organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Phenyl-1H-imidazole-2(3H)-thione

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 12 April 2012; accepted 4 May 2012; online 12 May 2012)

In the asymmetric unit of the title compound, C9H8N2S, there are four symmetry-independent mol­ecules (Z′ = 4). The geometrical features of these mol­ecules are quite similar: in the normal probability plots the R2 correlation factors for bond lengths and angles are generally around 0.95. The twist angles between the imidazole and phenyl rings (which are planar within 3σ) range from 9.0 (6) to 13.1 (5)°. In the crystal, pairs of independent molecules are joined by linear N—H⋯S and weak C—H⋯S hydrogen bonds, forming infinite ribbons, of the type ∼ABABAB∼ and ∼CDCDCD∼, propagating along [110]. Second-order hydrogen-bonded R22(8) rings are formed via inter­weaving infinite C22(8) chains.

Related literature

For related structures, see: Conde et al. (1977[Conde, A., Moreno, E. & Márquez, R. (1977). Acta Cryst. B33, 794-797.]); Raper et al. (1984[Raper, E. S., Jackson, A. R. W. & Gardiner, D. J. (1984). Inorg. Chim. Acta, 84, L1-L4.]). For general background to thio­amides, see: Martindale (1982[Martindale, W. (1982). The Extra Pharmacopoeia, 28th ed. London: The Pharmaceutical Press.]); Hussain et al. (1990[Hussain, M. S., Al-Arfaj, A. R. & Hossain, M. L. (1990). Transition Met. Chem. 15, 264-269.]); Buxeraud (1995[Buxeraud, J. (1995). Traite de Chimie Therapeutique, Vol. 4, ch. 18. Paris: Tec et Doc Lavoisier.]). For normal probability plots, see: Abrahams & Keve (1971[Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157-165.]); Inter­national Tables for X-ray Crystallography (1974[International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2S

  • Mr = 176.23

  • Monoclinic, C c

  • a = 11.7578 (5) Å

  • b = 11.8071 (5) Å

  • c = 25.1339 (18) Å

  • β = 91.858 (6)°

  • V = 3487.4 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.2 × 0.16 × 0.03 mm

Data collection
  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.928, Tmax = 1.000

  • 11682 measured reflections

  • 5247 independent reflections

  • 4168 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.165

  • S = 1.08

  • 5247 reflections

  • 433 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1447 Friedel pairs

  • Flack parameter: 0.01 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯S2B 0.86 2.44 3.274 (6) 163
N3A—H3A⋯S2Bi 0.86 2.50 3.350 (5) 172
C42A—H42A⋯S2Bi 0.93 2.85 3.723 (9) 156
N1B—H1B⋯S2Aii 0.86 2.46 3.290 (5) 163
N3B—H3B⋯S2A 0.86 2.48 3.343 (5) 176
C42B—H42B⋯S2A 0.93 2.79 3.686 (9) 161
N1C—H1C⋯S2D 0.86 2.45 3.288 (5) 166
N3C—H3C⋯S2Dii 0.86 2.50 3.348 (5) 172
C42C—H42C⋯S2Dii 0.93 2.89 3.741 (8) 153
N1D—H1D⋯S2Ci 0.86 2.43 3.271 (6) 166
N3D—H3D⋯S2C 0.86 2.50 3.353 (6) 172
C42D—H42D⋯S2C 0.93 2.85 3.766 (9) 169
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic thioamides are an important class of N, S-donor ligands, which display both hard and soft donor sites. They form a huge variety of coordination compounds and consequently have wide-ranging applications: for instance, as analytical reagents or metal corrosion inhibitors. They are also used as biologically active molecules (e.g. Hussain et al., 1990, and references therein). Among the anti-thyroidal agents most widely used for the treatment of Graves' disease are some derivatives of imidazole-2-thiol as N-methylimidazoline-2-thione (Methimazole) as well as other thioamides, e.g. 3-methyl-2-thioxo-4-imidazoline-1-carboxylate (Carbimazole) and propylthiouracil (Martindale, 1982, Buxeraud, 1995). Here we present the crystal structure of simple thioamide, 4-phenyl-1,3-dihydro-2H-imidazole-2-thione (1, Scheme 1), which turned out to crystallize with Z'=4.

The Cambridge Structural Database (Allen, 2002) contains only a handful of 1,3-dihydroimidazole-2-thione derivatives. These are mainly S-metal complexes and few simple organic derivatives, for instance 1,3-dihydro-2H-imidazole-2-thione hydrate (Raper et al., 1984) and 4-formyl-1,3-dihydro-2H-imidazole-2-thione (Conde et al., 1977).

The asymmetric part of the unit cell of 1 contains four independent molecules, Fig. 1 shows one of them. These molecules are similar; the results of the normal probability plot analysis (International Tables for X-ray Crystallography, 1974; Abrahams & Keve, 1971) for bond lengths and angles show that there are no systematical differences between the molecules, and the actual differences are only of statistical nature: R2 correlation factors for bond lengths and angles are generally around 0.95.

Overall conformation of the molecules can be described here by the dihedral angles between two almost perfectly planar (within 3 s.u.'s) rings, imidazole and phenyl. These angles are relatively small - thanks partially at least to the lack of the sterical hindrance - and range from 9.0 (6)° for molecule B to 13.1 (5)° for molecule C. The bond length and angles are typical, with the C—S bond distance confirming its double-bond character, the mean value of this length is 1.694 (4) Å.

In the crystal structure the pairs of molecules A—B and C—D create identical but independent motifs. They are joined into infinite ribbons (along [110]) by means of relatively short and linear N—H···S hydrogen bonds (Table 1, Fig. 2), and additionally by weaker, secondary C—H···S hydrogen bonds. Using graph-set notation (Etter, et al., 1990, Bernstein et al., 1995), one can identify the second-order rings R22(8) which are made by interweaving C22(8) chains. These almost independent ribbons combine together to make the overall three-dimensional structure (Fig. 3).

Related literature top

For related crystal structures, see: Conde et al. (1977); Raper et al. (1984). For general literature on thioamides, see: Martindale (1982); Hussain et al. (1990); Buxeraud (1995). For literature on normal probability plots, see: Abrahams & Keve (1971); International Tables for X-ray Crystallography (1974); for the Cambridge Structural Database, see: Allen (2002); and for graph-set notation, see: Bernstein et al. (1995);; Etter et al. (1990).

Experimental top

The title compound was prepared by adding hydrochloric acid to acetonitrile solution of 4-phenyl-imidazole-2-thiol in molar ratio 1:1. After a few minutes colourless, thin crystals of 1, suitable for single-crystal X-ray analysis appeared and were filtered off.

Refinement top

Hydrogen atoms were put in the idealized positions, and refined as riding model. Their isotropic thermal parameters were set at 1.2 times Ueq's of appropriate carrier atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid representation of the molecule 1 A,The ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded ribbon of molecules A and B (molecules C and D are joined into almost identical structure). Hydrogen bonds are shown as dashed lines, symmetry codes:; (i) -1/2 + x,-1/2 + y,z; (ii) 1/2 + x,1/2 + y,z..
[Figure 3] Fig. 3. The crystal packing as seen approximately along c-direction, hydrogen bonds are drawn as dashed lines. Symmetry-independent molecules are shown with different colours.
4-Phenyl-1H-imidazole-2(3H)-thione top
Crystal data top
C9H8N2SF(000) = 1472
Mr = 176.23Dx = 1.343 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4788 reflections
a = 11.7578 (5) Åθ = 2.4–26.9°
b = 11.8071 (5) ŵ = 0.31 mm1
c = 25.1339 (18) ÅT = 295 K
β = 91.858 (6)°Plate, yellow
V = 3487.4 (3) Å30.2 × 0.16 × 0.03 mm
Z = 16
Data collection top
Xcalibur, Eos
diffractometer
5247 independent reflections
Radiation source: Enhance (Mo) X-ray Source4168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1544 pixels mm-1θmax = 27.0°, θmin = 2.5°
ω–scanh = 149
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1414
Tmin = 0.928, Tmax = 1.000l = 3030
11682 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.073P)2 + 5.346P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5247 reflectionsΔρmax = 0.80 e Å3
433 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 1447 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (13)
Crystal data top
C9H8N2SV = 3487.4 (3) Å3
Mr = 176.23Z = 16
Monoclinic, CcMo Kα radiation
a = 11.7578 (5) ŵ = 0.31 mm1
b = 11.8071 (5) ÅT = 295 K
c = 25.1339 (18) Å0.2 × 0.16 × 0.03 mm
β = 91.858 (6)°
Data collection top
Xcalibur, Eos
diffractometer
5247 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4168 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 1.000Rint = 0.045
11682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.80 e Å3
S = 1.08Δρmin = 0.27 e Å3
5247 reflectionsAbsolute structure: Flack (1983), 1447 Friedel pairs
433 parametersAbsolute structure parameter: 0.01 (13)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.4989 (5)0.4546 (4)0.8218 (2)0.0444 (12)
H1A0.44240.41290.81150.053*
C2A0.5332 (5)0.5485 (5)0.7969 (3)0.0345 (13)
S2A0.47435 (12)0.60428 (14)0.74045 (7)0.0458 (4)
N3A0.6236 (4)0.5869 (4)0.8257 (2)0.0371 (11)
H3A0.66190.64640.81790.045*
C4A0.6471 (5)0.5183 (5)0.8695 (2)0.0360 (13)
C41A0.7430 (6)0.5375 (5)0.9085 (3)0.0411 (15)
C42A0.8265 (8)0.6105 (8)0.8996 (4)0.070 (3)
H42A0.82290.65280.86840.084*
C43A0.9180 (9)0.6267 (9)0.9345 (4)0.079 (3)
H43A0.97450.67850.92630.095*
C44A0.9258 (7)0.5679 (8)0.9802 (4)0.067 (2)
H44A0.98570.57971.00460.080*
C45A0.8436 (9)0.4911 (8)0.9894 (4)0.072 (3)
H45A0.84950.44601.01970.086*
C46A0.7474 (7)0.4777 (7)0.9534 (3)0.0558 (19)
H46A0.68900.42800.96130.067*
C5A0.5680 (6)0.4349 (5)0.8665 (3)0.0428 (14)
H5A0.56130.37500.89020.051*
N1B0.0966 (4)0.3495 (5)0.7179 (2)0.0435 (13)
H1B0.05590.29400.72860.052*
C2B0.1929 (5)0.3860 (5)0.7428 (2)0.0378 (14)
S2B0.25122 (12)0.33365 (14)0.79993 (7)0.0466 (4)
N3B0.2285 (4)0.4711 (4)0.7131 (2)0.0358 (11)
H3B0.28960.50910.71990.043*
C4B0.1546 (5)0.4916 (5)0.6695 (2)0.0348 (13)
C41B0.1702 (6)0.5816 (6)0.6307 (3)0.0422 (15)
C42B0.2505 (8)0.6634 (9)0.6382 (4)0.076 (3)
H42B0.29880.66380.66820.091*
C43B0.2579 (9)0.7492 (9)0.5979 (5)0.096 (4)
H43B0.31200.80590.60320.116*
C44B0.1938 (8)0.7536 (9)0.5539 (4)0.062 (2)
H44B0.20340.80920.52830.075*
C45B0.1127 (9)0.6719 (8)0.5484 (4)0.076 (3)
H45B0.06390.67360.51860.091*
C46B0.0997 (8)0.5848 (7)0.5859 (3)0.067 (2)
H46B0.04390.52980.58050.081*
C5B0.0719 (6)0.4130 (5)0.6731 (3)0.0442 (15)
H5B0.00980.40340.64960.053*
N1C0.5331 (4)0.2879 (4)0.7138 (2)0.0469 (13)
H1C0.59050.32870.72380.056*
C2C0.4983 (5)0.1952 (5)0.7392 (3)0.0364 (13)
S2C0.55718 (13)0.14044 (14)0.79617 (7)0.0481 (4)
N3C0.4080 (4)0.1579 (4)0.7113 (2)0.0368 (11)
H3C0.36890.09910.71920.044*
C4C0.3853 (5)0.2275 (5)0.6673 (2)0.0376 (14)
C41C0.2895 (5)0.2125 (6)0.6298 (3)0.0425 (15)
C42C0.1987 (7)0.1387 (7)0.6398 (3)0.053 (2)
H42C0.19890.09630.67100.064*
C43C0.1101 (8)0.1297 (8)0.6034 (4)0.074 (3)
H43C0.05040.08030.60990.089*
C44C0.1083 (9)0.1948 (7)0.5560 (4)0.070 (3)
H44C0.04770.18900.53140.084*
C45C0.1965 (7)0.2658 (8)0.5470 (3)0.0518 (19)
H45C0.19620.30910.51610.062*
C46C0.2816 (7)0.2737 (7)0.5813 (3)0.055 (2)
H46C0.34080.32260.57350.066*
C5C0.4655 (6)0.3088 (6)0.6699 (3)0.0482 (16)
H5C0.47330.36830.64610.058*
N1D0.9343 (5)0.3980 (5)0.8200 (2)0.0492 (14)
H1D0.97390.45480.80990.059*
C2D0.8402 (5)0.3599 (5)0.7950 (3)0.0371 (13)
S2D0.77977 (13)0.41209 (14)0.73786 (7)0.0503 (4)
N3D0.8053 (4)0.2707 (4)0.8242 (2)0.0398 (12)
H3D0.74580.23070.81680.048*
C4D0.8767 (5)0.2527 (5)0.8668 (2)0.0381 (14)
C41D0.8657 (6)0.1604 (6)0.9059 (3)0.0421 (15)
C42D0.7813 (7)0.0797 (7)0.9028 (3)0.061 (2)
H42D0.72770.08430.87480.073*
C43D0.7718 (9)0.0058 (9)0.9380 (4)0.084 (3)
H43D0.71170.05700.93560.101*
C44D0.8559 (8)0.0141 (8)0.9782 (4)0.064 (2)
H44D0.85350.07351.00240.077*
C45D0.9391 (7)0.0611 (7)0.9825 (3)0.054 (2)
H45D0.99290.05591.01030.065*
C46D0.9459 (7)0.1450 (7)0.9465 (3)0.0522 (19)
H46D1.00720.19470.94910.063*
C5D0.9591 (6)0.3327 (6)0.8646 (3)0.0519 (17)
H5D1.02050.34190.88840.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.047 (3)0.034 (3)0.051 (3)0.008 (2)0.005 (3)0.003 (2)
C2A0.026 (3)0.029 (3)0.049 (3)0.008 (2)0.001 (3)0.009 (2)
S2A0.0409 (9)0.0470 (9)0.0487 (9)0.0178 (7)0.0117 (7)0.0096 (7)
N3A0.036 (3)0.036 (3)0.040 (3)0.001 (2)0.001 (2)0.009 (2)
C4A0.036 (3)0.035 (3)0.037 (3)0.003 (3)0.001 (2)0.003 (2)
C41A0.044 (4)0.040 (3)0.039 (4)0.006 (3)0.002 (3)0.006 (3)
C42A0.062 (6)0.087 (6)0.059 (5)0.002 (5)0.031 (4)0.014 (5)
C43A0.076 (6)0.090 (6)0.070 (6)0.033 (5)0.015 (5)0.023 (5)
C44A0.042 (4)0.090 (6)0.067 (5)0.015 (4)0.016 (4)0.011 (5)
C45A0.089 (7)0.064 (5)0.061 (5)0.012 (5)0.029 (5)0.020 (4)
C46A0.046 (4)0.071 (5)0.049 (4)0.009 (4)0.014 (3)0.007 (4)
C5A0.045 (4)0.043 (3)0.040 (3)0.010 (3)0.000 (3)0.002 (3)
N1B0.035 (3)0.043 (3)0.052 (3)0.021 (2)0.004 (2)0.002 (2)
C2B0.039 (3)0.031 (3)0.044 (3)0.002 (3)0.003 (3)0.000 (3)
S2B0.0386 (9)0.0488 (9)0.0516 (9)0.0184 (7)0.0101 (7)0.0157 (7)
N3B0.023 (2)0.039 (3)0.045 (3)0.011 (2)0.000 (2)0.005 (2)
C4B0.035 (3)0.039 (3)0.031 (3)0.002 (3)0.002 (2)0.002 (2)
C41B0.037 (4)0.045 (4)0.044 (4)0.000 (3)0.005 (3)0.001 (3)
C42B0.080 (7)0.088 (6)0.058 (5)0.014 (5)0.036 (5)0.041 (5)
C43B0.082 (7)0.078 (6)0.128 (10)0.036 (5)0.018 (7)0.038 (6)
C44B0.062 (5)0.072 (6)0.052 (5)0.009 (4)0.001 (4)0.022 (4)
C45B0.107 (8)0.077 (6)0.042 (4)0.004 (6)0.030 (5)0.024 (4)
C46B0.082 (6)0.066 (5)0.052 (5)0.011 (4)0.013 (4)0.013 (4)
C5B0.042 (4)0.043 (4)0.047 (4)0.011 (3)0.011 (3)0.001 (3)
N1C0.039 (3)0.042 (3)0.059 (4)0.018 (2)0.002 (3)0.005 (3)
C2C0.031 (3)0.035 (3)0.042 (3)0.006 (2)0.003 (3)0.007 (3)
S2C0.0442 (10)0.0442 (9)0.0550 (10)0.0178 (8)0.0112 (7)0.0072 (8)
N3C0.029 (3)0.035 (2)0.046 (3)0.014 (2)0.002 (2)0.007 (2)
C4C0.036 (3)0.036 (3)0.041 (3)0.001 (3)0.005 (3)0.003 (3)
C41C0.033 (3)0.049 (4)0.046 (4)0.009 (3)0.006 (3)0.007 (3)
C42C0.052 (5)0.057 (5)0.051 (4)0.017 (3)0.000 (4)0.020 (4)
C43C0.052 (5)0.074 (6)0.094 (7)0.024 (4)0.024 (5)0.016 (5)
C44C0.093 (7)0.059 (5)0.055 (5)0.005 (5)0.038 (5)0.008 (4)
C45C0.047 (4)0.069 (5)0.039 (4)0.008 (4)0.001 (3)0.005 (3)
C46C0.063 (5)0.051 (4)0.052 (4)0.006 (3)0.010 (4)0.016 (3)
C5C0.050 (4)0.046 (4)0.049 (4)0.009 (3)0.004 (3)0.012 (3)
N1D0.043 (3)0.049 (3)0.054 (4)0.008 (3)0.004 (3)0.008 (3)
C2D0.022 (3)0.040 (3)0.050 (3)0.011 (2)0.005 (2)0.006 (3)
S2D0.0433 (10)0.0495 (10)0.0578 (10)0.0173 (7)0.0051 (8)0.0106 (8)
N3D0.039 (3)0.034 (3)0.046 (3)0.006 (2)0.004 (2)0.004 (2)
C4D0.033 (3)0.040 (3)0.042 (3)0.000 (3)0.002 (3)0.009 (3)
C41D0.043 (4)0.039 (3)0.044 (4)0.001 (3)0.006 (3)0.003 (3)
C42D0.061 (5)0.059 (5)0.062 (5)0.024 (4)0.022 (4)0.017 (4)
C43D0.085 (7)0.091 (6)0.074 (6)0.043 (5)0.034 (5)0.039 (5)
C44D0.073 (6)0.055 (5)0.064 (5)0.003 (4)0.010 (4)0.019 (4)
C45D0.036 (4)0.075 (5)0.050 (4)0.004 (4)0.005 (3)0.006 (4)
C46D0.043 (4)0.059 (4)0.055 (4)0.012 (3)0.004 (3)0.000 (3)
C5D0.045 (4)0.054 (4)0.055 (4)0.012 (3)0.011 (3)0.006 (3)
Geometric parameters (Å, º) top
N1A—C2A1.342 (7)N1C—C2C1.338 (8)
N1A—C5A1.385 (8)N1C—C5C1.361 (9)
N1A—H1A0.8600N1C—H1C0.8600
C2A—N3A1.345 (8)C2C—N3C1.329 (8)
C2A—S2A1.691 (6)C2C—S2C1.698 (7)
N3A—C4A1.388 (8)N3C—C4C1.397 (8)
N3A—H3A0.8600N3C—H3C0.8600
C4A—C5A1.355 (9)C4C—C5C1.345 (9)
C4A—C41A1.487 (9)C4C—C41C1.456 (9)
C41A—C46A1.331 (10)C41C—C42C1.407 (9)
C41A—C42A1.331 (11)C41C—C46C1.416 (10)
C42A—C43A1.378 (13)C42C—C43C1.368 (13)
C42A—H42A0.9300C42C—H42C0.9300
C43A—C44A1.343 (14)C43C—C44C1.419 (13)
C43A—H43A0.9300C43C—H43C0.9300
C44A—C45A1.351 (12)C44C—C45C1.358 (12)
C44A—H44A0.9300C44C—H44C0.9300
C45A—C46A1.434 (12)C45C—C46C1.303 (12)
C45A—H45A0.9300C45C—H45C0.9300
C46A—H46A0.9300C46C—H46C0.9300
C5A—H5A0.9300C5C—H5C0.9300
N1B—C2B1.346 (8)N1D—C2D1.333 (8)
N1B—C5B1.377 (8)N1D—C5D1.383 (9)
N1B—H1B0.8600N1D—H1D0.8600
C2B—N3B1.328 (8)C2D—N3D1.355 (8)
C2B—S2B1.688 (6)C2D—S2D1.697 (7)
N3B—C4B1.397 (8)N3D—C4D1.355 (8)
N3B—H3B0.8600N3D—H3D0.8600
C4B—C5B1.349 (9)C4D—C5D1.355 (9)
C4B—C41B1.458 (9)C4D—C41D1.476 (9)
C41B—C42B1.359 (12)C41D—C42D1.377 (10)
C41B—C46B1.377 (11)C41D—C46D1.378 (11)
C42B—C43B1.437 (13)C42D—C43D1.350 (12)
C42B—H42B0.9300C42D—H42D0.9300
C43B—C44B1.318 (14)C43D—C44D1.393 (13)
C43B—H43B0.9300C43D—H43D0.9300
C44B—C45B1.360 (13)C44D—C45D1.323 (12)
C44B—H44B0.9300C44D—H44D0.9300
C45B—C46B1.407 (12)C45D—C46D1.345 (12)
C45B—H45B0.9300C45D—H45D0.9300
C46B—H46B0.9300C46D—H46D0.9300
C5B—H5B0.9300C5D—H5D0.9300
C2A—N1A—C5A109.9 (5)C2C—N1C—C5C110.9 (5)
C2A—N1A—H1A125.0C2C—N1C—H1C124.6
C5A—N1A—H1A125.0C5C—N1C—H1C124.6
N1A—C2A—N3A105.7 (5)N3C—C2C—N1C105.7 (6)
N1A—C2A—S2A126.3 (5)N3C—C2C—S2C128.0 (5)
N3A—C2A—S2A127.9 (4)N1C—C2C—S2C126.3 (5)
C2A—N3A—C4A111.4 (5)C2C—N3C—C4C110.6 (5)
C2A—N3A—H3A124.3C2C—N3C—H3C124.7
C4A—N3A—H3A124.3C4C—N3C—H3C124.7
C5A—C4A—N3A105.1 (6)C5C—C4C—N3C105.4 (6)
C5A—C4A—C41A130.7 (6)C5C—C4C—C41C130.1 (6)
N3A—C4A—C41A124.2 (6)N3C—C4C—C41C124.4 (6)
C46A—C41A—C42A118.5 (8)C42C—C41C—C46C116.1 (7)
C46A—C41A—C4A119.1 (7)C42C—C41C—C4C122.4 (7)
C42A—C41A—C4A122.4 (6)C46C—C41C—C4C121.5 (6)
C41A—C42A—C43A123.3 (9)C43C—C42C—C41C119.7 (7)
C41A—C42A—H42A118.4C43C—C42C—H42C120.2
C43A—C42A—H42A118.4C41C—C42C—H42C120.2
C44A—C43A—C42A120.1 (9)C42C—C43C—C44C120.6 (8)
C44A—C43A—H43A119.9C42C—C43C—H43C119.7
C42A—C43A—H43A119.9C44C—C43C—H43C119.7
C43A—C44A—C45A117.7 (9)C45C—C44C—C43C118.9 (8)
C43A—C44A—H44A121.2C45C—C44C—H44C120.5
C45A—C44A—H44A121.2C43C—C44C—H44C120.5
C44A—C45A—C46A121.3 (9)C46C—C45C—C44C120.5 (8)
C44A—C45A—H45A119.3C46C—C45C—H45C119.7
C46A—C45A—H45A119.3C44C—C45C—H45C119.7
C41A—C46A—C45A119.0 (8)C45C—C46C—C41C124.1 (8)
C41A—C46A—H46A120.5C45C—C46C—H46C118.0
C45A—C46A—H46A120.5C41C—C46C—H46C118.0
C4A—C5A—N1A107.9 (6)C4C—C5C—N1C107.5 (6)
C4A—C5A—H5A126.1C4C—C5C—H5C126.3
N1A—C5A—H5A126.1N1C—C5C—H5C126.3
C2B—N1B—C5B111.1 (5)C2D—N1D—C5D110.1 (6)
C2B—N1B—H1B124.5C2D—N1D—H1D125.0
C5B—N1B—H1B124.5C5D—N1D—H1D125.0
N3B—C2B—N1B104.8 (6)N1D—C2D—N3D105.5 (6)
N3B—C2B—S2B129.0 (5)N1D—C2D—S2D126.5 (5)
N1B—C2B—S2B126.2 (5)N3D—C2D—S2D128.0 (5)
C2B—N3B—C4B111.9 (5)C2D—N3D—C4D111.1 (5)
C2B—N3B—H3B124.0C2D—N3D—H3D124.5
C4B—N3B—H3B124.0C4D—N3D—H3D124.5
C5B—C4B—N3B105.1 (5)C5D—C4D—N3D106.5 (6)
C5B—C4B—C41B130.8 (6)C5D—C4D—C41D128.3 (6)
N3B—C4B—C41B124.2 (6)N3D—C4D—C41D125.2 (6)
C42B—C41B—C46B119.4 (7)C42D—C41D—C46D115.1 (7)
C42B—C41B—C4B121.9 (7)C42D—C41D—C4D123.5 (7)
C46B—C41B—C4B118.7 (6)C46D—C41D—C4D121.2 (6)
C41B—C42B—C43B117.5 (9)C43D—C42D—C41D123.8 (8)
C41B—C42B—H42B121.2C43D—C42D—H42D118.1
C43B—C42B—H42B121.2C41D—C42D—H42D118.1
C44B—C43B—C42B124.9 (9)C42D—C43D—C44D117.1 (8)
C44B—C43B—H43B117.6C42D—C43D—H43D121.5
C42B—C43B—H43B117.6C44D—C43D—H43D121.5
C43B—C44B—C45B116.0 (8)C45D—C44D—C43D121.2 (8)
C43B—C44B—H44B122.0C45D—C44D—H44D119.4
C45B—C44B—H44B122.0C43D—C44D—H44D119.4
C44B—C45B—C46B122.7 (9)C44D—C45D—C46D119.9 (9)
C44B—C45B—H45B118.6C44D—C45D—H45D120.0
C46B—C45B—H45B118.6C46D—C45D—H45D120.0
C41B—C46B—C45B119.5 (8)C45D—C46D—C41D122.7 (7)
C41B—C46B—H46B120.3C45D—C46D—H46D118.6
C45B—C46B—H46B120.3C41D—C46D—H46D118.6
C4B—C5B—N1B107.2 (6)C4D—C5D—N1D106.9 (6)
C4B—C5B—H5B126.4C4D—C5D—H5D126.6
N1B—C5B—H5B126.4N1D—C5D—H5D126.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···S2B0.862.443.274 (6)163
N3A—H3A···S2Bi0.862.503.350 (5)172
C42A—H42A···S2Bi0.932.853.723 (9)156
N1B—H1B···S2Aii0.862.463.290 (5)163
N3B—H3B···S2A0.862.483.343 (5)176
C42B—H42B···S2A0.932.793.686 (9)161
N1C—H1C···S2D0.862.453.288 (5)166
N3C—H3C···S2Dii0.862.503.348 (5)172
C42C—H42C···S2Dii0.932.893.741 (8)153
N1D—H1D···S2Ci0.862.433.271 (6)166
N3D—H3D···S2C0.862.503.353 (6)172
C42D—H42D···S2C0.932.853.766 (9)169
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H8N2S
Mr176.23
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)11.7578 (5), 11.8071 (5), 25.1339 (18)
β (°) 91.858 (6)
V3)3487.4 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.2 × 0.16 × 0.03
Data collection
DiffractometerXcalibur, Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.928, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11682, 5247, 4168
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.165, 1.08
No. of reflections5247
No. of parameters433
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.27
Absolute structureFlack (1983), 1447 Friedel pairs
Absolute structure parameter0.01 (13)

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···S2B0.862.443.274 (6)162.5
N3A—H3A···S2Bi0.862.503.350 (5)172.4
C42A—H42A···S2Bi0.932.853.723 (9)156.2
N1B—H1B···S2Aii0.862.463.290 (5)162.9
N3B—H3B···S2A0.862.483.343 (5)175.5
C42B—H42B···S2A0.932.793.686 (9)160.9
N1C—H1C···S2D0.862.453.288 (5)165.5
N3C—H3C···S2Dii0.862.503.348 (5)171.6
C42C—H42C···S2Dii0.932.893.741 (8)152.5
N1D—H1D···S2Ci0.862.433.271 (6)166.0
N3D—H3D···S2C0.862.503.353 (6)171.8
C42D—H42D···S2C0.932.853.766 (9)169.3
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.
 

References

First citationAbrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBuxeraud, J. (1995). Traite de Chimie Therapeutique, Vol. 4, ch. 18. Paris: Tec et Doc Lavoisier.  Google Scholar
First citationConde, A., Moreno, E. & Márquez, R. (1977). Acta Cryst. B33, 794–797.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHussain, M. S., Al-Arfaj, A. R. & Hossain, M. L. (1990). Transition Met. Chem. 15, 264–269.  CSD CrossRef CAS Web of Science Google Scholar
First citationInternational Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartindale, W. (1982). The Extra Pharmacopoeia, 28th ed. London: The Pharmaceutical Press.  Google Scholar
First citationRaper, E. S., Jackson, A. R. W. & Gardiner, D. J. (1984). Inorg. Chim. Acta, 84, L1–L4.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds