0.4983 (5) | 0.1952 (5) | 0.7392 (3) | 0.0364 (13) | |
S2C | 0.55718 (13) | 0.14044 (14) | 0.79617 (7) | 0.0481 (4) | |
N3C | 0.4080 (4) | 0.1579 (4) | 0.7113 (2) | 0.0368 (11) | |
H3C | 0.3689 | 0.0991 | 0.7192 | 0.044* | |
C4C | 0.3853 (5) | 0.2275 (5) | 0.6673 (2) | 0.0376 (14) | |
C41C | 0.2895 (5) | 0.2125 (6) | 0.6298 (3) | 0.0425 (15) | |
C42C | 0.1987 (7) | 0.1387 (7) | 0.6398 (3) | 0.053 (2) | |
H42C | 0.1989 | 0.0963 | 0.6710 | 0.064* | |
C43C | 0.1101 (8) | 0.1297 (8) | 0.6034 (4) | 0.074 (3) | |
H43C | 0.0504 | 0.0803 | 0.6099 | 0.089* | |
C44C | 0.1083 (9) | 0.1948 (7) | 0.5560 (4) | 0.070 (3) | |
H44C | 0.0477 | 0.1890 | 0.5314 | 0.084* | |
C45C | 0.1965 (7) | 0.2658 (8) | 0.5470 (3) | 0.0518 (19) | |
H45C | 0.1962 | 0.3091 | 0.5161 | 0.062* | |
C46C | 0.2816 (7) | 0.2737 (7) | 0.5813 (3) | 0.055 (2) | |
H46C | 0.3408 | 0.3226 | 0.5735 | 0.066* | |
C5C | 0.4655 (6) | 0.3088 (6) | 0.6699 (3) | 0.0482 (16) | |
H5C | 0.4733 | 0.3683 | 0.6461 | 0.058* | |
N1D | 0.9343 (5) | 0.3980 (5) | 0.8200 (2) | 0.0492 (14) | |
H1D | 0.9739 | 0.4548 | 0.8099 | 0.059* | |
C2D | 0.8402 (5) | 0.3599 (5) | 0.7950 (3) | 0.0371 (13) | |
S2D | 0.77977 (13) | 0.41209 (14) | 0.73786 (7) | 0.0503 (4) | |
N3D | 0.8053 (4) | 0.2707 (4) | 0.8242 (2) | 0.0398 (12) | |
H3D | 0.7458 | 0.2307 | 0.8168 | 0.048* | |
C4D | 0.8767 (5) | 0.2527 (5) | 0.8668 (2) | 0.0381 (14) | |
C41D | 0.8657 (6) | 0.1604 (6) | 0.9059 (3) | 0.0421 (15) | |
C42D | 0.7813 (7) | 0.0797 (7) | 0.9028 (3) | 0.061 (2) | |
H42D | 0.7277 | 0.0843 | 0.8748 | 0.073* | |
C43D | 0.7718 (9) | −0.0058 (9) | 0.9380 (4) | 0.084 (3) | |
H43D | 0.7117 | −0.0570 | 0.9356 | 0.101* | |
C44D | 0.8559 (8) | −0.0141 (8) | 0.9782 (4) | 0.064 (2) | |
H44D | 0.8535 | −0.0735 | 1.0024 | 0.077* | |
C45D | 0.9391 (7) | 0.0611 (7) | 0.9825 (3) | 0.054 (2) | |
H45D | 0.9929 | 0.0559 | 1.0103 | 0.065* | |
C46D | 0.9459 (7) | 0.1450 (7) | 0.9465 (3) | 0.0522 (19) | |
H46D | 1.0072 | 0.1947 | 0.9491 | 0.063* | |
C5D | 0.9591 (6) | 0.3327 (6) | 0.8646 (3) | 0.0519 (17) | |
H5D | 1.0205 | 0.3419 | 0.8884 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.047 (3) | 0.034 (3) | 0.051 (3) | −0.008 (2) | −0.005 (3) | 0.003 (2) |
C2A | 0.026 (3) | 0.029 (3) | 0.049 (3) | −0.008 (2) | 0.001 (3) | 0.009 (2) |
S2A | 0.0409 (9) | 0.0470 (9) | 0.0487 (9) | −0.0178 (7) | −0.0117 (7) | 0.0096 (7) |
N3A | 0.036 (3) | 0.036 (3) | 0.040 (3) | −0.001 (2) | −0.001 (2) | 0.009 (2) |
C4A | 0.036 (3) | 0.035 (3) | 0.037 (3) | −0.003 (3) | −0.001 (2) | 0.003 (2) |
C41A | 0.044 (4) | 0.040 (3) | 0.039 (4) | 0.006 (3) | 0.002 (3) | 0.006 (3) |
C42A | 0.062 (6) | 0.087 (6) | 0.059 (5) | 0.002 (5) | −0.031 (4) | 0.014 (5) |
C43A | 0.076 (6) | 0.090 (6) | 0.070 (6) | −0.033 (5) | −0.015 (5) | 0.023 (5) |
C44A | 0.042 (4) | 0.090 (6) | 0.067 (5) | −0.015 (4) | −0.016 (4) | 0.011 (5) |
C45A | 0.089 (7) | 0.064 (5) | 0.061 (5) | −0.012 (5) | −0.029 (5) | 0.020 (4) |
C46A | 0.046 (4) | 0.071 (5) | 0.049 (4) | −0.009 (4) | −0.014 (3) | 0.007 (4) |
C5A | 0.045 (4) | 0.043 (3) | 0.040 (3) | −0.010 (3) | 0.000 (3) | 0.002 (3) |
N1B | 0.035 (3) | 0.043 (3) | 0.052 (3) | −0.021 (2) | −0.004 (2) | 0.002 (2) |
C2B | 0.039 (3) | 0.031 (3) | 0.044 (3) | 0.002 (3) | 0.003 (3) | 0.000 (3) |
S2B | 0.0386 (9) | 0.0488 (9) | 0.0516 (9) | −0.0184 (7) | −0.0101 (7) | 0.0157 (7) |
N3B | 0.023 (2) | 0.039 (3) | 0.045 (3) | −0.011 (2) | 0.000 (2) | −0.005 (2) |
C4B | 0.035 (3) | 0.039 (3) | 0.031 (3) | 0.002 (3) | −0.002 (2) | 0.002 (2) |
C41B | 0.037 (4) | 0.045 (4) | 0.044 (4) | 0.000 (3) | −0.005 (3) | −0.001 (3) |
C42B | 0.080 (7) | 0.088 (6) | 0.058 (5) | −0.014 (5) | −0.036 (5) | 0.041 (5) |
C43B | 0.082 (7) | 0.078 (6) | 0.128 (10) | −0.036 (5) | −0.018 (7) | 0.038 (6) |
C44B | 0.062 (5) | 0.072 (6) | 0.052 (5) | 0.009 (4) | −0.001 (4) | 0.022 (4) |
C45B | 0.107 (8) | 0.077 (6) | 0.042 (4) | −0.004 (6) | −0.030 (5) | 0.024 (4) |
C46B | 0.082 (6) | 0.066 (5) | 0.052 (5) | −0.011 (4) | −0.013 (4) | 0.013 (4) |
C5B | 0.042 (4) | 0.043 (4) | 0.047 (4) | −0.011 (3) | −0.011 (3) | 0.001 (3) |
N1C | 0.039 (3) | 0.042 (3) | 0.059 (4) | −0.018 (2) | −0.002 (3) | 0.005 (3) |
C2C | 0.031 (3) | 0.035 (3) | 0.042 (3) | −0.006 (2) | −0.003 (3) | −0.007 (3) |
S2C | 0.0442 (10) | 0.0442 (9) | 0.0550 (10) | −0.0178 (8) | −0.0112 (7) | 0.0072 (8) |
N3C | 0.029 (3) | 0.035 (2) | 0.046 (3) | −0.014 (2) | 0.002 (2) | −0.007 (2) |
C4C | 0.036 (3) | 0.036 (3) | 0.041 (3) | 0.001 (3) | 0.005 (3) | −0.003 (3) |
C41C | 0.033 (3) | 0.049 (4) | 0.046 (4) | −0.009 (3) | −0.006 (3) | −0.007 (3) |
C42C | 0.052 (5) | 0.057 (5) | 0.051 (4) | −0.017 (3) | 0.000 (4) | 0.020 (4) |
C43C | 0.052 (5) | 0.074 (6) | 0.094 (7) | −0.024 (4) | −0.024 (5) | 0.016 (5) |
C44C | 0.093 (7) | 0.059 (5) | 0.055 (5) | −0.005 (5) | −0.038 (5) | 0.008 (4) |
C45C | 0.047 (4) | 0.069 (5) | 0.039 (4) | −0.008 (4) | 0.001 (3) | 0.005 (3) |
C46C | 0.063 (5) | 0.051 (4) | 0.052 (4) | −0.006 (3) | 0.010 (4) | 0.016 (3) |
C5C | 0.050 (4) | 0.046 (4) | 0.049 (4) | −0.009 (3) | −0.004 (3) | 0.012 (3) |
N1D | 0.043 (3) | 0.049 (3) | 0.054 (4) | −0.008 (3) | −0.004 (3) | 0.008 (3) |
C2D | 0.022 (3) | 0.040 (3) | 0.050 (3) | −0.011 (2) | 0.005 (2) | −0.006 (3) |
S2D | 0.0433 (10) | 0.0495 (10) | 0.0578 (10) | −0.0173 (7) | −0.0051 (8) | 0.0106 (8) |
N3D | 0.039 (3) | 0.034 (3) | 0.046 (3) | −0.006 (2) | 0.004 (2) | 0.004 (2) |
C4D | 0.033 (3) | 0.040 (3) | 0.042 (3) | 0.000 (3) | 0.002 (3) | −0.009 (3) |
C41D | 0.043 (4) | 0.039 (3) | 0.044 (4) | −0.001 (3) | 0.006 (3) | −0.003 (3) |
C42D | 0.061 (5) | 0.059 (5) | 0.062 (5) | −0.024 (4) | −0.022 (4) | 0.017 (4) |
C43D | 0.085 (7) | 0.091 (6) | 0.074 (6) | −0.043 (5) | −0.034 (5) | 0.039 (5) |
C44D | 0.073 (6) | 0.055 (5) | 0.064 (5) | 0.003 (4) | 0.010 (4) | 0.019 (4) |
C45D | 0.036 (4) | 0.075 (5) | 0.050 (4) | 0.004 (4) | 0.005 (3) | −0.006 (4) |
C46D | 0.043 (4) | 0.059 (4) | 0.055 (4) | −0.012 (3) | −0.004 (3) | 0.000 (3) |
C5D | 0.045 (4) | 0.054 (4) | 0.055 (4) | −0.012 (3) | −0.011 (3) | 0.006 (3) |
N1A—C2A | 1.342 (7) | N1C—C2C | 1.338 (8) |
N1A—C5A | 1.385 (8) | N1C—C5C | 1.361 (9) |
N1A—H1A | 0.8600 | N1C—H1C | 0.8600 |
C2A—N3A | 1.345 (8) | C2C—N3C | 1.329 (8) |
C2A—S2A | 1.691 (6) | C2C—S2C | 1.698 (7) |
N3A—C4A | 1.388 (8) | N3C—C4C | 1.397 (8) |
N3A—H3A | 0.8600 | N3C—H3C | 0.8600 |
C4A—C5A | 1.355 (9) | C4C—C5C | 1.345 (9) |
C4A—C41A | 1.487 (9) | C4C—C41C | 1.456 (9) |
C41A—C46A | 1.331 (10) | C41C—C42C | 1.407 (9) |
C41A—C42A | 1.331 (11) | C41C—C46C | 1.416 (10) |
C42A—C43A | 1.378 (13) | C42C—C43C | 1.368 (13) |
C42A—H42A | 0.9300 | C42C—H42C | 0.9300 |
C43A—C44A | 1.343 (14) | C43C—C44C | 1.419 (13) |
C43A—H43A | 0.9300 | C43C—H43C | 0.9300 |
C44A—C45A | 1.351 (12) | C44C—C45C | 1.358 (12) |
C44A—H44A | 0.9300 | C44C—H44C | 0.9300 |
C45A—C46A | 1.434 (12) | C45C—C46C | 1.303 (12) |
C45A—H45A | 0.9300 | C45C—H45C | 0.9300 |
C46A—H46A | 0.9300 | C46C—H46C | 0.9300 |
C5A—H5A | 0.9300 | C5C—H5C | 0.9300 |
N1B—C2B | 1.346 (8) | N1D—C2D | 1.333 (8) |
N1B—C5B | 1.377 (8) | N1D—C5D | 1.383 (9) |
N1B—H1B | 0.8600 | N1D—H1D | 0.8600 |
C2B—N3B | 1.328 (8) | C2D—N3D | 1.355 (8) |
C2B—S2B | 1.688 (6) | C2D—S2D | 1.697 (7) |
N3B—C4B | 1.397 (8) | N3D—C4D | 1.355 (8) |
N3B—H3B | 0.8600 | N3D—H3D | 0.8600 |
C4B—C5B | 1.349 (9) | C4D—C5D | 1.355 (9) |
C4B—C41B | 1.458 (9) | C4D—C41D | 1.476 (9) |
C41B—C42B | 1.359 (12) | C41D—C42D | 1.377 (10) |
C41B—C46B | 1.377 (11) | C41D—C46D | 1.378 (11) |
C42B—C43B | 1.437 (13) | C42D—C43D | 1.350 (12) |
C42B—H42B | 0.9300 | C42D—H42D | 0.9300 |
C43B—C44B | 1.318 (14) | C43D—C44D | 1.393 (13) |
C43B—H43B | 0.9300 | C43D—H43D | 0.9300 |
C44B—C45B | 1.360 (13) | C44D—C45D | 1.323 (12) |
C44B—H44B | 0.9300 | C44D—H44D | 0.9300 |
C45B—C46B | 1.407 (12) | C45D—C46D | 1.345 (12) |
C45B—H45B | 0.9300 | C45D—H45D | 0.9300 |
C46B—H46B | 0.9300 | C46D—H46D | 0.9300 |
C5B—H5B | 0.9300 | C5D—H5D | 0.9300 |
C2A—N1A—C5A | 109.9 (5) | C2C—N1C—C5C | 110.9 (5) |
C2A—N1A—H1A | 125.0 | C2C—N1C—H1C | 124.6 |
C5A—N1A—H1A | 125.0 | C5C—N1C—H1C | 124.6 |
N1A—C2A—N3A | 105.7 (5) | N3C—C2C—N1C | 105.7 (6) |
N1A—C2A—S2A | 126.3 (5) | N3C—C2C—S2C | 128.0 (5) |
N3A—C2A—S2A | 127.9 (4) | N1C—C2C—S2C | 126.3 (5) |
C2A—N3A—C4A | 111.4 (5) | C2C—N3C—C4C | 110.6 (5) |
C2A—N3A—H3A | 124.3 | C2C—N3C—H3C | 124.7 |
C4A—N3A—H3A | 124.3 | C4C—N3C—H3C | 124.7 |
C5A—C4A—N3A | 105.1 (6) | C5C—C4C—N3C | 105.4 (6) |
C5A—C4A—C41A | 130.7 (6) | C5C—C4C—C41C | 130.1 (6) |
N3A—C4A—C41A | 124.2 (6) | N3C—C4C—C41C | 124.4 (6) |
C46A—C41A—C42A | 118.5 (8) | C42C—C41C—C46C | 116.1 (7) |
C46A—C41A—C4A | 119.1 (7) | C42C—C41C—C4C | 122.4 (7) |
C42A—C41A—C4A | 122.4 (6) | C46C—C41C—C4C | 121.5 (6) |
C41A—C42A—C43A | 123.3 (9) | C43C—C42C—C41C | 119.7 (7) |
C41A—C42A—H42A | 118.4 | C43C—C42C—H42C | 120.2 |
C43A—C42A—H42A | 118.4 | C41C—C42C—H42C | 120.2 |
C44A—C43A—C42A | 120.1 (9) | C42C—C43C—C44C | 120.6 (8) |
C44A—C43A—H43A | 119.9 | C42C—C43C—H43C | 119.7 |
C42A—C43A—H43A | 119.9 | C44C—C43C—H43C | 119.7 |
C43A—C44A—C45A | 117.7 (9) | C45C—C44C—C43C | 118.9 (8) |
C43A—C44A—H44A | 121.2 | C45C—C44C—H44C | 120.5 |
C45A—C44A—H44A | 121.2 | C43C—C44C—H44C | 120.5 |
C44A—C45A—C46A | 121.3 (9) | C46C—C45C—C44C | 120.5 (8) |
C44A—C45A—H45A | 119.3 | C46C—C45C—H45C | 119.7 |
C46A—C45A—H45A | 119.3 | C44C—C45C—H45C | 119.7 |
C41A—C46A—C45A | 119.0 (8) | C45C—C46C—C41C | 124.1 (8) |
C41A—C46A—H46A | 120.5 | C45C—C46C—H46C | 118.0 |
C45A—C46A—H46A | 120.5 | C41C—C46C—H46C | 118.0 |
C4A—C5A—N1A | 107.9 (6) | C4C—C5C—N1C | 107.5 (6) |
C4A—C5A—H5A | 126.1 | C4C—C5C—H5C | 126.3 |
N1A—C5A—H5A | 126.1 | N1C—C5C—H5C | 126.3 |
C2B—N1B—C5B | 111.1 (5) | C2D—N1D—C5D | 110.1 (6) |
C2B—N1B—H1B | 124.5 | C2D—N1D—H1D | 125.0 |
C5B—N1B—H1B | 124.5 | C5D—N1D—H1D | 125.0 |
N3B—C2B—N1B | 104.8 (6) | N1D—C2D—N3D | 105.5 (6) |
N3B—C2B—S2B | 129.0 (5) | N1D—C2D—S2D | 126.5 (5) |
N1B—C2B—S2B | 126.2 (5) | N3D—C2D—S2D | 128.0 (5) |
C2B—N3B—C4B | 111.9 (5) | C2D—N3D—C4D | 111.1 (5) |
C2B—N3B—H3B | 124.0 | C2D—N3D—H3D | 124.5 |
C4B—N3B—H3B | 124.0 | C4D—N3D—H3D | 124.5 |
C5B—C4B—N3B | 105.1 (5) | C5D—C4D—N3D | 106.5 (6) |
C5B—C4B—C41B | 130.8 (6) | C5D—C4D—C41D | 128.3 (6) |
N3B—C4B—C41B | 124.2 (6) | N3D—C4D—C41D | 125.2 (6) |
C42B—C41B—C46B | 119.4 (7) | C42D—C41D—C46D | 115.1 (7) |
C42B—C41B—C4B | 121.9 (7) | C42D—C41D—C4D | 123.5 (7) |
C46B—C41B—C4B | 118.7 (6) | C46D—C41D—C4D | 121.2 (6) |
C41B—C42B—C43B | 117.5 (9) | C43D—C42D—C41D | 123.8 (8) |
C41B—C42B—H42B | 121.2 | C43D—C42D—H42D | 118.1 |
C43B—C42B—H42B | 121.2 | C41D—C42D—H42D | 118.1 |
C44B—C43B—C42B | 124.9 (9) | C42D—C43D—C44D | 117.1 (8) |
C44B—C43B—H43B | 117.6 | C42D—C43D—H43D | 121.5 |
C42B—C43B—H43B | 117.6 | C44D—C43D—H43D | 121.5 |
C43B—C44B—C45B | 116.0 (8) | C45D—C44D—C43D | 121.2 (8) |
C43B—C44B—H44B | 122.0 | C45D—C44D—H44D | 119.4 |
C45B—C44B—H44B | 122.0 | C43D—C44D—H44D | 119.4 |
C44B—C45B—C46B | 122.7 (9) | C44D—C45D—C46D | 119.9 (9) |
C44B—C45B—H45B | 118.6 | C44D—C45D—H45D | 120.0 |
C46B—C45B—H45B | 118.6 | C46D—C45D—H45D | 120.0 |
C41B—C46B—C45B | 119.5 (8) | C45D—C46D—C41D | 122.7 (7) |
C41B—C46B—H46B | 120.3 | C45D—C46D—H46D | 118.6 |
C45B—C46B—H46B | 120.3 | C41D—C46D—H46D | 118.6 |
C4B—C5B—N1B | 107.2 (6) | C4D—C5D—N1D | 106.9 (6) |
C4B—C5B—H5B | 126.4 | C4D—C5D—H5D | 126.6 |
N1B—C5B—H5B | 126.4 | N1D—C5D—H5D | 126.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···S2B | 0.86 | 2.44 | 3.274 (6) | 163 |
N3A—H3A···S2Bi | 0.86 | 2.50 | 3.350 (5) | 172 |
C42A—H42A···S2Bi | 0.93 | 2.85 | 3.723 (9) | 156 |
N1B—H1B···S2Aii | 0.86 | 2.46 | 3.290 (5) | 163 |
N3B—H3B···S2A | 0.86 | 2.48 | 3.343 (5) | 176 |
C42B—H42B···S2A | 0.93 | 2.79 | 3.686 (9) | 161 |
N1C—H1C···S2D | 0.86 | 2.45 | 3.288 (5) | 166 |
N3C—H3C···S2Dii | 0.86 | 2.50 | 3.348 (5) | 172 |
C42C—H42C···S2Dii | 0.93 | 2.89 | 3.741 (8) | 153 |
N1D—H1D···S2Ci | 0.86 | 2.43 | 3.271 (6) | 166 |
N3D—H3D···S2C | 0.86 | 2.50 | 3.353 (6) | 172 |
C42D—H42D···S2C | 0.93 | 2.85 | 3.766 (9) | 169 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C9H8N2S |
Mr | 176.23 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 295 |
a, b, c (Å) | 11.7578 (5), 11.8071 (5), 25.1339 (18) |
β (°) | 91.858 (6) |
V (Å3) | 3487.4 (3) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.2 × 0.16 × 0.03 |
Data collection | |
Diffractometer | Xcalibur, Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.928, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11682, 5247, 4168 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.165, 1.08 |
No. of reflections | 5247 |
No. of parameters | 433 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −0.27 |
Absolute structure | Flack (1983), 1447 Friedel pairs |
Absolute structure parameter | 0.01 (13) |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···S2B | 0.86 | 2.44 | 3.274 (6) | 162.5 |
N3A—H3A···S2Bi | 0.86 | 2.50 | 3.350 (5) | 172.4 |
C42A—H42A···S2Bi | 0.93 | 2.85 | 3.723 (9) | 156.2 |
N1B—H1B···S2Aii | 0.86 | 2.46 | 3.290 (5) | 162.9 |
N3B—H3B···S2A | 0.86 | 2.48 | 3.343 (5) | 175.5 |
C42B—H42B···S2A | 0.93 | 2.79 | 3.686 (9) | 160.9 |
N1C—H1C···S2D | 0.86 | 2.45 | 3.288 (5) | 165.5 |
N3C—H3C···S2Dii | 0.86 | 2.50 | 3.348 (5) | 171.6 |
C42C—H42C···S2Dii | 0.93 | 2.89 | 3.741 (8) | 152.5 |
N1D—H1D···S2Ci | 0.86 | 2.43 | 3.271 (6) | 166.0 |
N3D—H3D···S2C | 0.86 | 2.50 | 3.353 (6) | 171.8 |
C42D—H42D···S2C | 0.93 | 2.85 | 3.766 (9) | 169.3 |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y−1/2, z. |
References
Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165. CrossRef CAS IUCr Journals Web of Science Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Buxeraud, J. (1995). Traite de Chimie Therapeutique, Vol. 4, ch. 18. Paris: Tec et Doc Lavoisier. Google Scholar
Conde, A., Moreno, E. & Márquez, R. (1977). Acta Cryst. B33, 794–797. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hussain, M. S., Al-Arfaj, A. R. & Hossain, M. L. (1990). Transition Met. Chem. 15, 264–269. CSD CrossRef CAS Web of Science Google Scholar
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martindale, W. (1982). The Extra Pharmacopoeia, 28th ed. London: The Pharmaceutical Press. Google Scholar
Raper, E. S., Jackson, A. R. W. & Gardiner, D. J. (1984). Inorg. Chim. Acta, 84, L1–L4. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic thioamides are an important class of N, S-donor ligands, which display both hard and soft donor sites. They form a huge variety of coordination compounds and consequently have wide-ranging applications: for instance, as analytical reagents or metal corrosion inhibitors. They are also used as biologically active molecules (e.g. Hussain et al., 1990, and references therein). Among the anti-thyroidal agents most widely used for the treatment of Graves' disease are some derivatives of imidazole-2-thiol as N-methylimidazoline-2-thione (Methimazole) as well as other thioamides, e.g. 3-methyl-2-thioxo-4-imidazoline-1-carboxylate (Carbimazole) and propylthiouracil (Martindale, 1982, Buxeraud, 1995). Here we present the crystal structure of simple thioamide, 4-phenyl-1,3-dihydro-2H-imidazole-2-thione (1, Scheme 1), which turned out to crystallize with Z'=4.
The Cambridge Structural Database (Allen, 2002) contains only a handful of 1,3-dihydroimidazole-2-thione derivatives. These are mainly S-metal complexes and few simple organic derivatives, for instance 1,3-dihydro-2H-imidazole-2-thione hydrate (Raper et al., 1984) and 4-formyl-1,3-dihydro-2H-imidazole-2-thione (Conde et al., 1977).
The asymmetric part of the unit cell of 1 contains four independent molecules, Fig. 1 shows one of them. These molecules are similar; the results of the normal probability plot analysis (International Tables for X-ray Crystallography, 1974; Abrahams & Keve, 1971) for bond lengths and angles show that there are no systematical differences between the molecules, and the actual differences are only of statistical nature: R2 correlation factors for bond lengths and angles are generally around 0.95.
Overall conformation of the molecules can be described here by the dihedral angles between two almost perfectly planar (within 3 s.u.'s) rings, imidazole and phenyl. These angles are relatively small - thanks partially at least to the lack of the sterical hindrance - and range from 9.0 (6)° for molecule B to 13.1 (5)° for molecule C. The bond length and angles are typical, with the C—S bond distance confirming its double-bond character, the mean value of this length is 1.694 (4) Å.
In the crystal structure the pairs of molecules A—B and C—D create identical but independent motifs. They are joined into infinite ribbons (along [110]) by means of relatively short and linear N—H···S hydrogen bonds (Table 1, Fig. 2), and additionally by weaker, secondary C—H···S hydrogen bonds. Using graph-set notation (Etter, et al., 1990, Bernstein et al., 1995), one can identify the second-order rings R22(8) which are made by interweaving C22(8) chains. These almost independent ribbons combine together to make the overall three-dimensional structure (Fig. 3).