organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

DL-Alaninium iodide

aInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

(Received 9 May 2012; accepted 15 May 2012; online 23 May 2012)

The crystal structure of DL-alanine hydro­iodide (1-carb­oxy­ethanaminium iodide), C3H8NO2+·I, is that of an organic salt consisting of N-protonated cations and iodide anions. The compound features homochiral helices of N—H⋯O hydrogen-bonded cations in the [010] direction; neighbouring chains are related by crystallographic inversion centers and hence show opposite chirality. The iodide counter-anions act as hydrogen-bond acceptors towards H atoms of the ammonium and carb­oxy groups, and cross-link the chains along [100]. Thus, an overall two-dimensional network is formed in the ab plane. No short contacts occur between iodide anions.

Related literature

For related structures of L-alanine hydro­chloride, see: Di Blasio et al. (1977[Di Blasio, B., Pavone, V. & Padone, C. (1977). Cryst. Struct. Commun. 6, 745-748.]), D-alanine alaninium bromide, see: Fischer (2006[Fischer, A. (2006). Acta Cryst. E62, o5786-o5788.]), L-alanine hydro­chloride monohydrate, see: Yamada et al. (2008[Yamada, K., Sato, A., Shimizu, T., Yamazaki, T. & Yokoyama, S. (2008). Acta Cryst. E64, o806.]) and DL-alanine hydro­chloride, see: Trotter (1962[Trotter, J. (1962). Can. J. Chem. 40, 1218-1220.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8NO2+·I

  • Mr = 217.00

  • Monoclinic, P 21 /n

  • a = 7.6975 (11) Å

  • b = 5.7776 (8) Å

  • c = 16.034 (2) Å

  • β = 98.999 (2)°

  • V = 704.30 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.46 mm−1

  • T = 100 K

  • 0.30 × 0.11 × 0.05 mm

Data collection
  • Bruker D8 goniometer with SMART APEX CCD detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.348, Tmax = 0.808

  • 10196 measured reflections

  • 2109 independent reflections

  • 1887 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.05

  • 2109 reflections

  • 77 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.17 e Å−3

  • Δρmin = −1.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I1 0.79 (4) 2.61 (4) 3.391 (2) 171 (3)
N1—H1A⋯O2i 0.87 (3) 2.05 (3) 2.861 (3) 155 (3)
N1—H1B⋯I1ii 0.88 (3) 2.71 (3) 3.557 (2) 163 (3)
N1—H1C⋯I1iii 0.87 (3) 2.80 (3) 3.580 (2) 150 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y+1, z; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our attempt to synthesize a coordination compound from manganese(II)iodide and the racemic α-amino acid DL-alanine failed and unexpectedly led to the formation of the title compound.

The structure of this organic salt consists of one protonated alanine cation and one iodide anion in the asymmetric unit (Fig. 1); the compound crystallizes in the monoclinic space group P21/n.

All H atoms bonded to electronegative partners find an acceptor in suitable geometry (Table 1), thus forming the maximum number of classical hydrogen bonds. These interactions give rise to double layers (Fig. 2), with the iodide acting as acceptor for one donor from the carboxylic acid OH and two from the ammonium group; the halide adopts a trigonal-planar geometry with respect to these hydrogen bonds. A fourth hydrogen bond is formed between the remaining proton in the ammonium group and a neighbouring carboxylic acid O atom, forming a helical structure along the b-axis (Fig. 3). Each helix is homochiral, but the centrosymmetry of the space group implies the presence of left- and right-handed helices related by crystallographic inversion.

Related literature top

For related structures of L-alanine hydrochloride, see: Di Blasio et al. (1977), D-alanine alaninium bromide, see: Fischer (2006), L-alanine hydrochloride monohydrate, see: Yamada et al. (2008) and DL-alanine hydrochloride, see: Trotter (1962).

Experimental top

MnI2 4H2O (0.2 mmol, 74 mg) and DL-alanine (0.4 mmol, 36 mg) were dissolved in 5 ml H2O/MeOH (1:1) and were left in an open flask at room temperature. After slow evaporation of the solvent a yellow oil remained which was placed in a desiccator. Colorless needles of DL-alanine hydroiodide formed after several weeks.

Refinement top

Hydrogen atoms bonded to carbon were included as riding in standard geometry with C—H = 1.00 Å for the methine and C—H = 0.98 Å for the methyl C atom. Coordinates of the hydrogen atoms in the ammonium and in the carboxylic acid groups were refined freely, with the N—H distances restrained to equal length. For all H atoms, Uiso(H) was constrained to 1.2 Ueq of the non-H reference atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : PLATON (Spek, 2009) plot with displacement ellipsoids scaled to 80% probability, H atoms shown as spheres with arbitrary radii.
[Figure 2] Fig. 2. : Representation of the C-face, showing a top view of the two-dimensional layer built by hydrogen bonds (Spek, 2009).
[Figure 3] Fig. 3. : View on the A-face; homochiral helices extend along [010] (Spek, 2009).
1-carboxyethanaminium iodide top
Crystal data top
C3H8NO2+·IF(000) = 408
Mr = 217.00Dx = 2.047 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3131 reflections
a = 7.6975 (11) Åθ = 2.6–30.3°
b = 5.7776 (8) ŵ = 4.46 mm1
c = 16.034 (2) ÅT = 100 K
β = 98.999 (2)°Needle, colourless
V = 704.30 (17) Å30.30 × 0.11 × 0.05 mm
Z = 4
Data collection top
Bruker D8 goniometer with SMART APEX CCD detector
diffractometer
2109 independent reflections
Radiation source: INCOATEC microsource1887 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.055
ω scansθmax = 30.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1011
Tmin = 0.348, Tmax = 0.808k = 88
10196 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.020P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
2109 reflections(Δ/σ)max = 0.001
77 parametersΔρmax = 1.17 e Å3
3 restraintsΔρmin = 1.87 e Å3
Crystal data top
C3H8NO2+·IV = 704.30 (17) Å3
Mr = 217.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6975 (11) ŵ = 4.46 mm1
b = 5.7776 (8) ÅT = 100 K
c = 16.034 (2) Å0.30 × 0.11 × 0.05 mm
β = 98.999 (2)°
Data collection top
Bruker D8 goniometer with SMART APEX CCD detector
diffractometer
2109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1887 reflections with I > 2σ(I)
Tmin = 0.348, Tmax = 0.808Rint = 0.055
10196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.17 e Å3
2109 reflectionsΔρmin = 1.87 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.78595 (2)0.38517 (3)0.868059 (10)0.01622 (7)
O10.4337 (3)0.6529 (4)0.92827 (13)0.0248 (5)
H10.508 (5)0.577 (6)0.913 (2)0.030*
O20.2836 (3)0.6020 (3)0.79725 (13)0.0193 (4)
C10.3013 (3)0.6870 (5)0.86701 (16)0.0162 (5)
C20.1684 (3)0.8526 (5)0.89481 (17)0.0158 (5)
H20.11690.78000.94200.019*
C30.2528 (4)1.0818 (5)0.9252 (2)0.0249 (6)
H3A0.16191.18880.93800.030*
H3B0.31201.14830.88090.030*
H3C0.33901.05580.97610.030*
N10.0254 (3)0.8877 (4)0.82138 (14)0.0143 (4)
H1A0.060 (4)0.928 (5)0.7744 (16)0.017*
H1B0.052 (4)0.988 (5)0.834 (2)0.017*
H1C0.036 (4)0.761 (4)0.811 (2)0.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01442 (11)0.01740 (11)0.01628 (10)0.00331 (6)0.00066 (7)0.00025 (6)
O10.0196 (10)0.0337 (12)0.0190 (10)0.0129 (9)0.0036 (8)0.0060 (9)
O20.0183 (10)0.0227 (11)0.0159 (9)0.0043 (7)0.0000 (8)0.0040 (7)
C10.0153 (12)0.0167 (13)0.0164 (12)0.0011 (9)0.0021 (9)0.0011 (9)
C20.0146 (12)0.0185 (13)0.0136 (11)0.0032 (9)0.0005 (9)0.0007 (9)
C30.0220 (14)0.0223 (14)0.0272 (15)0.0040 (11)0.0059 (12)0.0102 (12)
N10.0146 (11)0.0154 (11)0.0119 (10)0.0010 (8)0.0006 (8)0.0005 (8)
Geometric parameters (Å, º) top
O1—C11.315 (3)C3—H3A0.98
O1—H10.79 (4)C3—H3B0.98
O2—C11.210 (3)C3—H3C0.98
C1—C21.517 (4)N1—H1A0.87 (2)
C2—N11.495 (3)N1—H1B0.88 (2)
C2—C31.521 (4)N1—H1C0.87 (2)
C2—H21.00
C1—O1—H1111 (3)C2—C3—H3B109.5
O2—C1—O1126.3 (3)H3A—C3—H3B109.5
O2—C1—C2123.0 (2)C2—C3—H3C109.5
O1—C1—C2110.8 (2)H3A—C3—H3C109.5
N1—C2—C1107.5 (2)H3B—C3—H3C109.5
N1—C2—C3111.1 (2)C2—N1—H1A115 (2)
C1—C2—C3111.7 (2)C2—N1—H1B110 (2)
N1—C2—H2108.8H1A—N1—H1B110 (3)
C1—C2—H2108.8C2—N1—H1C110 (2)
C3—C2—H2108.8H1A—N1—H1C107 (3)
C2—C3—H3A109.5H1B—N1—H1C103 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I10.79 (4)2.61 (4)3.391 (2)171 (3)
N1—H1A···O2i0.87 (3)2.05 (3)2.861 (3)155 (3)
N1—H1B···I1ii0.88 (3)2.71 (3)3.557 (2)163 (3)
N1—H1C···I1iii0.87 (3)2.80 (3)3.580 (2)150 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC3H8NO2+·I
Mr217.00
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.6975 (11), 5.7776 (8), 16.034 (2)
β (°) 98.999 (2)
V3)704.30 (17)
Z4
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.30 × 0.11 × 0.05
Data collection
DiffractometerBruker D8 goniometer with SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.348, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
10196, 2109, 1887
Rint0.055
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.05
No. of reflections2109
No. of parameters77
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 1.87

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I10.79 (4)2.61 (4)3.391 (2)171 (3)
N1—H1A···O2i0.87 (3)2.05 (3)2.861 (3)155 (3)
N1—H1B···I1ii0.88 (3)2.71 (3)3.557 (2)163 (3)
N1—H1C···I1iii0.87 (3)2.80 (3)3.580 (2)150 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1, y+1, z; (iii) x1, y, z.
 

Acknowledgements

Dr Nadine Boymans is gratefully acknowledged for providing us with DL-alanine.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Blasio, B., Pavone, V. & Padone, C. (1977). Cryst. Struct. Commun. 6, 745–748.  CAS Google Scholar
First citationFischer, A. (2006). Acta Cryst. E62, o5786–o5788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrotter, J. (1962). Can. J. Chem. 40, 1218–1220.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, K., Sato, A., Shimizu, T., Yamazaki, T. & Yokoyama, S. (2008). Acta Cryst. E64, o806.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds