organic compounds
(1S,5R,7R,30S)-14-Deoxyisogarcinol
aProcess Chemistry and Chemical Engineering Division, Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India, and bMetabolic and Structural Biology Division, Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India
*Correspondence e-mail: premavasudev@cimap.res.in
The title compound, C38H50O5 {systematic name: 10-(3-hydroxybenzoyl)-2,2,7,7-tetramethyl-3,6,8-tris(3-methylbut-2-enyl)-3,4,4a,5,6,7-hexahydro-4a,8-methano-2H-cycloocta[b]pyran-9,11(8H)-dione}, is a polyisoprenylated benzophenone, isolated for the first time from the fruits of Garcinia indica during our investigation of bioactive compounds from this plant and their large-scale extraction. The of the title compound was chosen based on comparison of its spectroscopic and data with that of the isomorphous and isostructural compound isogarcinol, whose is known. The crystal packing features O—H⋯O hydrogen bonds. A Cambridge Structural Database analysis revealed that the reported here is isomorphous and isostructural with that of isogarcinol.
Related literature
For background information on the plant Garcinia indica and its biologically active compounds, see: Anonymous (1956); Padhye et al. (2009); Jayaprakasha & Sakariah (2002); Yamaguchi et al. (2000a,b); Sang et al. (2001). For related compounds, see: Krishnamurthy et al. (1981, 1982); Rao et al. (1980a,b); Sahu et al. (1989); Marti et al. (2009). For the isolation, purification and spectroscopic study of the title compound, see: Kaur et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002). For the determination of see: Flack (1983); Hooft et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009)and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Supporting information
10.1107/S1600536812020788/nr2023sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020788/nr2023Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020788/nr2023Isup4.cdx
Isolation of 1 and crystallization: Isolation of 1 from the crude fruit rind extract of G. indica is as reported elsewhere (Kaur et al., 2012). After isolation, the pure compound 1 (m.p. 235 °C) was re-dissolved in acetone and slow evaporation of the solvent yielded rectangular crystals.
All H atoms were placed in geometrically idealized positions and were refined using a riding model, with C—H = 0.98 Å, and aromatic C—H = 0.95 Å, and with Uiso(H) = 1.5Ueq(C) and 1.5Ueq(O)for methyl and OH groups, respectively, or 1.2Ueq(C) for aromatic H atoms. The H atom connected to O5, which is involved in intermolecular hydrogen bond, was also geometrically fixed as there were no electron density peaks near this O atom, which could be assigned as H. To fix and refine this H, different riding models HFIX83, HFIX87 and HFIX147 were tried. Although the final
of the structure was not affected by treatment of this H atom, HFIX147 was chosen since it provided more realistic hydrogen bonding parameters. Since there is no strong anomalous scatterer present in the structure, was not determined. Friedel pairs were merged prior to structure (Flack (x) = -0.4 (1.9) (Flack, 1983) and Hooft (y) = 1.1 (0.6) (Hooft et al., 2008) for the using non-merged Friedel pairs). In the absence of a conclusive the of 1 in crystals was chosen the same as that of isogarcinol (1S, 5R, 5R, 30S) taking into consideration the closely related NMR data and of 1 and isogarcinol (Kaur et al., 2012). Large anisotropic displacement parameters were observed for atoms in the terminal –C-(CH3)2 group of the three isoprenyl moieties, which could be attributed to their conformational flexibility as compared to the rest of the molecule. Attempts to re-grow the crystal for a low temperature data collection is underway.Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009)and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C38H50O5 | Dx = 1.124 Mg m−3 |
Mr = 586.78 | Melting point: 508.15 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.561 (5) Å | Cell parameters from 1674 reflections |
b = 14.657 (7) Å | θ = 2.5–18.3° |
c = 20.457 (10) Å | µ = 0.07 mm−1 |
V = 3466 (3) Å3 | T = 293 K |
Z = 4 | Rectangular, colourless' |
F(000) = 1272 | 0.38 × 0.24 × 0.14 mm |
Bruker SMART APEX CCD diffractometer | 2083 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.119 |
Graphite monochromator | θmax = 28.4°, θmin = 2.0° |
phi and ω scans | h = −7→15 |
22425 measured reflections | k = −19→19 |
4711 independent reflections | l = −26→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.246 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.1315P)2] where P = (Fo2 + 2Fc2)/3 |
4711 reflections | (Δ/σ)max = 0.014 |
395 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C38H50O5 | V = 3466 (3) Å3 |
Mr = 586.78 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 11.561 (5) Å | µ = 0.07 mm−1 |
b = 14.657 (7) Å | T = 293 K |
c = 20.457 (10) Å | 0.38 × 0.24 × 0.14 mm |
Bruker SMART APEX CCD diffractometer | 2083 reflections with I > 2σ(I) |
22425 measured reflections | Rint = 0.119 |
4711 independent reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.246 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.28 e Å−3 |
4711 reflections | Δρmin = −0.33 e Å−3 |
395 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0105 (3) | 0.0536 (3) | 0.5068 (2) | 0.0845 (11) | |
O2 | 0.3125 (3) | −0.0825 (2) | 0.42986 (16) | 0.0701 (10) | |
O3 | 0.2529 (3) | −0.0440 (3) | 0.65177 (17) | 0.0787 (11) | |
O4 | 0.4668 (3) | −0.1232 (3) | 0.5609 (2) | 0.0835 (11) | |
O5 | 0.4003 (4) | 0.2725 (3) | 0.5150 (4) | 0.135 (2) | |
H5 | 0.4376 | 0.3191 | 0.5220 | 0.203* | |
C1 | 0.1090 (4) | −0.0679 (3) | 0.4651 (2) | 0.0612 (13) | |
C2 | 0.2389 (4) | −0.0657 (3) | 0.4788 (2) | 0.0553 (11) | |
C3 | 0.2840 (4) | −0.0539 (3) | 0.5391 (2) | 0.0575 (12) | |
C4 | 0.2107 (4) | −0.0478 (3) | 0.5971 (2) | 0.0601 (12) | |
C5 | 0.0773 (4) | −0.0422 (3) | 0.5880 (2) | 0.0605 (12) | |
C6 | 0.0215 (5) | −0.1426 (3) | 0.5949 (3) | 0.0678 (14) | |
C7 | 0.0697 (5) | −0.2085 (3) | 0.5419 (2) | 0.0696 (14) | |
H7 | 0.0158 | −0.2601 | 0.5416 | 0.083* | |
C8 | 0.0611 (5) | −0.1671 (3) | 0.4724 (3) | 0.0708 (14) | |
H8A | −0.0195 | −0.1673 | 0.4592 | 0.085* | |
H8B | 0.1027 | −0.2064 | 0.4424 | 0.085* | |
C9 | 0.0525 (4) | −0.0111 (3) | 0.5182 (3) | 0.0625 (13) | |
C10 | 0.4138 (5) | −0.0532 (4) | 0.5494 (2) | 0.0622 (13) | |
C11 | 0.4724 (4) | 0.0363 (4) | 0.5432 (2) | 0.0628 (12) | |
C12 | 0.4122 (5) | 0.1149 (4) | 0.5326 (3) | 0.0725 (14) | |
H12 | 0.3319 | 0.1126 | 0.5297 | 0.087* | |
C13 | 0.4684 (5) | 0.1984 (4) | 0.5258 (3) | 0.0869 (18) | |
C14 | 0.5866 (6) | 0.2017 (5) | 0.5292 (3) | 0.0953 (19) | |
H14 | 0.6249 | 0.2569 | 0.5234 | 0.114* | |
C15 | 0.6485 (6) | 0.1240 (6) | 0.5410 (4) | 0.104 (2) | |
H15 | 0.7287 | 0.1274 | 0.5444 | 0.125* | |
C16 | 0.5940 (5) | 0.0400 (5) | 0.5482 (3) | 0.0858 (17) | |
H16 | 0.6368 | −0.0126 | 0.5560 | 0.103* | |
C17 | 0.0284 (5) | 0.0262 (4) | 0.6383 (3) | 0.0789 (16) | |
H17A | −0.0537 | 0.0337 | 0.6303 | 0.095* | |
H17B | 0.0370 | 0.0004 | 0.6817 | 0.095* | |
C18 | 0.0844 (5) | 0.1186 (4) | 0.6376 (3) | 0.0802 (16) | |
H18 | 0.1627 | 0.1207 | 0.6272 | 0.096* | |
C19 | 0.0332 (6) | 0.1967 (4) | 0.6502 (3) | 0.0833 (17) | |
C20 | 0.1027 (7) | 0.2848 (4) | 0.6480 (4) | 0.110 (2) | |
H20A | 0.1775 | 0.2730 | 0.6295 | 0.164* | |
H20B | 0.1118 | 0.3082 | 0.6916 | 0.164* | |
H20C | 0.0628 | 0.3289 | 0.6217 | 0.164* | |
C21 | −0.0933 (7) | 0.2062 (5) | 0.6651 (5) | 0.139 (3) | |
H21A | −0.1315 | 0.1490 | 0.6574 | 0.209* | |
H21B | −0.1264 | 0.2522 | 0.6374 | 0.209* | |
H21C | −0.1030 | 0.2235 | 0.7100 | 0.209* | |
C22 | −0.1116 (5) | −0.1336 (4) | 0.5847 (3) | 0.0889 (18) | |
H22A | −0.1268 | −0.1093 | 0.5420 | 0.133* | |
H22B | −0.1431 | −0.0933 | 0.6172 | 0.133* | |
H22C | −0.1470 | −0.1925 | 0.5887 | 0.133* | |
C23 | 0.0426 (6) | −0.1819 (4) | 0.6630 (3) | 0.0832 (18) | |
H23A | 0.1243 | −0.1880 | 0.6703 | 0.125* | |
H23B | 0.0066 | −0.2407 | 0.6663 | 0.125* | |
H23C | 0.0103 | −0.1418 | 0.6953 | 0.125* | |
C24 | 0.1921 (6) | −0.2525 (3) | 0.5560 (3) | 0.0761 (15) | |
H24A | 0.2375 | −0.2511 | 0.5161 | 0.091* | |
H24B | 0.2320 | −0.2156 | 0.5883 | 0.091* | |
C25 | 0.1862 (6) | −0.3480 (4) | 0.5799 (3) | 0.0906 (19) | |
H25 | 0.1379 | −0.3873 | 0.5569 | 0.109* | |
C26 | 0.2426 (5) | −0.3839 (4) | 0.6309 (3) | 0.0896 (18) | |
C27 | 0.2321 (7) | −0.4839 (5) | 0.6458 (5) | 0.158 (4) | |
H27A | 0.1819 | −0.5121 | 0.6144 | 0.238* | |
H27B | 0.2005 | −0.4918 | 0.6889 | 0.238* | |
H27C | 0.3071 | −0.5118 | 0.6437 | 0.238* | |
C28 | 0.3171 (6) | −0.3303 (6) | 0.6760 (4) | 0.114 (2) | |
H28A | 0.3038 | −0.2663 | 0.6693 | 0.171* | |
H28B | 0.3969 | −0.3440 | 0.6675 | 0.171* | |
H28C | 0.2988 | −0.3458 | 0.7204 | 0.171* | |
C29 | 0.0846 (5) | −0.0309 (4) | 0.3958 (3) | 0.0804 (16) | |
H29A | 0.0650 | −0.0814 | 0.3672 | 0.097* | |
H29B | 0.0184 | 0.0098 | 0.3975 | 0.097* | |
C30 | 0.1879 (5) | 0.0203 (4) | 0.3673 (2) | 0.0715 (14) | |
H30 | 0.2072 | 0.0694 | 0.3979 | 0.086* | |
C31 | 0.2921 (5) | −0.0422 (4) | 0.3634 (2) | 0.0687 (14) | |
C32 | 0.4033 (6) | 0.0073 (5) | 0.3505 (3) | 0.106 (2) | |
H32A | 0.4656 | −0.0358 | 0.3479 | 0.160* | |
H32B | 0.4181 | 0.0496 | 0.3853 | 0.160* | |
H32C | 0.3974 | 0.0400 | 0.3099 | 0.160* | |
C33 | 0.2774 (7) | −0.1222 (5) | 0.3173 (3) | 0.112 (3) | |
H33A | 0.2059 | −0.1528 | 0.3267 | 0.169* | |
H33B | 0.3406 | −0.1640 | 0.3229 | 0.169* | |
H33C | 0.2764 | −0.1005 | 0.2730 | 0.169* | |
C34 | 0.1564 (6) | 0.0651 (5) | 0.3022 (3) | 0.097 (2) | |
H34A | 0.2268 | 0.0814 | 0.2791 | 0.116* | |
H34B | 0.1145 | 0.0216 | 0.2754 | 0.116* | |
C35 | 0.0839 (7) | 0.1488 (6) | 0.3112 (3) | 0.115 (3) | |
H35 | 0.1070 | 0.1871 | 0.3451 | 0.138* | |
C36 | −0.0068 (8) | 0.1762 (9) | 0.2788 (4) | 0.148 (4) | |
C37 | −0.0607 (10) | 0.2708 (9) | 0.2936 (6) | 0.228 (7) | |
H37A | −0.0223 | 0.2976 | 0.3306 | 0.342* | |
H37B | −0.1415 | 0.2637 | 0.3032 | 0.342* | |
H37C | −0.0516 | 0.3098 | 0.2563 | 0.342* | |
C38 | −0.0624 (9) | 0.1254 (12) | 0.2261 (5) | 0.227 (7) | |
H38A | −0.0495 | 0.0613 | 0.2323 | 0.340* | |
H38B | −0.0304 | 0.1440 | 0.1849 | 0.340* | |
H38C | −0.1440 | 0.1376 | 0.2265 | 0.340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.087 (3) | 0.066 (2) | 0.101 (3) | 0.012 (2) | −0.018 (2) | 0.011 (2) |
O2 | 0.069 (2) | 0.078 (2) | 0.063 (2) | −0.0018 (19) | −0.0079 (18) | 0.0034 (18) |
O3 | 0.085 (3) | 0.091 (3) | 0.060 (2) | −0.003 (2) | −0.0164 (19) | −0.0014 (19) |
O4 | 0.074 (3) | 0.070 (2) | 0.107 (3) | 0.013 (2) | −0.021 (2) | 0.003 (2) |
O5 | 0.100 (4) | 0.067 (3) | 0.239 (7) | −0.021 (3) | −0.020 (4) | 0.030 (4) |
C1 | 0.057 (3) | 0.064 (3) | 0.062 (3) | −0.012 (2) | −0.007 (2) | 0.007 (3) |
C2 | 0.057 (3) | 0.049 (3) | 0.060 (3) | −0.005 (2) | −0.006 (2) | 0.005 (2) |
C3 | 0.062 (3) | 0.047 (2) | 0.064 (3) | −0.007 (2) | −0.009 (2) | 0.006 (2) |
C4 | 0.068 (3) | 0.048 (3) | 0.064 (3) | −0.007 (2) | −0.012 (3) | 0.002 (2) |
C5 | 0.067 (3) | 0.050 (2) | 0.065 (3) | −0.007 (2) | 0.001 (2) | 0.002 (2) |
C6 | 0.061 (3) | 0.061 (3) | 0.081 (4) | −0.013 (2) | 0.003 (3) | 0.009 (3) |
C7 | 0.078 (4) | 0.052 (3) | 0.079 (3) | −0.022 (3) | −0.009 (3) | 0.003 (3) |
C8 | 0.071 (3) | 0.065 (3) | 0.076 (3) | −0.020 (3) | −0.012 (3) | −0.001 (3) |
C9 | 0.059 (3) | 0.051 (3) | 0.078 (3) | −0.012 (2) | −0.010 (3) | 0.008 (2) |
C10 | 0.061 (3) | 0.064 (3) | 0.063 (3) | 0.003 (3) | −0.014 (2) | −0.005 (2) |
C11 | 0.055 (3) | 0.065 (3) | 0.068 (3) | −0.001 (3) | −0.013 (2) | 0.000 (3) |
C12 | 0.053 (3) | 0.067 (3) | 0.097 (4) | −0.013 (3) | −0.012 (3) | 0.002 (3) |
C13 | 0.072 (4) | 0.067 (4) | 0.122 (5) | −0.021 (3) | −0.016 (4) | 0.011 (4) |
C14 | 0.081 (5) | 0.084 (4) | 0.121 (5) | −0.036 (4) | −0.004 (4) | 0.007 (4) |
C15 | 0.058 (4) | 0.122 (6) | 0.132 (6) | −0.026 (4) | −0.007 (4) | −0.010 (5) |
C16 | 0.063 (4) | 0.094 (4) | 0.100 (4) | −0.008 (3) | −0.011 (3) | −0.006 (4) |
C17 | 0.080 (4) | 0.071 (3) | 0.086 (4) | 0.005 (3) | 0.011 (3) | −0.001 (3) |
C18 | 0.073 (4) | 0.063 (3) | 0.104 (4) | 0.000 (3) | −0.002 (3) | −0.015 (3) |
C19 | 0.092 (5) | 0.073 (4) | 0.085 (4) | 0.004 (3) | −0.001 (3) | −0.014 (3) |
C20 | 0.130 (6) | 0.068 (4) | 0.131 (6) | −0.007 (4) | 0.005 (5) | −0.024 (4) |
C21 | 0.101 (6) | 0.109 (5) | 0.209 (9) | 0.009 (5) | 0.045 (6) | −0.063 (6) |
C22 | 0.070 (4) | 0.083 (4) | 0.114 (5) | −0.023 (3) | 0.002 (3) | 0.014 (4) |
C23 | 0.104 (5) | 0.071 (4) | 0.075 (4) | −0.012 (3) | 0.004 (3) | 0.019 (3) |
C24 | 0.092 (4) | 0.049 (3) | 0.087 (4) | 0.005 (3) | 0.006 (3) | 0.008 (3) |
C25 | 0.102 (5) | 0.052 (3) | 0.117 (5) | −0.013 (3) | −0.009 (4) | 0.001 (3) |
C26 | 0.076 (4) | 0.087 (4) | 0.106 (5) | 0.013 (4) | 0.006 (4) | 0.023 (4) |
C27 | 0.101 (6) | 0.105 (6) | 0.268 (12) | 0.010 (5) | 0.000 (6) | 0.101 (7) |
C28 | 0.083 (5) | 0.155 (7) | 0.104 (5) | 0.037 (5) | −0.009 (4) | −0.002 (5) |
C29 | 0.073 (4) | 0.098 (4) | 0.070 (3) | −0.006 (3) | −0.021 (3) | 0.007 (3) |
C30 | 0.081 (4) | 0.076 (3) | 0.057 (3) | −0.005 (3) | −0.006 (3) | 0.008 (3) |
C31 | 0.076 (4) | 0.073 (3) | 0.058 (3) | 0.001 (3) | −0.004 (2) | 0.000 (3) |
C32 | 0.098 (5) | 0.131 (6) | 0.089 (4) | −0.014 (5) | 0.014 (4) | 0.019 (4) |
C33 | 0.142 (7) | 0.106 (5) | 0.089 (4) | 0.026 (5) | −0.028 (4) | −0.031 (4) |
C34 | 0.108 (5) | 0.110 (5) | 0.072 (4) | 0.004 (4) | −0.007 (3) | 0.019 (3) |
C35 | 0.122 (6) | 0.141 (6) | 0.083 (4) | 0.032 (5) | −0.007 (4) | 0.035 (4) |
C36 | 0.114 (6) | 0.238 (11) | 0.092 (6) | 0.032 (7) | 0.018 (5) | 0.074 (7) |
C37 | 0.211 (12) | 0.315 (17) | 0.158 (9) | 0.171 (13) | 0.044 (8) | 0.097 (10) |
C38 | 0.115 (8) | 0.43 (2) | 0.132 (8) | −0.039 (12) | −0.033 (7) | 0.045 (12) |
O1—C9 | 1.219 (6) | C21—H21B | 0.9600 |
O2—C2 | 1.337 (6) | C21—H21C | 0.9600 |
O2—C31 | 1.500 (6) | C22—H22A | 0.9600 |
O3—C4 | 1.221 (5) | C22—H22B | 0.9600 |
O4—C10 | 1.218 (6) | C22—H22C | 0.9600 |
O5—C13 | 1.359 (8) | C23—H23A | 0.9600 |
O5—H5 | 0.8200 | C23—H23B | 0.9600 |
C1—C9 | 1.517 (7) | C23—H23C | 0.9600 |
C1—C2 | 1.527 (7) | C24—C25 | 1.485 (7) |
C1—C29 | 1.544 (7) | C24—H24A | 0.9700 |
C1—C8 | 1.563 (7) | C24—H24B | 0.9700 |
C2—C3 | 1.352 (6) | C25—C26 | 1.338 (9) |
C3—C4 | 1.460 (7) | C25—H25 | 0.9300 |
C3—C10 | 1.515 (7) | C26—C28 | 1.487 (10) |
C4—C5 | 1.556 (7) | C26—C27 | 1.503 (10) |
C5—C9 | 1.526 (7) | C27—H27A | 0.9600 |
C5—C17 | 1.544 (7) | C27—H27B | 0.9600 |
C5—C6 | 1.612 (7) | C27—H27C | 0.9600 |
C6—C23 | 1.528 (7) | C28—H28A | 0.9600 |
C6—C7 | 1.556 (7) | C28—H28B | 0.9600 |
C6—C22 | 1.558 (8) | C28—H28C | 0.9600 |
C7—C8 | 1.549 (7) | C29—C30 | 1.527 (8) |
C7—C24 | 1.581 (8) | C29—H29A | 0.9700 |
C7—H7 | 0.9800 | C29—H29B | 0.9700 |
C8—H8A | 0.9700 | C30—C31 | 1.516 (8) |
C8—H8B | 0.9700 | C30—C34 | 1.529 (8) |
C10—C11 | 1.482 (7) | C30—H30 | 0.9800 |
C11—C12 | 1.363 (7) | C31—C32 | 1.499 (9) |
C11—C16 | 1.411 (8) | C31—C33 | 1.515 (8) |
C12—C13 | 1.393 (7) | C32—H32A | 0.9600 |
C12—H12 | 0.9300 | C32—H32B | 0.9600 |
C13—C14 | 1.370 (9) | C32—H32C | 0.9600 |
C14—C15 | 1.366 (9) | C33—H33A | 0.9600 |
C14—H14 | 0.9300 | C33—H33B | 0.9600 |
C15—C16 | 1.391 (9) | C33—H33C | 0.9600 |
C15—H15 | 0.9300 | C34—C35 | 1.498 (10) |
C16—H16 | 0.9300 | C34—H34A | 0.9700 |
C17—C18 | 1.500 (8) | C34—H34B | 0.9700 |
C17—H17A | 0.9700 | C35—C36 | 1.304 (11) |
C17—H17B | 0.9700 | C35—H35 | 0.9300 |
C18—C19 | 1.314 (8) | C36—C38 | 1.459 (15) |
C18—H18 | 0.9300 | C36—C37 | 1.551 (15) |
C19—C21 | 1.501 (10) | C37—H37A | 0.9600 |
C19—C20 | 1.522 (9) | C37—H37B | 0.9600 |
C20—H20A | 0.9600 | C37—H37C | 0.9600 |
C20—H20B | 0.9600 | C38—H38A | 0.9600 |
C20—H20C | 0.9600 | C38—H38B | 0.9600 |
C21—H21A | 0.9600 | C38—H38C | 0.9600 |
C2—O2—C31 | 120.3 (4) | C6—C22—H22B | 109.5 |
C13—O5—H5 | 109.5 | H22A—C22—H22B | 109.5 |
C9—C1—C2 | 106.3 (4) | C6—C22—H22C | 109.5 |
C9—C1—C29 | 112.7 (4) | H22A—C22—H22C | 109.5 |
C2—C1—C29 | 109.9 (4) | H22B—C22—H22C | 109.5 |
C9—C1—C8 | 106.8 (4) | C6—C23—H23A | 109.5 |
C2—C1—C8 | 110.5 (4) | C6—C23—H23B | 109.5 |
C29—C1—C8 | 110.5 (4) | H23A—C23—H23B | 109.5 |
O2—C2—C3 | 117.5 (4) | C6—C23—H23C | 109.5 |
O2—C2—C1 | 119.1 (4) | H23A—C23—H23C | 109.5 |
C3—C2—C1 | 123.3 (4) | H23B—C23—H23C | 109.5 |
C2—C3—C4 | 121.7 (4) | C25—C24—C7 | 113.8 (5) |
C2—C3—C10 | 120.6 (4) | C25—C24—H24A | 108.8 |
C4—C3—C10 | 117.5 (4) | C7—C24—H24A | 108.8 |
O3—C4—C3 | 121.0 (5) | C25—C24—H24B | 108.8 |
O3—C4—C5 | 120.2 (5) | C7—C24—H24B | 108.8 |
C3—C4—C5 | 118.8 (4) | H24A—C24—H24B | 107.7 |
C9—C5—C17 | 111.1 (4) | C26—C25—C24 | 127.2 (6) |
C9—C5—C4 | 108.3 (4) | C26—C25—H25 | 116.4 |
C17—C5—C4 | 108.5 (4) | C24—C25—H25 | 116.4 |
C9—C5—C6 | 106.2 (4) | C25—C26—C28 | 124.0 (6) |
C17—C5—C6 | 112.8 (4) | C25—C26—C27 | 120.1 (7) |
C4—C5—C6 | 109.8 (4) | C28—C26—C27 | 115.9 (7) |
C23—C6—C7 | 110.1 (4) | C26—C27—H27A | 109.5 |
C23—C6—C22 | 108.2 (5) | C26—C27—H27B | 109.5 |
C7—C6—C22 | 108.3 (5) | H27A—C27—H27B | 109.5 |
C23—C6—C5 | 111.1 (4) | C26—C27—H27C | 109.5 |
C7—C6—C5 | 111.3 (4) | H27A—C27—H27C | 109.5 |
C22—C6—C5 | 107.8 (5) | H27B—C27—H27C | 109.5 |
C8—C7—C6 | 111.9 (4) | C26—C28—H28A | 109.5 |
C8—C7—C24 | 112.6 (4) | C26—C28—H28B | 109.5 |
C6—C7—C24 | 116.6 (4) | H28A—C28—H28B | 109.5 |
C8—C7—H7 | 104.8 | C26—C28—H28C | 109.5 |
C6—C7—H7 | 104.8 | H28A—C28—H28C | 109.5 |
C24—C7—H7 | 104.8 | H28B—C28—H28C | 109.5 |
C7—C8—C1 | 115.4 (4) | C30—C29—C1 | 112.3 (4) |
C7—C8—H8A | 108.4 | C30—C29—H29A | 109.1 |
C1—C8—H8A | 108.4 | C1—C29—H29A | 109.1 |
C7—C8—H8B | 108.4 | C30—C29—H29B | 109.1 |
C1—C8—H8B | 108.4 | C1—C29—H29B | 109.1 |
H8A—C8—H8B | 107.5 | H29A—C29—H29B | 107.9 |
O1—C9—C1 | 123.1 (5) | C31—C30—C29 | 110.2 (5) |
O1—C9—C5 | 121.7 (5) | C31—C30—C34 | 113.8 (5) |
C1—C9—C5 | 115.2 (4) | C29—C30—C34 | 111.0 (5) |
O4—C10—C11 | 122.2 (5) | C31—C30—H30 | 107.2 |
O4—C10—C3 | 121.2 (5) | C29—C30—H30 | 107.2 |
C11—C10—C3 | 116.5 (4) | C34—C30—H30 | 107.2 |
C12—C11—C16 | 119.2 (5) | O2—C31—C32 | 102.5 (4) |
C12—C11—C10 | 121.9 (4) | O2—C31—C30 | 108.4 (4) |
C16—C11—C10 | 118.9 (5) | C32—C31—C30 | 113.4 (5) |
C11—C12—C13 | 121.3 (5) | O2—C31—C33 | 106.1 (5) |
C11—C12—H12 | 119.3 | C32—C31—C33 | 111.1 (5) |
C13—C12—H12 | 119.3 | C30—C31—C33 | 114.3 (5) |
O5—C13—C14 | 123.9 (6) | C31—C32—H32A | 109.5 |
O5—C13—C12 | 116.7 (5) | C31—C32—H32B | 109.5 |
C14—C13—C12 | 119.4 (6) | H32A—C32—H32B | 109.5 |
C15—C14—C13 | 120.2 (6) | C31—C32—H32C | 109.5 |
C15—C14—H14 | 119.9 | H32A—C32—H32C | 109.5 |
C13—C14—H14 | 119.9 | H32B—C32—H32C | 109.5 |
C14—C15—C16 | 121.3 (6) | C31—C33—H33A | 109.5 |
C14—C15—H15 | 119.4 | C31—C33—H33B | 109.5 |
C16—C15—H15 | 119.4 | H33A—C33—H33B | 109.5 |
C15—C16—C11 | 118.5 (6) | C31—C33—H33C | 109.5 |
C15—C16—H16 | 120.7 | H33A—C33—H33C | 109.5 |
C11—C16—H16 | 120.7 | H33B—C33—H33C | 109.5 |
C18—C17—C5 | 114.9 (5) | C35—C34—C30 | 112.1 (5) |
C18—C17—H17A | 108.5 | C35—C34—H34A | 109.2 |
C5—C17—H17A | 108.5 | C30—C34—H34A | 109.2 |
C18—C17—H17B | 108.5 | C35—C34—H34B | 109.2 |
C5—C17—H17B | 108.5 | C30—C34—H34B | 109.2 |
H17A—C17—H17B | 107.5 | H34A—C34—H34B | 107.9 |
C19—C18—C17 | 126.1 (6) | C36—C35—C34 | 129.7 (9) |
C19—C18—H18 | 116.9 | C36—C35—H35 | 115.2 |
C17—C18—H18 | 116.9 | C34—C35—H35 | 115.2 |
C18—C19—C21 | 124.0 (6) | C35—C36—C38 | 125.0 (12) |
C18—C19—C20 | 119.8 (6) | C35—C36—C37 | 119.9 (11) |
C21—C19—C20 | 116.2 (6) | C38—C36—C37 | 115.0 (9) |
C19—C20—H20A | 109.5 | C36—C37—H37A | 109.5 |
C19—C20—H20B | 109.5 | C36—C37—H37B | 109.5 |
H20A—C20—H20B | 109.5 | H37A—C37—H37B | 109.5 |
C19—C20—H20C | 109.5 | C36—C37—H37C | 109.5 |
H20A—C20—H20C | 109.5 | H37A—C37—H37C | 109.5 |
H20B—C20—H20C | 109.5 | H37B—C37—H37C | 109.5 |
C19—C21—H21A | 109.5 | C36—C38—H38A | 109.5 |
C19—C21—H21B | 109.5 | C36—C38—H38B | 109.5 |
H21A—C21—H21B | 109.5 | H38A—C38—H38B | 109.5 |
C19—C21—H21C | 109.5 | C36—C38—H38C | 109.5 |
H21A—C21—H21C | 109.5 | H38A—C38—H38C | 109.5 |
H21B—C21—H21C | 109.5 | H38B—C38—H38C | 109.5 |
C6—C22—H22A | 109.5 | ||
C31—O2—C2—C3 | −142.2 (4) | C17—C5—C9—C1 | 173.2 (4) |
C31—O2—C2—C1 | 42.4 (6) | C4—C5—C9—C1 | 54.1 (5) |
C9—C1—C2—O2 | −157.5 (4) | C6—C5—C9—C1 | −63.8 (5) |
C29—C1—C2—O2 | −35.2 (6) | C2—C3—C10—O4 | −89.8 (6) |
C8—C1—C2—O2 | 87.0 (5) | C4—C3—C10—O4 | 86.0 (6) |
C9—C1—C2—C3 | 27.3 (6) | C2—C3—C10—C11 | 88.8 (6) |
C29—C1—C2—C3 | 149.6 (5) | C4—C3—C10—C11 | −95.3 (5) |
C8—C1—C2—C3 | −88.2 (6) | O4—C10—C11—C12 | −177.7 (5) |
O2—C2—C3—C4 | −171.5 (4) | C3—C10—C11—C12 | 3.6 (7) |
C1—C2—C3—C4 | 3.8 (7) | O4—C10—C11—C16 | 2.6 (8) |
O2—C2—C3—C10 | 4.2 (6) | C3—C10—C11—C16 | −176.0 (5) |
C1—C2—C3—C10 | 179.5 (4) | C16—C11—C12—C13 | 0.7 (9) |
C2—C3—C4—O3 | 174.5 (5) | C10—C11—C12—C13 | −179.0 (5) |
C10—C3—C4—O3 | −1.4 (7) | C11—C12—C13—O5 | 179.7 (6) |
C2—C3—C4—C5 | −7.9 (6) | C11—C12—C13—C14 | 0.8 (10) |
C10—C3—C4—C5 | 176.2 (4) | O5—C13—C14—C15 | 179.2 (7) |
O3—C4—C5—C9 | 157.9 (4) | C12—C13—C14—C15 | −2.0 (11) |
C3—C4—C5—C9 | −19.7 (6) | C13—C14—C15—C16 | 1.7 (12) |
O3—C4—C5—C17 | 37.2 (6) | C14—C15—C16—C11 | −0.3 (10) |
C3—C4—C5—C17 | −140.4 (4) | C12—C11—C16—C15 | −0.9 (9) |
O3—C4—C5—C6 | −86.6 (6) | C10—C11—C16—C15 | 178.7 (5) |
C3—C4—C5—C6 | 95.8 (5) | C9—C5—C17—C18 | −65.5 (6) |
C9—C5—C6—C23 | 179.1 (4) | C4—C5—C17—C18 | 53.4 (6) |
C17—C5—C6—C23 | −58.9 (6) | C6—C5—C17—C18 | 175.3 (5) |
C4—C5—C6—C23 | 62.2 (5) | C5—C17—C18—C19 | 146.8 (6) |
C9—C5—C6—C7 | 56.0 (5) | C17—C18—C19—C21 | −2.5 (11) |
C17—C5—C6—C7 | 178.0 (4) | C17—C18—C19—C20 | 179.4 (6) |
C4—C5—C6—C7 | −60.8 (5) | C8—C7—C24—C25 | −127.5 (5) |
C9—C5—C6—C22 | −62.6 (6) | C6—C7—C24—C25 | 101.2 (6) |
C17—C5—C6—C22 | 59.4 (6) | C7—C24—C25—C26 | −132.7 (7) |
C4—C5—C6—C22 | −179.4 (4) | C24—C25—C26—C28 | 4.3 (11) |
C23—C6—C7—C8 | −174.4 (4) | C24—C25—C26—C27 | −176.1 (7) |
C22—C6—C7—C8 | 67.6 (5) | C9—C1—C29—C30 | 103.1 (5) |
C5—C6—C7—C8 | −50.8 (6) | C2—C1—C29—C30 | −15.3 (6) |
C23—C6—C7—C24 | −42.8 (6) | C8—C1—C29—C30 | −137.5 (5) |
C22—C6—C7—C24 | −160.8 (4) | C1—C29—C30—C31 | 59.5 (6) |
C5—C6—C7—C24 | 80.8 (5) | C1—C29—C30—C34 | −173.6 (5) |
C6—C7—C8—C1 | 49.5 (6) | C2—O2—C31—C32 | 124.8 (5) |
C24—C7—C8—C1 | −84.1 (6) | C2—O2—C31—C30 | 4.5 (6) |
C9—C1—C8—C7 | −51.4 (6) | C2—O2—C31—C33 | −118.6 (5) |
C2—C1—C8—C7 | 63.8 (6) | C29—C30—C31—O2 | −53.9 (5) |
C29—C1—C8—C7 | −174.3 (5) | C34—C30—C31—O2 | −179.2 (5) |
C2—C1—C9—O1 | 124.2 (5) | C29—C30—C31—C32 | −167.0 (5) |
C29—C1—C9—O1 | 3.7 (6) | C34—C30—C31—C32 | 67.7 (7) |
C8—C1—C9—O1 | −117.8 (5) | C29—C30—C31—C33 | 64.2 (6) |
C2—C1—C9—C5 | −57.3 (5) | C34—C30—C31—C33 | −61.1 (7) |
C29—C1—C9—C5 | −177.8 (4) | C31—C30—C34—C35 | −159.6 (6) |
C8—C1—C9—C5 | 60.7 (5) | C29—C30—C34—C35 | 75.5 (7) |
C17—C5—C9—O1 | −8.3 (6) | C30—C34—C35—C36 | −137.6 (9) |
C4—C5—C9—O1 | −127.4 (5) | C34—C35—C36—C38 | 3.4 (15) |
C6—C5—C9—O1 | 114.7 (5) | C34—C35—C36—C37 | −174.3 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1i | 0.82 | 2.05 | 2.785 (6) | 150 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C38H50O5 |
Mr | 586.78 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 11.561 (5), 14.657 (7), 20.457 (10) |
V (Å3) | 3466 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.38 × 0.24 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22425, 4711, 2083 |
Rint | 0.119 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.246, 0.96 |
No. of reflections | 4711 |
No. of parameters | 395 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.33 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009)and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1i | 0.82 | 2.05 | 2.785 (6) | 149.7 |
Symmetry code: (i) x+1/2, −y+1/2, −z+1. |
(I) | O5 | H5 | O1i | 0.82 | 2.05 | 2.785 (6) | 149.7 |
Isogarcinol* | O5 | H5 | O1ii | 0.82 | 2.115 | 2.792 | 139.7 |
Isogarcinol* | O6 | H6 | O5ii | 0.82 | 2.067 | 2.882 | 172.9 |
(i) x+1/2, -y+1/2, -z+1; (ii) x+1/2, -y-1/2, -z+1. *Marti et al. (2009). |
Acknowledgements
The X-ray diffraction facility at the IIT, Kanpur, is acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Anonymous. (1956). The Wealth of India (Raw Materials), Vol. IV, pp. 99, 101–103. New Delhi: CSIR. Google Scholar
Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jayaprakasha, G. K. & Sakariah, K. K. (2002). J. Pharm. Biomed. Anal. 28, 379–84. Web of Science CrossRef PubMed CAS Google Scholar
Kaur, R., Chattopadhyay, S. K., Tandon, S. & Sharma, S. (2012). Ind. Crops Prod. 37, 420–426. Web of Science CrossRef CAS Google Scholar
Krishnamurthy, N., Lewis, Y. S. & Ravindranath, B. (1981). Tetrahedron Lett. 22, 793–796. CrossRef CAS Web of Science Google Scholar
Krishnamurthy, N., Ravindranath, B., Row, T. N. G. & Venkatesan, K. (1982). Tetrahedron Lett. 23, 2233–2236. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marti, G., Eparvier, V., Moretti, C., Susplugas, S., Prado, S., Grellier, P., Retailleau, P., Guéritte, F. & Litaudon, M. (2009). Phytochemistry, 70, 75–85. Web of Science CSD CrossRef PubMed CAS Google Scholar
Padhye, S., Ahmad, A., Oswal, N. & Sarkar, F. H. (2009). J. Hematol. Oncol. 2, 38. Web of Science CrossRef PubMed Google Scholar
Rao, A. V. R. & Venkatswamy, G. (1980b). Indian J. Chem. 19B, 627–633. CAS Google Scholar
Rao, A. V. R., Venkatswamy, G. & Pendse, A. D. (1980a). Tetrahedron Lett. 21, 1975–1978. Google Scholar
Sahu, A., Das, B. & Chaterjee, A. (1989). Phytochemistry, 28, 1233–1235. CrossRef CAS Web of Science Google Scholar
Sang, S., Pan, M. H., Cheng, X., Bai, N., Stark, R. E., Rosen, R. T., Lin-Shiau, S. Y., Lin, J. K. & Ho, C. T. (2001). Tetrahedron, 57, 9931–9938. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamaguchi, F., Ariga, T., Yoshimura, Y. & Nakazawa, H. (2000a). J. Agric. Food Chem. 48, 180–185. Web of Science CrossRef PubMed CAS Google Scholar
Yamaguchi, F., Saito, M., Ariga, T., Yoshimura, Y. & Nakazawa, H. (2000b). J. Agric. Food Chem. 48, 2320–2325. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Garcinia indica (family: Guttiferae, Genus: Garcinia) is a slender evergreen tree with drooping branches, which is well known for its culinary, pharmaceutical and industrial uses. The fruits of Garcinia indica are anthelmintic, cardiotonic and useful in piles, dysentery, tumors, pains and heart complaints (Anonymous, 1956). The dried fruit rind of G. indica is traditionally used as a garnish for curry. Kokum butter (oil from the seeds of Garcinia indica) is extracted from the seeds and used in the cosmetic industry for preparing lotions, creams, lip balms and soaps (Padhye et al., 2009). The fruit rind extract of G. indica contains polyisoprenylated benzophenone derivatives namely garcinol, isogarcinol, xanthochymol, isoxanthochymol and organic acids, chiefly (-)-hydroxycitric acid (Jayaprakasha et al. 2002). Garcinol has shown promising antioxidative, antiglycation, anticancer, anti HIV, anti ulcer and free radical scavenging activities (Yamaguchi et al. 2000a; 2000b; Padhye et al., 2009). Isogarcinol has also shown biological activities similar to that of garcinol and has been claimed to be anti-inflammatory, antitumor, lipase inhibitor, antiobesity agent and antiulcer agent (Sang et al., 2001). In order to study the detailed biological activities of isogarcinol and garcinol (Figure 1), we have developed a process technology for large scale extraction and isolation of the two molecules in good quantities from 7 kg fruits of G. indica. During this process, we have been able to isolate two new minor compounds from the fruit rind, in addition to garcinol and isogarcinol. These were identified as 14-deoxyisogarcinol (1) and a polyprenylated acylphloroglucinol derivative (2) (Figure 1) by detailed spectral analysis (Kaur et al., 2012) and comparison with literature data (Krishnamurthy et al., 1981 and 1982; Rao et al., 1980a and 1980b; Sahu et al., 1989). Compound 1 and 2 were reported for the first time from the fruits of G. indica.
The slow solvent evaporation of a pure fraction of 1 from acetone yielded rectangular shaped transparent single crystals, providing us an opportunity to confirm its molecular conformation. The relative configuration of 1 determined in crystals is shown in Figure 2a. The molecule crystallized in orthorhombic space group P212121, with one molecule in the asymmetric unit. Earlier, a detailed spectroscopic study of 1 has been carried out (Kaur et al., 2012) which indicated that the structure of 1 is closely comparable to that of isogarcinol, whose absolute configuration has been experimentally determined (Krishnamurthy et al., 1982, Marti et al., 2009) as 1S,5R,7R,30S. In the present study, since there are no heavier atoms than O, no attempt was made to determine the absolute configuration of 1. However, between the two enantiomeric possibilities in the crystal structure, the relative (absolute) configuration at chiral centres C1, C5, C7 and C30 were chosen same as that of isogarcinol (S, R, R, S, respectively) taking into consideration the closely related NMR data and optical rotation of 1 and isogarcinol.In the bicyclic system, the C1—C9 bond is in beta and the isoprenyl group at C7 is in alpha orientation. Furthermore, the ketonic group at C9 and the phenol moiety lies on the same side of a plane defined by atoms C1—C2—C3—C4—C5. A comparison of the crystal state conformation of 1 determined in this study with that of isogracinol (Krishnamurthy et al., 1982; Marti et al., 2009) revealed that they are identical. A superposition of the two molecules resulted in an RMSD of 0.02 Å, illustrating this fact (Figure 2 b). In addition, the unit-cell dimensions of 1 (a=11.56 Å, b=14.66 Å, c=20.46 Å) are very similar to that of isogarcinol (a=11.88 Å, b=14.71 Å, c=20.58 Å). This prompted us to compare the crystal packing in both the cases. As isogarcinol has an additional hydrogen bond donor at C14, a different packing arrangement could be anticipated. The intermolecular hydrogen bonds observed in the crystals structure of 1 and isogarcinol (CSD refcode BEVHIT01; Marti et al., 2009) are illustrated in Figure 3 and a comparison of hydrogen bond parameters in both the crystals are given in Table 2. A view of the packing of molecules in the unit cell of 1 and isogarcinol is shown in Figure 4. Interestingly, both the compounds display exactly similar packing arrangement in crystals. The hydroxyl group at C13 is hydrogen bonded to the carbonyl oxygen at C9 of a molecule related by the 2-fold screw along the crystallographic a axis, in both the crystals. In the case of isogarcinol, this arrangement makes the additional hydroxyl group at C14 close to the oxygen atom attached to C13 of the same symmetry related molecule, resulting in an O—H···O hydrogen bond.
A survey of the available crystal structures of isogarcinol and its derivatives in the Cambridge Structural Database (CSD, Version 5.32, Allen, 2002) resulted in three structures; isogarcinol (CSD refcode BEVHIT01; Marti et al., 2009), 14-methoxyisogarcinol (CSD refcode JISXEP; Marti et al., 2009), and 13,14-bis(bromobenzenesulfonyl) isogarcinol (CSD refcode YOMMIX; Marti et al., 2009). Isogarcinol and its 14-methoxy derivative crystallized in the space group P212121 and the 13,14-bis(bromobenzenesulfonyl) derivative crystallized in the monoclinic space group P21. The latter does not have a potential hydrogen bond donor, and has a different packing arrangement as compared to the other two. The 14-methoxy derivative and 1 have only one hydrogen bond donor, which is at C13. The major structural differences between these two structures are in the orientations of the aromatic ring and the isoprenyl group at C7 (Figure 5). The aromatic ring in JISXEP has flipped approximately 180° about the C10—C11 bond (dihedral angle C9—C10—C11—C12 = 3° in 1, and -171° in JISXEP). This has resulted in a longer O5···O1 (x + 1/2, -y + 1/2, -z) distance in JISXEP (3.46 Å). The corresponding H5···O1 distance is 3.02 Å and the angle O5—H5···O1 is 116°, suggesting that this interaction is very weak in JISXEP as compared to the hydrogen bond interactions in the crystals of 1 and isogarcinol. The aromatic rings of 21-screw related molecules along the crystallographic a axis align almost parallel to each other in the case of 1 and isogarcinol (angle between the aromatic planes are 8° and 5.4°, respectively) while in the JISXEP they are inclined at an angle of 35°. These conformational differences between the two derivatives lead to differences in the intermolecular contacts. On the other hand, 1 and isogarcinol are isostructural.