organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-2-(3-nitro­phen­yl)-1,3-di­thiane

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín 762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 17 April 2012; accepted 16 May 2012; online 19 May 2012)

The title compound, C11H13NO2S2, contains a 1,3-dithiane ring in an almost ideal chair conformation with the following puckering parameters: Q = 0.7252 (15) Å, θ = 6.71 (13) and φ = 50.4 (11)°. The benzene ring occupies an axial position at the dithiane ring. The nitro group is almost coplanar with the benzene ring [O—N—C—C = −3.2 (2)°]. The mol­ecule has an L-shape with a C—C—C—C torsion angle of −74.15 (17)° for the atoms of the methyl group and the dithiane–benzene linkage. The crystal packing is stabilized only via weak non-specific van der Waals inter­actions.

Related literature

For the preparation of the title compound, see Vícha et al. (2011[Vícha, R., Rouchal, M., Kozubková, Z., Kuřitka, I., Marek, R., Branná, P. & Čmelík, R. (2011). Supramol. Chem. 23, 663-677.]). For crystallographic data for similar aryl-substituted 1,3-dithia­nes, see: Fun et al. (2009a[Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009a). Acta Cryst. E65, o347.],b[Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009b). Acta Cryst. E65, o348.]); Samas et al. (2010[Samas, B., Préville, C., Thuma, B. A. & Mascitti, V. (2010). Acta Cryst. E66, o1386.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO2S2

  • Mr = 255.36

  • Orthorhombic, P b c a

  • a = 13.5388 (3) Å

  • b = 7.2660 (1) Å

  • c = 24.1083 (4) Å

  • V = 2371.60 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.899, Tmax = 1.000

  • 25370 measured reflections

  • 2086 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.08

  • 2086 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The six- and five-membered 1,3-disulfur rings are frequently used in organic synthesis as efficient protecting groups for carbonyl moiety. Additionally, these compounds are intermediate stage in the carbonyl-to-methylene transformation process. We have used title compound as a model target for optimization of the selective desulfurization procedure (Vícha et al., 2011). Surprisingly, title compound has not been described in the literature yet (to the best of our knowledge).

The benzene ring (C1–C6) is essentially planar with the maximum deviation from the best plane of 0.0071 (15) Å for C4. The torsion angles C11—C7—C3—C4 and C2—C1—N1—O1 describing mutual orientation of nitro group, benzene ring and dithiane ring are -74.15 (17) and -3.2 (2)°, respectively. The dithiane ring adopts almost ideal chair conformation with the Cremer and Pople puckering parameters Q = 0.7252 (15) Å, θ= 6.71 (13)°, ϕ= 50.4 (11)°. Remarkably, the less bulky methyl substituent occupies the equatorial position at C7. This may be demonstrated by the torsion angle C11—C7—S2—C10 which is of -172.63 (10)°. Furthermore, the C1—C2 edge of the benzene ring is slightly turned over the dithiane ring. The dihedral angle between the benzene best plane (C1–C6) and the imaginary mirror plane of dithiane ring (calculated as the best plane of C3, C7, C9 and C11) is 77.25 (4)°.

Related literature top

For the preparation of the title compound, see Vícha et al. (2011). For crystallographic data for similar aryl-substituted 1,3-dithianes, see: Fun et al. (2009a,b); Samas et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared from corresponding 1-(3-nitrophenyl)ethan-1-one and propan-1,3-dithiol as it was published previously (Vícha et al., 2011). The crude material was crystallized from hexane to yield pale yellow crystals (89%). The single-crystal used for data collection was obtained via slow evaporation of chloroform from solution of the title compound at room temperature. NMR, IR and MS spectra are listed in the _exptl_special_details section of the CIF.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition,the methyl H atoms were allowed to rotate about the C—C bond.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The asymmetric unit with atoms represented as 50% probability ellipsoids. H atoms are shown as small spheres at arbitrary radii.
2-Methyl-2-(3-nitrophenyl)-1,3-dithiane top
Crystal data top
C11H13NO2S2Dx = 1.430 Mg m3
Mr = 255.36Melting point: 350 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 29781 reflections
a = 13.5388 (3) Åθ = 2.9–27.1°
b = 7.2660 (1) ŵ = 0.43 mm1
c = 24.1083 (4) ÅT = 120 K
V = 2371.60 (7) Å3Block, yellow
Z = 80.40 × 0.40 × 0.30 mm
F(000) = 1072
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2086 independent reflections
Radiation source: Enhance (Mo) X-ray Source1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scanh = 1610
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 88
Tmin = 0.899, Tmax = 1.000l = 2828
25370 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.7194P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H13NO2S2V = 2371.60 (7) Å3
Mr = 255.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.5388 (3) ŵ = 0.43 mm1
b = 7.2660 (1) ÅT = 120 K
c = 24.1083 (4) Å0.40 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2086 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1871 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 1.000Rint = 0.016
25370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
2086 reflectionsΔρmin = 0.19 e Å3
145 parameters
Special details top

Experimental. Spectral properties of title compound: IR (KBr disc): 3075 (w), 2964 (w), 2937 (w), 2897 (w), 2856 (w), 2825 (w),1574 (w), 1524 (s), 1468 (w), 1422 (m), 1346 (s), 1305 (w), 1283 (w), 1274 (w), 1252 (w), 1193 (w), 1166 (w), 1095 (m), 1065 (w), 1048 (w), 997 (w), 929 (w), 903 (m), 895 (m), 870 (w), 805 (s), 761 (w), 738 (s), 688 (s), 626 (s), 564 (w), 540 (w), 486 (w) cm-1. 1H NMR (300 MHz; CDCl3): δ 2.75 (s, 3H); 1.94–2.62 (m, 2H); 2.63–2.82 (m, 4H); 7.57 (t, 1H); 8.13–8.16 (m, 1H); 8.31–8.35 (m, 1H); 8.84–8.85 (m, 1H) ppm. 13C NMR (75.5 MHz; CDCl3): δ 24.5 (CH2); 28.3 (CH2); 33.0 (CH3); 53.3 (C); 122.5 (CH); 123.4 (CH); 129.8 (CH); 134.4 (CH); 147.0 (C);149.0 (C) ppm. MS (EI, 70 eV): 41 (13); 45 (13); 46 (21); 51 (9); 59 (32); 73 (15); 74 (100); 75 (10); 76 (10); 77 (14); 91 (15); 102 (14); 103 (6); 105 (9); 120 (16); 133 (5); 134 (14); 135 (5); 148 (13); 166 (36); 181 (39); 182 (6); 240 (7); 255 (47); 256 (7) m/z (%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42653 (3)0.06433 (6)0.318872 (16)0.02260 (13)
S20.34860 (3)0.31750 (6)0.406194 (17)0.02437 (13)
O10.78844 (9)0.06238 (18)0.31090 (5)0.0316 (3)
O20.88864 (8)0.19994 (18)0.36717 (6)0.0351 (3)
N10.80521 (10)0.15222 (19)0.35301 (6)0.0237 (3)
C10.72158 (11)0.2054 (2)0.38863 (6)0.0193 (3)
C20.62711 (12)0.1592 (2)0.37124 (6)0.0178 (3)
H2A0.61740.09530.33730.021*
C30.54695 (11)0.2075 (2)0.40399 (6)0.0169 (3)
C40.56495 (12)0.3022 (2)0.45353 (7)0.0211 (3)
H4A0.51080.33810.47610.025*
C50.66055 (13)0.3445 (2)0.47029 (7)0.0241 (4)
H5A0.67100.40720.50440.029*
C60.74045 (12)0.2961 (2)0.43775 (6)0.0222 (4)
H6A0.80610.32440.44880.027*
C70.44172 (11)0.1432 (2)0.39012 (6)0.0186 (3)
C80.44276 (12)0.2773 (3)0.28100 (7)0.0277 (4)
H8A0.50940.32670.28900.033*
H8B0.43940.25070.24080.033*
C90.36643 (13)0.4236 (3)0.29500 (8)0.0315 (4)
H9A0.37460.52900.26940.038*
H9B0.29950.37220.28920.038*
C100.37475 (13)0.4923 (2)0.35432 (8)0.0299 (4)
H10A0.32830.59610.35950.036*
H10B0.44240.53970.36040.036*
C110.41696 (13)0.0232 (2)0.42694 (7)0.0265 (4)
H11A0.46480.12180.42010.040*
H11B0.35030.06720.41820.040*
H11C0.41990.01340.46600.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0192 (2)0.0278 (2)0.0209 (2)0.00284 (16)0.00093 (15)0.00663 (16)
S20.0173 (2)0.0303 (2)0.0255 (2)0.00491 (17)0.00228 (16)0.00487 (17)
O10.0243 (7)0.0412 (7)0.0293 (6)0.0001 (6)0.0060 (5)0.0056 (6)
O20.0139 (6)0.0411 (8)0.0503 (8)0.0024 (5)0.0002 (6)0.0003 (6)
N10.0170 (7)0.0241 (7)0.0299 (8)0.0003 (6)0.0011 (6)0.0070 (6)
C10.0177 (8)0.0162 (7)0.0239 (8)0.0014 (6)0.0012 (6)0.0044 (6)
C20.0191 (8)0.0168 (7)0.0176 (7)0.0003 (6)0.0018 (6)0.0009 (6)
C30.0180 (8)0.0159 (7)0.0169 (7)0.0003 (6)0.0009 (6)0.0028 (6)
C40.0233 (8)0.0196 (8)0.0204 (8)0.0002 (7)0.0016 (6)0.0004 (6)
C50.0300 (9)0.0212 (8)0.0210 (8)0.0035 (7)0.0061 (7)0.0007 (6)
C60.0200 (8)0.0192 (8)0.0275 (8)0.0044 (7)0.0070 (7)0.0056 (6)
C70.0161 (8)0.0220 (8)0.0177 (7)0.0005 (6)0.0012 (6)0.0018 (6)
C80.0229 (9)0.0414 (10)0.0189 (8)0.0022 (8)0.0021 (7)0.0043 (7)
C90.0233 (9)0.0390 (10)0.0323 (9)0.0005 (8)0.0048 (8)0.0118 (8)
C100.0227 (9)0.0245 (9)0.0426 (10)0.0038 (7)0.0017 (8)0.0016 (8)
C110.0205 (8)0.0296 (9)0.0294 (9)0.0057 (7)0.0004 (7)0.0044 (7)
Geometric parameters (Å, º) top
S1—C81.8098 (18)C5—C61.382 (2)
S1—C71.8224 (15)C5—H5A0.9500
S2—C101.8171 (19)C6—H6A0.9500
S2—C71.8285 (16)C7—C111.537 (2)
O1—N11.2282 (18)C8—C91.521 (3)
O2—N11.2298 (18)C8—H8A0.9900
N1—C11.473 (2)C8—H8B0.9900
C1—C61.379 (2)C9—C101.519 (3)
C1—C21.387 (2)C9—H9A0.9900
C2—C31.387 (2)C9—H9B0.9900
C2—H2A0.9500C10—H10A0.9900
C3—C41.399 (2)C10—H10B0.9900
C3—C71.536 (2)C11—H11A0.9800
C4—C51.390 (2)C11—H11B0.9800
C4—H4A0.9500C11—H11C0.9800
C8—S1—C7101.13 (8)C11—C7—S2105.78 (11)
C10—S2—C7101.75 (8)S1—C7—S2109.86 (8)
O1—N1—O2123.30 (14)C9—C8—S1113.79 (12)
O1—N1—C1118.64 (13)C9—C8—H8A108.8
O2—N1—C1118.06 (14)S1—C8—H8A108.8
C6—C1—C2123.08 (15)C9—C8—H8B108.8
C6—C1—N1118.92 (14)S1—C8—H8B108.8
C2—C1—N1117.99 (14)H8A—C8—H8B107.7
C1—C2—C3119.22 (14)C10—C9—C8112.84 (14)
C1—C2—H2A120.4C10—C9—H9A109.0
C3—C2—H2A120.4C8—C9—H9A109.0
C2—C3—C4118.28 (14)C10—C9—H9B109.0
C2—C3—C7121.65 (13)C8—C9—H9B109.0
C4—C3—C7119.78 (14)H9A—C9—H9B107.8
C5—C4—C3121.25 (15)C9—C10—S2113.85 (13)
C5—C4—H4A119.4C9—C10—H10A108.8
C3—C4—H4A119.4S2—C10—H10A108.8
C6—C5—C4120.50 (15)C9—C10—H10B108.8
C6—C5—H5A119.8S2—C10—H10B108.8
C4—C5—H5A119.8H10A—C10—H10B107.7
C1—C6—C5117.65 (15)C7—C11—H11A109.5
C1—C6—H6A121.2C7—C11—H11B109.5
C5—C6—H6A121.2H11A—C11—H11B109.5
C3—C7—C11108.41 (13)C7—C11—H11C109.5
C3—C7—S1113.92 (10)H11A—C11—H11C109.5
C11—C7—S1105.81 (11)H11B—C11—H11C109.5
C3—C7—S2112.50 (11)

Experimental details

Crystal data
Chemical formulaC11H13NO2S2
Mr255.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)13.5388 (3), 7.2660 (1), 24.1083 (4)
V3)2371.60 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.899, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25370, 2086, 1871
Rint0.016
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.08
No. of reflections2086
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008.

 

Acknowledgements

The financial support of this work by the Inter­nal Founding Agency of Tomas Bata University in Zlin project No. IGA/FT/2012/016 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009a). Acta Cryst. E65, o347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009b). Acta Cryst. E65, o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamas, B., Préville, C., Thuma, B. A. & Mascitti, V. (2010). Acta Cryst. E66, o1386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVícha, R., Rouchal, M., Kozubková, Z., Kuřitka, I., Marek, R., Branná, P. & Čmelík, R. (2011). Supramol. Chem. 23, 663–677.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds