metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[trans-di­chloridobis(propane-1,3-di­amine-κ2N,N′)chromium(III)] tetra­chloridozincate determined using synchrotron radiation

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, bDepartment of Chemistry, Shah Jalal University of Science and Technology, Sylhet, Bangladesh, and cDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@andong.ac.kr

(Received 13 April 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, [CrCl2(C3H10N2)2]2[ZnCl4], the CrIII atom is coordinated by four N atoms of propane-1,3-diamine (tn) and two Cl atoms in a trans arrangement, displaying a distorted octa­hedral geometry with crystallographic inversion symmetry; the Zn atom in the [ZnCl4]2− anion lies on a -4 axis. The orientations of the two six-membered chelate rings in the complex cation are in an anti chair–chair conformation with respect to each other. The Cr—N bond lengths are 2.087 (6) and 2.097 (6) Å. The Cr—Cl and Zn—Cl bond lengths are 2.3151 (16) and 2.3255 (13) Å, respectively. Weak inter­molecular hydrogen bonds involving the tn NH2 groups as donors and chloride ligands of the anion and cation as acceptors are observed.

Related literature

For the synthesis, see: House (1970[House, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741-746.]). For the structures of trans-[Cr(tn)2L2]ClO4 (L = F, Cl, Br), see: Vaughn & Rogers (1985[Vaughn, J. W. & Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, 281-287.]); Choi & Clegg (2011[Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.]); Choi et al. (2012[Choi, J. H., Subhan, M. A. & Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, 433-437.]). For the structures of trans-[Cr(Me2tn)2Cl2]ClO4 and trans-[Cr(Me2tn)2Cl2]2ZnCl4, see: Choi et al. (2008[Choi, J.-H., Lee, S. H. & Lee, U. (2008). Acta Cryst. E64, m1429.], 2011[Choi, J. H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]).

[Scheme 1]

Experimental

Crystal data
  • [CrCl2(C3H10N2)2]2[ZnCl4]

  • Mr = 749.49

  • Tetragonal, P 42 /n

  • a = 15.141 (2) Å

  • c = 6.4220 (13) Å

  • V = 1472.2 (4) Å3

  • Z = 2

  • Synchrotron radiation, λ = 0.90000 Å

  • μ = 4.26 mm−1

  • T = 95 K

  • 0.16 × 0.02 × 0.02 mm

Data collection
  • ADSC Q210 CCD area-detector diffractometer

  • Absorption correction: multi-scan (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.549, Tmax = 0.920

  • 7735 measured reflections

  • 1225 independent reflections

  • 1157 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.198

  • S = 1.11

  • 1225 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 2.55 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl2 0.92 2.90 3.678 (6) 144
N1—H1A⋯Cl2i 0.92 2.87 3.636 (6) 142
N1—H1B⋯Cl2ii 0.92 2.82 3.529 (6) 134
N2—H2A⋯Cl2iii 0.92 2.72 3.641 (6) 179
N2—H2B⋯Cl1iv 0.92 2.56 3.404 (6) 154
Symmetry codes: (i) x, y, z+1; (ii) [-y+{\script{1\over 2}}, x, -z+{\script{1\over 2}}]; (iii) [y+{\script{1\over 2}}, -x+1, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+2.

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]); cell refinement: HKL-3000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-3000; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are two possible conformations with respect to the six-membered rings in the trans-[Cr(tn)2L2]+(tn = propane-1,3-diamine, L = monodentate). The carbon atoms of the two chelate rings of the tn ligands can be located on the same side (syn conformer) or on opposite side (anti conformer) of the equatorial plane. The preference for syn- or anti-conformation in the complex cation is still of interest. The infrared and electronic absorption spectroscopic methods are not useful in distinguishing the syn or anti conformaions of the six-membered chelate rings in the typed transition metal complexes. The different arrangements of the two six-membered chelate rings of tn ligands may be dependent on the packing forces and counter anions in the crystal structure.

In this communication, we report the structure of trans-[Cr(tn)2Cl2]2ZnCl4 in order to obtain more information on the conformation of the two six-membered chelate rings.

Counter anionic species play a very important role in coordination chemistry. This is another example of a trans-[Cr(tn)2Cl2]+ but with different counter anion (Choi et al., 2008). The structural analysis shows that there is only one crystallographically independent CrIII complex cation where the four nitrogen atoms of two tn ligands occupy the equatorial sites and the two chlorine atoms coordinate to the Cr metal centre in trans configuration. The Cr1 moiety of complex cation is half occupancy in the asymmetric unit. An ellipsoid plot (30% probability level) of the one CrIII complex cation and anion in the title compound, together with the atomic labelling, is depicted in Fig. 1.

The two six-membered rings have stable chair conformations. Atom Cr1 is located at a crystallographic centre of symmetry, so the Cr complex cation has molecular Ci symmetry. The two chelate rings in the Cr complex cation adopt same anti chair-chair conformation with respect to each other. The Cr—N(tn) distances of 2.087 (76) and 2.097 (6) Å are good agreement with average Cr—N distance of 2.0884 (19) Å found in trans-[Cr(tn)2Cl2]ClO4 (Choi & Clegg, 2011), and the range of 2.0741 (19) to 2.0981 (18) Å found in trans-[Cr(Me2tn)2Cl2]2ZnCl4 (Me2tn = 2,2-dimethylpropane-1,3-diamine) (Choi, Joshi & Spiccia, 2011). The Cr–Cl distance of 2.315 (2) Å is longer than the 2.085 (4) Å of Cr—F found in trans-[Cr(tn)2F2]ClO4 (Vaughn & Rogers, 1985), but slightly shorter than 2.4681 (4) Å of Cr—Br trans-[Cr(tn)2Br2]ClO4 (Choi et al., 2012). The other N—C and C—C bond distances and Cr—N—C, N—C—C and C—C—C angles are also of usual values for tn ligands in chair conformations. The crystals are held together by weak hydrogen bonds (Table 1) between the NH groups of the tn, Cl ligand and Cl atom of tetrachlorozincate anion. The uncoordinated ZnCl42- anion from chromium(III) ion remains outside the coordination sphere. As expected, the Zn atom in the ZnCl42- has a tetrahedral coordination surrounded by four Cl atoms. The Zn—Cl bond distance of 2.3255 (13) and the Cl—Zn—Cl angles of 106.28 (4)–116.05 (9)° are observed. The coordinate Cl1 atom in Cr1 complex cation also forms one hydrogen bond with one NH group in the neighbouring complex cation. The differences found in the conformations of the two six-membered chelate rings may be attributed to the differences in the hydrogen bonding networks and crystal packing forces between the chromium(III) complex cation and counter anion.

Related literature top

For the synthesis, see: House, (1970). For the structures of trans-[Cr(tn)2X2]ClO4 (X = F, Cl, Br), see: Vaughn & Rogers (1985); Choi & Clegg (2011); Choi et al. (2012). For the structures of trans-[Cr(Me2tn)2Cl2]ClO4 and trans-[Cr(Me2tn)2Cl2]2ZnCl4, see: Choi et al. (2008, 2011).

Experimental top

The propane-1,3-diamine was obtained from Aldrich Chemical Co. and used as supplied. All chemicals were reagent grade materials and used without further purification. As starting materials, trans-[Cr(tn)2Cl2]ClO4 was prepared as described in the literature (House, 1970; Choi & Clegg, 2011). The crude chloride salt (0.75 g) was dissolved in 20 ml of 0.1M HCl at 40°C and added 10 ml of 6M HCl containing 1.2 g of solid ZnCl2. The resulting solution was filtered and allowed to stand at room temperature for several days to give green crystals of the tetrachlorozincate(II) salt suitable for X-ray structural analysis.

Refinement top

Non-hydrogen atoms were refined anisotropically; hydrogen atoms were first located in a difference map; N–H hydrogen atoms were freely refined and C–H hydrogen atoms were constrained to ride on the parent carbon atom, with C–H = 0.98 Å and C–H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups.

Computing details top

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983); cell refinement: HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A perspective drawing (30% probability level) of the one complex cation and anion
Bis[trans-dichloridobis(propane-1,3-diamine- κ2N,N')chromium(III)] tetrachloridozincate top
Crystal data top
[CrCl2(C3H10N2)2]2[ZnCl4]Dx = 1.691 Mg m3
Mr = 749.49Synchrotron radiation, λ = 0.90000 Å
Tetragonal, P42/nCell parameters from 16475 reflections
a = 15.141 (2) Åθ = 1.0–33.7°
c = 6.4220 (13) ŵ = 4.26 mm1
V = 1472.2 (4) Å3T = 95 K
Z = 2Needle, pale blue
F(000) = 7640.16 × 0.02 × 0.02 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
1225 independent reflections
Radiation source: PLSII 2D bending magnet1157 reflections with I > 2σ(I)
Si(111) double crystal monochromatorRint = 0.030
ω and kappa scanθmax = 32.0°, θmin = 2.4°
Absorption correction: multi-scan
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
h = 1717
Tmin = 0.549, Tmax = 0.920k = 1717
7735 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.1185P)2 + 13.7893P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1225 reflectionsΔρmax = 2.55 e Å3
73 parametersΔρmin = 1.30 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
[CrCl2(C3H10N2)2]2[ZnCl4]Z = 2
Mr = 749.49Synchrotron radiation, λ = 0.90000 Å
Tetragonal, P42/nµ = 4.26 mm1
a = 15.141 (2) ÅT = 95 K
c = 6.4220 (13) Å0.16 × 0.02 × 0.02 mm
V = 1472.2 (4) Å3
Data collection top
ADSC Q210 CCD area-detector
diffractometer
1225 independent reflections
Absorption correction: multi-scan
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
1157 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.920Rint = 0.030
7735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1185P)2 + 13.7893P]
where P = (Fo2 + 2Fc2)/3
1225 reflectionsΔρmax = 2.55 e Å3
73 parametersΔρmin = 1.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.50000.50000.50000.0176 (6)
Cl10.42602 (11)0.55586 (11)0.7867 (2)0.0219 (6)
N10.4440 (4)0.3768 (4)0.5622 (10)0.0250 (14)
H1A0.41410.38110.68650.030*
H1B0.40270.36570.46050.030*
N20.6077 (4)0.4700 (4)0.6928 (9)0.0214 (13)
H2A0.65280.50810.65920.026*
H2B0.59140.48220.82770.026*
C10.5033 (5)0.2982 (5)0.5752 (11)0.0249 (16)
H1C0.53090.28800.43750.030*
H1D0.46760.24540.61000.030*
C20.5748 (5)0.3093 (5)0.7361 (11)0.0244 (16)
H2C0.60490.25180.75440.029*
H2D0.54650.32450.87050.029*
C30.6441 (5)0.3786 (5)0.6887 (11)0.0240 (15)
H3A0.69230.37400.79220.029*
H3B0.66960.36690.54940.029*
Zn10.25000.25000.25000.0223 (6)
Cl20.37601 (8)0.28336 (9)0.0585 (2)0.0115 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0199 (9)0.0192 (9)0.0138 (9)0.0007 (5)0.0008 (6)0.0002 (6)
Cl10.0230 (9)0.0287 (10)0.0141 (9)0.0025 (6)0.0014 (6)0.0007 (6)
N10.026 (3)0.024 (3)0.025 (3)0.000 (2)0.001 (3)0.002 (3)
N20.024 (3)0.024 (3)0.016 (3)0.002 (2)0.000 (2)0.001 (2)
C10.031 (4)0.020 (3)0.023 (4)0.001 (3)0.002 (3)0.002 (3)
C20.027 (4)0.021 (3)0.025 (4)0.001 (3)0.002 (3)0.004 (3)
C30.021 (3)0.029 (4)0.022 (3)0.002 (3)0.002 (3)0.003 (3)
Zn10.0223 (7)0.0223 (7)0.0222 (9)0.0000.0000.000
Cl20.0087 (8)0.0138 (8)0.0119 (8)0.0024 (5)0.0055 (5)0.0009 (5)
Geometric parameters (Å, º) top
Cr1—N12.087 (6)C1—C21.505 (10)
Cr1—N1i2.087 (6)C1—H1C0.9900
Cr1—N22.097 (6)C1—H1D0.9900
Cr1—N2i2.097 (6)C2—C31.515 (10)
Cr1—Cl1i2.3151 (16)C2—H2C0.9900
Cr1—Cl12.3151 (16)C2—H2D0.9900
N1—C11.494 (9)C3—H3A0.9900
N1—H1A0.9200C3—H3B0.9900
N1—H1B0.9200Zn1—Cl2ii2.3255 (13)
N2—C31.489 (9)Zn1—Cl2iii2.3255 (13)
N2—H2A0.9200Zn1—Cl2iv2.3255 (13)
N2—H2B0.9200Zn1—Cl22.3255 (13)
N1—Cr1—N1i179.999 (1)H2A—N2—H2B107.1
N1—Cr1—N290.5 (2)N1—C1—C2112.4 (6)
N1i—Cr1—N289.5 (2)N1—C1—H1C109.1
N1—Cr1—N2i89.5 (2)C2—C1—H1C109.1
N1i—Cr1—N2i90.5 (2)N1—C1—H1D109.1
N2—Cr1—N2i179.999 (1)C2—C1—H1D109.1
N1—Cr1—Cl1i91.27 (18)H1C—C1—H1D107.9
N1i—Cr1—Cl1i88.73 (18)C1—C2—C3115.9 (6)
N2—Cr1—Cl1i90.80 (16)C1—C2—H2C108.3
N2i—Cr1—Cl1i89.20 (16)C3—C2—H2C108.3
N1—Cr1—Cl188.73 (18)C1—C2—H2D108.3
N1i—Cr1—Cl191.27 (18)C3—C2—H2D108.3
N2—Cr1—Cl189.20 (16)H2C—C2—H2D107.4
N2i—Cr1—Cl190.80 (16)N2—C3—C2112.5 (6)
Cl1i—Cr1—Cl1180.0N2—C3—H3A109.1
C1—N1—Cr1118.6 (4)C2—C3—H3A109.1
C1—N1—H1A107.7N2—C3—H3B109.1
Cr1—N1—H1A107.7C2—C3—H3B109.1
C1—N1—H1B107.7H3A—C3—H3B107.8
Cr1—N1—H1B107.7Cl2ii—Zn1—Cl2iii106.24 (3)
H1A—N1—H1B107.1Cl2ii—Zn1—Cl2iv106.25 (3)
C3—N2—Cr1118.6 (4)Cl2iii—Zn1—Cl2iv116.14 (7)
C3—N2—H2A107.7Cl2ii—Zn1—Cl2116.14 (7)
Cr1—N2—H2A107.7Cl2iii—Zn1—Cl2106.24 (3)
C3—N2—H2B107.7Cl2iv—Zn1—Cl2106.25 (3)
Cr1—N2—H2B107.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) y, x+1/2, z+1/2; (iv) y+1/2, x, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.922.903.678 (6)144
N1—H1A···Cl2v0.922.873.636 (6)142
N1—H1B···Cl2iv0.922.823.529 (6)134
N2—H2A···Cl2vi0.922.723.641 (6)179
N2—H2B···Cl1vii0.922.563.404 (6)154
Symmetry codes: (iv) y+1/2, x, z+1/2; (v) x, y, z+1; (vi) y+1/2, x+1, z+1/2; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CrCl2(C3H10N2)2]2[ZnCl4]
Mr749.49
Crystal system, space groupTetragonal, P42/n
Temperature (K)95
a, c (Å)15.141 (2), 6.4220 (13)
V3)1472.2 (4)
Z2
Radiation typeSynchrotron, λ = 0.90000 Å
µ (mm1)4.26
Crystal size (mm)0.16 × 0.02 × 0.02
Data collection
DiffractometerADSC Q210 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(HKL-3000 SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.549, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
7735, 1225, 1157
Rint0.030
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.198, 1.11
No. of reflections1225
No. of parameters73
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1185P)2 + 13.7893P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.55, 1.30

Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983), HKL-3000 (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.922.903.678 (6)143.7
N1—H1A···Cl2i0.922.873.636 (6)141.8
N1—H1B···Cl2ii0.922.823.529 (6)134.4
N2—H2A···Cl2iii0.922.723.641 (6)178.6
N2—H2B···Cl1iv0.922.563.404 (6)153.5
Symmetry codes: (i) x, y, z+1; (ii) y+1/2, x, z+1/2; (iii) y+1/2, x+1, z+1/2; (iv) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by a grant from the 2012 Research Fund of Andong National University. MAS thanks the NRF of Korea for a postdoctoral fellowship grant 2010. The experiment at the PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J. H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Lee, S. H. & Lee, U. (2008). Acta Cryst. E64, m1429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J. H., Subhan, M. A. & Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, 433–437.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHouse, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741–746.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaughn, J. W. & Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, 281–287.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds