metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(Di­methyl­amino)­pyridine-κN1]tri­methyl(thio­cyanato-κN)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 May 2012; accepted 16 May 2012; online 26 May 2012)

In the title monomeric trimethyl­tin(IV) isothio­cyanate–4,4-dimethyl­pyridine adduct, [Sn(CH3)3(NCS)(C7H10N2)], the SnIV atom shows a trans-C3SnN2 trigonal bipyramidal coordination. The SnIV atom lies out of the equatorial plane by 0.033 (4) Å in the direction of the donor N atom of the N-heterocycle. The crystal studied was a non-merohedral twin with a minor component of 48.8 (2)%.

Related literature

For trimethyl­tin isothio­cyanate, see: Forder & Sheldrick (1970[Forder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 21, 115-122.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(NCS)(C7H10N2)]

  • Mr = 344.04

  • Monoclinic, P 21 /c

  • a = 7.2026 (4) Å

  • b = 13.4736 (8) Å

  • c = 14.9785 (8) Å

  • β = 93.792 (5)°

  • V = 1450.41 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.558, Tmax = 0.650

  • 15682 measured reflections

  • 5542 independent reflections

  • 4916 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.197

  • S = 1.23

  • 5542 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 1.61 e Å−3

  • Δρmin = −1.98 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Trimethyltin halides and pseudohalides are Lewis acids that form 1:1 complexes with aromatic amines. Trimethyltin isocyanate itself exists as a polymer in which the isocyanate anion bridges adjacent trimethyltin cations (Forder & Sheldrick, 1970). In the 4,4-dimethylpyridine adduct (Scheme I), the weaker tin–sulfur bond is disrupted, and the adduct is monomeric. The SnIV atom shows trans-C3SnN2 trigonal bipyramidal coordination. The tin atom lies out of the equatorial plane by 0.033 (4) Å in the direction of the donor N atom of the N-heterocycle.

Related literature top

For trimethyltin isothiocyanate, see: Forder & Sheldrick (1970).

Experimental top

Trimethyltin isothiocyanate (0.24 g, 1 mmol) and 4-(dimethylamino)pyridine (0.11 g, 1 mmol) were loaded into a convection tube and the tube was filled with methanol and kept at 333 K. Light yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The crystal is a non-merohedral twin having nearly equal components (minor component 48.8 (2) %). A 100% overlap gave the best refinement; however, an artifact of the twinning is the high weighting scheme, which was suggested by the refinement program. The twin law is (-1 0 0 / 0 - 1 0 / 0.2779 0 1).

The final difference Fourier map had a peak 1.08 Å from Sn1 and a hole 0.95 Å from H1a.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (CH3)3Sn(NCS)(C7H10N2) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[4-(Dimethylamino)pyridine-κN1]trimethyl(thiocyanato- κN)tin(IV) top
Crystal data top
[Sn(CH3)3(NCS)(C7H10N2)]F(000) = 688
Mr = 344.04Dx = 1.576 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5713 reflections
a = 7.2026 (4) Åθ = 2.7–27.5°
b = 13.4736 (8) ŵ = 1.89 mm1
c = 14.9785 (8) ÅT = 100 K
β = 93.792 (5)°Prism, light brown
V = 1450.41 (14) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5542 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4916 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 10.4041 pixels mm-1θmax = 27.7°, θmin = 2.7°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1717
Tmin = 0.558, Tmax = 0.650l = 1919
15682 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.1375P)2]
where P = (Fo2 + 2Fc2)/3
5542 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 1.98 e Å3
Crystal data top
[Sn(CH3)3(NCS)(C7H10N2)]V = 1450.41 (14) Å3
Mr = 344.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2026 (4) ŵ = 1.89 mm1
b = 13.4736 (8) ÅT = 100 K
c = 14.9785 (8) Å0.35 × 0.30 × 0.25 mm
β = 93.792 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5542 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4916 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.650Rint = 0.060
15682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.23Δρmax = 1.61 e Å3
5542 reflectionsΔρmin = 1.98 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.25215 (5)0.41625 (3)0.86069 (2)0.01334 (16)
S10.3130 (2)0.35874 (10)1.18988 (10)0.0267 (4)
N10.2370 (6)0.4769 (3)0.7145 (3)0.0145 (9)
N20.2613 (7)0.5696 (3)0.4491 (3)0.0160 (10)
N30.2743 (7)0.3468 (4)1.0044 (3)0.0298 (12)
C10.5262 (7)0.3660 (4)0.8426 (4)0.0176 (11)
H1A0.60000.42080.82040.026*
H1B0.52160.31160.79910.026*
H1C0.58350.34250.89990.026*
C20.0214 (8)0.3222 (5)0.8288 (4)0.0247 (13)
H2A0.06700.35610.78660.037*
H2B0.03980.30600.88350.037*
H2C0.06440.26090.80150.037*
C30.2037 (8)0.5581 (4)0.9169 (4)0.0219 (12)
H3A0.09250.58780.88650.033*
H3B0.31130.60110.90920.033*
H3C0.18510.55090.98070.033*
C40.2356 (7)0.4114 (4)0.6457 (3)0.0146 (11)
H40.22970.34270.65920.018*
C50.2421 (8)0.4383 (4)0.5584 (4)0.0151 (11)
H50.24080.38840.51350.018*
C60.2507 (7)0.5397 (3)0.5334 (3)0.0118 (10)
C70.2515 (8)0.6078 (4)0.6063 (4)0.0159 (11)
H70.25660.67710.59520.019*
C80.2448 (8)0.5743 (3)0.6913 (4)0.0152 (11)
H80.24570.62210.73790.018*
C90.2689 (9)0.6754 (4)0.4273 (4)0.0232 (12)
H9A0.37850.70530.45900.035*
H9B0.15630.70830.44580.035*
H9C0.27710.68340.36270.035*
C100.2531 (8)0.4977 (5)0.3755 (4)0.0224 (12)
H10A0.36420.45560.38050.034*
H10B0.24770.53310.31830.034*
H10C0.14180.45630.37860.034*
C110.2906 (7)0.3530 (4)1.0821 (4)0.0171 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0109 (2)0.0157 (2)0.0135 (2)0.00108 (13)0.00189 (17)0.00061 (12)
S10.0435 (9)0.0206 (7)0.0158 (7)0.0071 (7)0.0002 (7)0.0019 (5)
N10.017 (2)0.0109 (19)0.015 (2)0.0021 (17)0.0028 (19)0.0013 (16)
N20.020 (3)0.014 (2)0.014 (2)0.0016 (18)0.001 (2)0.0002 (16)
N30.031 (3)0.042 (3)0.017 (3)0.004 (3)0.009 (2)0.003 (2)
C10.004 (2)0.028 (3)0.020 (3)0.003 (2)0.001 (2)0.006 (2)
C20.014 (3)0.030 (3)0.030 (3)0.015 (2)0.003 (2)0.004 (3)
C30.021 (3)0.024 (3)0.022 (3)0.002 (2)0.008 (3)0.006 (2)
C40.016 (3)0.011 (2)0.017 (3)0.0000 (18)0.000 (3)0.0000 (18)
C50.015 (3)0.013 (2)0.017 (3)0.002 (2)0.001 (2)0.0027 (19)
C60.006 (2)0.013 (2)0.016 (2)0.0007 (18)0.001 (2)0.0023 (19)
C70.016 (3)0.012 (2)0.019 (3)0.003 (2)0.002 (2)0.000 (2)
C80.015 (3)0.012 (2)0.019 (3)0.0017 (19)0.000 (2)0.0031 (18)
C90.032 (3)0.020 (3)0.019 (3)0.003 (2)0.008 (3)0.004 (2)
C100.026 (3)0.027 (3)0.013 (2)0.004 (2)0.000 (2)0.001 (2)
C110.007 (2)0.018 (2)0.027 (3)0.000 (2)0.004 (2)0.008 (2)
Geometric parameters (Å, º) top
Sn1—C22.120 (5)C3—H3A0.9800
Sn1—C12.121 (5)C3—H3B0.9800
Sn1—C32.126 (5)C3—H3C0.9800
Sn1—N12.333 (4)C4—C51.360 (7)
Sn1—N32.344 (5)C4—H40.9500
S1—C111.614 (6)C5—C61.419 (6)
N1—C41.357 (6)C5—H50.9500
N1—C81.359 (6)C6—C71.426 (7)
N2—C61.333 (6)C7—C81.354 (8)
N2—C91.464 (6)C7—H70.9500
N2—C101.466 (7)C8—H80.9500
N3—C111.164 (7)C9—H9A0.9800
C1—H1A0.9800C9—H9B0.9800
C1—H1B0.9800C9—H9C0.9800
C1—H1C0.9800C10—H10A0.9800
C2—H2A0.9800C10—H10B0.9800
C2—H2B0.9800C10—H10C0.9800
C2—H2C0.9800
C2—Sn1—C1120.2 (2)Sn1—C3—H3C109.5
C2—Sn1—C3118.7 (2)H3A—C3—H3C109.5
C1—Sn1—C3121.1 (2)H3B—C3—H3C109.5
C2—Sn1—N190.6 (2)N1—C4—C5124.0 (4)
C1—Sn1—N188.74 (18)N1—C4—H4118.0
C3—Sn1—N193.30 (18)C5—C4—H4118.0
C2—Sn1—N388.5 (2)C4—C5—C6120.9 (5)
C1—Sn1—N389.0 (2)C4—C5—H5119.5
C3—Sn1—N389.9 (2)C6—C5—H5119.5
N1—Sn1—N3176.70 (16)N2—C6—C5123.2 (4)
C4—N1—C8115.5 (5)N2—C6—C7122.2 (5)
C4—N1—Sn1118.9 (3)C5—C6—C7114.6 (5)
C8—N1—Sn1125.4 (3)C8—C7—C6120.4 (5)
C6—N2—C9120.7 (4)C8—C7—H7119.8
C6—N2—C10120.7 (4)C6—C7—H7119.8
C9—N2—C10118.4 (5)C7—C8—N1124.6 (5)
C11—N3—Sn1152.3 (5)C7—C8—H8117.7
Sn1—C1—H1A109.5N1—C8—H8117.7
Sn1—C1—H1B109.5N2—C9—H9A109.5
H1A—C1—H1B109.5N2—C9—H9B109.5
Sn1—C1—H1C109.5H9A—C9—H9B109.5
H1A—C1—H1C109.5N2—C9—H9C109.5
H1B—C1—H1C109.5H9A—C9—H9C109.5
Sn1—C2—H2A109.5H9B—C9—H9C109.5
Sn1—C2—H2B109.5N2—C10—H10A109.5
H2A—C2—H2B109.5N2—C10—H10B109.5
Sn1—C2—H2C109.5H10A—C10—H10B109.5
H2A—C2—H2C109.5N2—C10—H10C109.5
H2B—C2—H2C109.5H10A—C10—H10C109.5
Sn1—C3—H3A109.5H10B—C10—H10C109.5
Sn1—C3—H3B109.5N3—C11—S1178.7 (5)
H3A—C3—H3B109.5
C2—Sn1—N1—C452.6 (4)C9—N2—C6—C5179.7 (5)
C1—Sn1—N1—C467.6 (4)C10—N2—C6—C53.8 (8)
C3—Sn1—N1—C4171.4 (4)C9—N2—C6—C71.8 (8)
C2—Sn1—N1—C8133.2 (5)C10—N2—C6—C7177.7 (5)
C1—Sn1—N1—C8106.6 (5)C4—C5—C6—N2178.5 (5)
C3—Sn1—N1—C814.4 (5)C4—C5—C6—C70.1 (8)
C2—Sn1—N3—C11133.1 (10)N2—C6—C7—C8178.4 (5)
C1—Sn1—N3—C11106.7 (10)C5—C6—C7—C80.2 (8)
C3—Sn1—N3—C1114.4 (10)C6—C7—C8—N10.1 (9)
C8—N1—C4—C50.3 (8)C4—N1—C8—C70.2 (8)
Sn1—N1—C4—C5174.5 (4)Sn1—N1—C8—C7174.2 (5)
N1—C4—C5—C60.1 (9)

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(NCS)(C7H10N2)]
Mr344.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.2026 (4), 13.4736 (8), 14.9785 (8)
β (°) 93.792 (5)
V3)1450.41 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.558, 0.650
No. of measured, independent and
observed [I > 2σ(I)] reflections
15682, 5542, 4916
Rint0.060
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.197, 1.23
No. of reflections5542
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 1.98

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationForder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 21, 115–122.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds