organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1861-o1862

(1S,5R,7R,30S)-14-De­­oxy­isogarcinol

aProcess Chemistry and Chemical Engineering Division, Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India, and bMetabolic and Structural Biology Division, Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India
*Correspondence e-mail: premavasudev@cimap.res.in

(Received 2 March 2012; accepted 8 May 2012; online 23 May 2012)

The title compound, C38H50O5 {systematic name: 10-(3-hy­droxy­benzo­yl)-2,2,7,7-tetra­methyl-3,6,8-tris­(3-methyl­but-2-en­yl)-3,4,4a,5,6,7-hexa­hydro-4a,8-methano-2H-cyclo­octa­[b]pyran-9,11(8H)-dione}, is a polyisoprenylated benzophenone, isolated for the first time from the fruits of Garcinia indica during our investigation of bioactive compounds from this plant and their large-scale extraction. The relative configuration of the title compound was chosen based on comparison of its spectroscopic and optical rotation data with that of the isomorphous and isostructural compound isogarcinol, whose absolute configuration is known. The crystal packing features O—H⋯O hydrogen bonds. A Cambridge Structural Database analysis revealed that the crystal structure reported here is isomorphous and isostructural with that of isogarcinol.

Related literature

For background information on the plant Garcinia indica and its biologically active compounds, see: Anonymous (1956[Anonymous. (1956). The Wealth of India (Raw Materials), Vol. IV, pp. 99, 101-103. New Delhi: CSIR.]); Padhye et al. (2009[Padhye, S., Ahmad, A., Oswal, N. & Sarkar, F. H. (2009). J. Hematol. Oncol. 2, 38.]); Jayaprakasha & Sakariah (2002[Jayaprakasha, G. K. & Sakariah, K. K. (2002). J. Pharm. Biomed. Anal. 28, 379-84.]); Yamaguchi et al. (2000a[Yamaguchi, F., Ariga, T., Yoshimura, Y. & Nakazawa, H. (2000a). J. Agric. Food Chem. 48, 180-185.],b[Yamaguchi, F., Saito, M., Ariga, T., Yoshimura, Y. & Nakazawa, H. (2000b). J. Agric. Food Chem. 48, 2320-2325.]); Sang et al. (2001[Sang, S., Pan, M. H., Cheng, X., Bai, N., Stark, R. E., Rosen, R. T., Lin-Shiau, S. Y., Lin, J. K. & Ho, C. T. (2001). Tetrahedron, 57, 9931-9938.]). For related compounds, see: Krishnamurthy et al. (1981[Krishnamurthy, N., Lewis, Y. S. & Ravindranath, B. (1981). Tetrahedron Lett. 22, 793-796.], 1982[Krishnamurthy, N., Ravindranath, B., Row, T. N. G. & Venkatesan, K. (1982). Tetrahedron Lett. 23, 2233-2236.]); Rao et al. (1980a[Rao, A. V. R., Venkatswamy, G. & Pendse, A. D. (1980a). Tetrahedron Lett. 21, 1975-1978.],b[Rao, A. V. R. & Venkatswamy, G. (1980b). Indian J. Chem. 19B, 627-633.]); Sahu et al. (1989[Sahu, A., Das, B. & Chaterjee, A. (1989). Phytochemistry, 28, 1233-1235.]); Marti et al. (2009[Marti, G., Eparvier, V., Moretti, C., Susplugas, S., Prado, S., Grellier, P., Retailleau, P., Guéritte, F. & Litaudon, M. (2009). Phytochemistry, 70, 75-85.]). For the isolation, purification and spectroscopic study of the title compound, see: Kaur et al. (2012[Kaur, R., Chattopadhyay, S. K., Tandon, S. & Sharma, S. (2012). Ind. Crops Prod. 37, 420-426.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the determination of absolute configuration, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C38H50O5

  • Mr = 586.78

  • Orthorhombic, P 21 21 21

  • a = 11.561 (5) Å

  • b = 14.657 (7) Å

  • c = 20.457 (10) Å

  • V = 3466 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.38 × 0.24 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 22425 measured reflections

  • 4711 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.246

  • S = 0.96

  • 4711 reflections

  • 395 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.82 2.05 2.785 (6) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Garcinia indica (family: Guttiferae, Genus: Garcinia) is a slender evergreen tree with drooping branches, which is well known for its culinary, pharmaceutical and industrial uses. The fruits of Garcinia indica are anthelmintic, cardiotonic and useful in piles, dysentery, tumors, pains and heart complaints (Anonymous, 1956). The dried fruit rind of G. indica is traditionally used as a garnish for curry. Kokum butter (oil from the seeds of Garcinia indica) is extracted from the seeds and used in the cosmetic industry for preparing lotions, creams, lip balms and soaps (Padhye et al., 2009). The fruit rind extract of G. indica contains polyisoprenylated benzophenone derivatives namely garcinol, isogarcinol, xanthochymol, isoxanthochymol and organic acids, chiefly (-)-hydroxycitric acid (Jayaprakasha et al. 2002). Garcinol has shown promising antioxidative, antiglycation, anticancer, anti HIV, anti ulcer and free radical scavenging activities (Yamaguchi et al. 2000a; 2000b; Padhye et al., 2009). Isogarcinol has also shown biological activities similar to that of garcinol and has been claimed to be anti-inflammatory, antitumor, lipase inhibitor, antiobesity agent and antiulcer agent (Sang et al., 2001). In order to study the detailed biological activities of isogarcinol and garcinol (Figure 1), we have developed a process technology for large scale extraction and isolation of the two molecules in good quantities from 7 kg fruits of G. indica. During this process, we have been able to isolate two new minor compounds from the fruit rind, in addition to garcinol and isogarcinol. These were identified as 14-deoxyisogarcinol (1) and a polyprenylated acylphloroglucinol derivative (2) (Figure 1) by detailed spectral analysis (Kaur et al., 2012) and comparison with literature data (Krishnamurthy et al., 1981 and 1982; Rao et al., 1980a and 1980b; Sahu et al., 1989). Compound 1 and 2 were reported for the first time from the fruits of G. indica.

The slow solvent evaporation of a pure fraction of 1 from acetone yielded rectangular shaped transparent single crystals, providing us an opportunity to confirm its molecular conformation. The relative configuration of 1 determined in crystals is shown in Figure 2a. The molecule crystallized in orthorhombic space group P212121, with one molecule in the asymmetric unit. Earlier, a detailed spectroscopic study of 1 has been carried out (Kaur et al., 2012) which indicated that the structure of 1 is closely comparable to that of isogarcinol, whose absolute configuration has been experimentally determined (Krishnamurthy et al., 1982, Marti et al., 2009) as 1S,5R,7R,30S. In the present study, since there are no heavier atoms than O, no attempt was made to determine the absolute configuration of 1. However, between the two enantiomeric possibilities in the crystal structure, the relative (absolute) configuration at chiral centres C1, C5, C7 and C30 were chosen same as that of isogarcinol (S, R, R, S, respectively) taking into consideration the closely related NMR data and optical rotation of 1 and isogarcinol.In the bicyclic system, the C1—C9 bond is in beta and the isoprenyl group at C7 is in alpha orientation. Furthermore, the ketonic group at C9 and the phenol moiety lies on the same side of a plane defined by atoms C1—C2—C3—C4—C5. A comparison of the crystal state conformation of 1 determined in this study with that of isogracinol (Krishnamurthy et al., 1982; Marti et al., 2009) revealed that they are identical. A superposition of the two molecules resulted in an RMSD of 0.02 Å, illustrating this fact (Figure 2 b). In addition, the unit-cell dimensions of 1 (a=11.56 Å, b=14.66 Å, c=20.46 Å) are very similar to that of isogarcinol (a=11.88 Å, b=14.71 Å, c=20.58 Å). This prompted us to compare the crystal packing in both the cases. As isogarcinol has an additional hydrogen bond donor at C14, a different packing arrangement could be anticipated. The intermolecular hydrogen bonds observed in the crystals structure of 1 and isogarcinol (CSD refcode BEVHIT01; Marti et al., 2009) are illustrated in Figure 3 and a comparison of hydrogen bond parameters in both the crystals are given in Table 2. A view of the packing of molecules in the unit cell of 1 and isogarcinol is shown in Figure 4. Interestingly, both the compounds display exactly similar packing arrangement in crystals. The hydroxyl group at C13 is hydrogen bonded to the carbonyl oxygen at C9 of a molecule related by the 2-fold screw along the crystallographic a axis, in both the crystals. In the case of isogarcinol, this arrangement makes the additional hydroxyl group at C14 close to the oxygen atom attached to C13 of the same symmetry related molecule, resulting in an O—H···O hydrogen bond.

A survey of the available crystal structures of isogarcinol and its derivatives in the Cambridge Structural Database (CSD, Version 5.32, Allen, 2002) resulted in three structures; isogarcinol (CSD refcode BEVHIT01; Marti et al., 2009), 14-methoxyisogarcinol (CSD refcode JISXEP; Marti et al., 2009), and 13,14-bis(bromobenzenesulfonyl) isogarcinol (CSD refcode YOMMIX; Marti et al., 2009). Isogarcinol and its 14-methoxy derivative crystallized in the space group P212121 and the 13,14-bis(bromobenzenesulfonyl) derivative crystallized in the monoclinic space group P21. The latter does not have a potential hydrogen bond donor, and has a different packing arrangement as compared to the other two. The 14-methoxy derivative and 1 have only one hydrogen bond donor, which is at C13. The major structural differences between these two structures are in the orientations of the aromatic ring and the isoprenyl group at C7 (Figure 5). The aromatic ring in JISXEP has flipped approximately 180° about the C10—C11 bond (dihedral angle C9—C10—C11—C12 = 3° in 1, and -171° in JISXEP). This has resulted in a longer O5···O1 (x + 1/2, -y + 1/2, -z) distance in JISXEP (3.46 Å). The corresponding H5···O1 distance is 3.02 Å and the angle O5—H5···O1 is 116°, suggesting that this interaction is very weak in JISXEP as compared to the hydrogen bond interactions in the crystals of 1 and isogarcinol. The aromatic rings of 21-screw related molecules along the crystallographic a axis align almost parallel to each other in the case of 1 and isogarcinol (angle between the aromatic planes are 8° and 5.4°, respectively) while in the JISXEP they are inclined at an angle of 35°. These conformational differences between the two derivatives lead to differences in the intermolecular contacts. On the other hand, 1 and isogarcinol are isostructural.

Related literature top

For background information on the plant Garcinia indica and its biologically active compounds, see: Anonymous (1956); Padhye et al. (2009); Jayaprakasha & Sakariah (2002); Yamaguchi et al. (2000a,b); Sang et al. (2001). For related compounds, see: Krishnamurthy et al. (1981, 1982); Rao et al. (1980a,b); Sahu et al. (1989); Marti et al. (2009). For the isolation, purification and spectroscopic study of the title compound, see: Kaur et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002). For the determination of absolute configuration, see: Flack (1983); Hooft et al. (2008).

Experimental top

Isolation of 1 and crystallization: Isolation of 1 from the crude fruit rind extract of G. indica is as reported elsewhere (Kaur et al., 2012). After isolation, the pure compound 1 (m.p. 235 °C) was re-dissolved in acetone and slow evaporation of the solvent yielded rectangular crystals.

Refinement top

All H atoms were placed in geometrically idealized positions and were refined using a riding model, with C—H = 0.98 Å, and aromatic C—H = 0.95 Å, and with Uiso(H) = 1.5Ueq(C) and 1.5Ueq(O)for methyl and OH groups, respectively, or 1.2Ueq(C) for aromatic H atoms. The H atom connected to O5, which is involved in intermolecular hydrogen bond, was also geometrically fixed as there were no electron density peaks near this O atom, which could be assigned as H. To fix and refine this H, different riding models HFIX83, HFIX87 and HFIX147 were tried. Although the final refinement of the structure was not affected by treatment of this H atom, HFIX147 was chosen since it provided more realistic hydrogen bonding parameters. Since there is no strong anomalous scatterer present in the structure, absolute configuration was not determined. Friedel pairs were merged prior to structure refinement. (Flack (x) = -0.4 (1.9) (Flack, 1983) and Hooft (y) = 1.1 (0.6) (Hooft et al., 2008) for the refinement using non-merged Friedel pairs). In the absence of a conclusive Flack parameter, the absolute configuration of 1 in crystals was chosen the same as that of isogarcinol (1S, 5R, 5R, 30S) taking into consideration the closely related NMR data and optical rotation of 1 and isogarcinol (Kaur et al., 2012). Large anisotropic displacement parameters were observed for atoms in the terminal –C-(CH3)2 group of the three isoprenyl moieties, which could be attributed to their conformational flexibility as compared to the rest of the molecule. Attempts to re-grow the crystal for a low temperature data collection is underway.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009)and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Chemical structures of garcinol, isogarcinol, 14-deoxy isogarcinol (1) and polyprenylated acylphloroglucinol derivative (2)
[Figure 2] Fig. 2. (a) Molecular conformation in crystals and atom labeling for 1. The thermal ellipsoids are shown at 30% probability level. (b) Overlay of the crystal state conformations of 1 (yellow) and isogarcinol (purple; CSD refcode BEVHIT01; Marti et al., 2009). RMSD = 0.025 Å for the superposed atoms. Hydrogen atoms are shown only for the hydroxyl groups.
[Figure 3] Fig. 3. Intermolecular hydrogen bonding in the crystals of 1 (left) and isogarcinol (right, CSD refcode BEVHIT01; Marti et al., 2009)
[Figure 4] Fig. 4. Packing of molecules viewed down the crystallographic b axis for (a) 1 and (b) isogarcinol.
[Figure 5] Fig. 5. Overlay of the molecular conformations of 1 (yellow) and 14-methoxy isogarcinol (purple; (CSD refcode JISXEP; Marti et al., 2009).RMSD = 0.072 Å for the superposed atoms. Hydrogen atoms are shown only for the hydroxyl groups.
10-(3-Hydroxybenzoyl)-2,2,7,7-tetramethyl-3,6,8-tris(3-methylbut-2-enyl)- 3,4,4a,5,6,7-hexahydro-4a,8-methano-2H-cycloocta[b]pyran- 9,11(8H)-dione top
Crystal data top
C38H50O5Dx = 1.124 Mg m3
Mr = 586.78Melting point: 508.15 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 11.561 (5) ÅCell parameters from 1674 reflections
b = 14.657 (7) Åθ = 2.5–18.3°
c = 20.457 (10) ŵ = 0.07 mm1
V = 3466 (3) Å3T = 293 K
Z = 4Rectangular, colourless'
F(000) = 12720.38 × 0.24 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2083 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.119
Graphite monochromatorθmax = 28.4°, θmin = 2.0°
phi and ω scansh = 715
22425 measured reflectionsk = 1919
4711 independent reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.246H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1315P)2]
where P = (Fo2 + 2Fc2)/3
4711 reflections(Δ/σ)max = 0.014
395 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C38H50O5V = 3466 (3) Å3
Mr = 586.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.561 (5) ŵ = 0.07 mm1
b = 14.657 (7) ÅT = 293 K
c = 20.457 (10) Å0.38 × 0.24 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2083 reflections with I > 2σ(I)
22425 measured reflectionsRint = 0.119
4711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.246H-atom parameters constrained
S = 0.96Δρmax = 0.28 e Å3
4711 reflectionsΔρmin = 0.33 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0105 (3)0.0536 (3)0.5068 (2)0.0845 (11)
O20.3125 (3)0.0825 (2)0.42986 (16)0.0701 (10)
O30.2529 (3)0.0440 (3)0.65177 (17)0.0787 (11)
O40.4668 (3)0.1232 (3)0.5609 (2)0.0835 (11)
O50.4003 (4)0.2725 (3)0.5150 (4)0.135 (2)
H50.43760.31910.52200.203*
C10.1090 (4)0.0679 (3)0.4651 (2)0.0612 (13)
C20.2389 (4)0.0657 (3)0.4788 (2)0.0553 (11)
C30.2840 (4)0.0539 (3)0.5391 (2)0.0575 (12)
C40.2107 (4)0.0478 (3)0.5971 (2)0.0601 (12)
C50.0773 (4)0.0422 (3)0.5880 (2)0.0605 (12)
C60.0215 (5)0.1426 (3)0.5949 (3)0.0678 (14)
C70.0697 (5)0.2085 (3)0.5419 (2)0.0696 (14)
H70.01580.26010.54160.083*
C80.0611 (5)0.1671 (3)0.4724 (3)0.0708 (14)
H8A0.01950.16730.45920.085*
H8B0.10270.20640.44240.085*
C90.0525 (4)0.0111 (3)0.5182 (3)0.0625 (13)
C100.4138 (5)0.0532 (4)0.5494 (2)0.0622 (13)
C110.4724 (4)0.0363 (4)0.5432 (2)0.0628 (12)
C120.4122 (5)0.1149 (4)0.5326 (3)0.0725 (14)
H120.33190.11260.52970.087*
C130.4684 (5)0.1984 (4)0.5258 (3)0.0869 (18)
C140.5866 (6)0.2017 (5)0.5292 (3)0.0953 (19)
H140.62490.25690.52340.114*
C150.6485 (6)0.1240 (6)0.5410 (4)0.104 (2)
H150.72870.12740.54440.125*
C160.5940 (5)0.0400 (5)0.5482 (3)0.0858 (17)
H160.63680.01260.55600.103*
C170.0284 (5)0.0262 (4)0.6383 (3)0.0789 (16)
H17A0.05370.03370.63030.095*
H17B0.03700.00040.68170.095*
C180.0844 (5)0.1186 (4)0.6376 (3)0.0802 (16)
H180.16270.12070.62720.096*
C190.0332 (6)0.1967 (4)0.6502 (3)0.0833 (17)
C200.1027 (7)0.2848 (4)0.6480 (4)0.110 (2)
H20A0.17750.27300.62950.164*
H20B0.11180.30820.69160.164*
H20C0.06280.32890.62170.164*
C210.0933 (7)0.2062 (5)0.6651 (5)0.139 (3)
H21A0.13150.14900.65740.209*
H21B0.12640.25220.63740.209*
H21C0.10300.22350.71000.209*
C220.1116 (5)0.1336 (4)0.5847 (3)0.0889 (18)
H22A0.12680.10930.54200.133*
H22B0.14310.09330.61720.133*
H22C0.14700.19250.58870.133*
C230.0426 (6)0.1819 (4)0.6630 (3)0.0832 (18)
H23A0.12430.18800.67030.125*
H23B0.00660.24070.66630.125*
H23C0.01030.14180.69530.125*
C240.1921 (6)0.2525 (3)0.5560 (3)0.0761 (15)
H24A0.23750.25110.51610.091*
H24B0.23200.21560.58830.091*
C250.1862 (6)0.3480 (4)0.5799 (3)0.0906 (19)
H250.13790.38730.55690.109*
C260.2426 (5)0.3839 (4)0.6309 (3)0.0896 (18)
C270.2321 (7)0.4839 (5)0.6458 (5)0.158 (4)
H27A0.18190.51210.61440.238*
H27B0.20050.49180.68890.238*
H27C0.30710.51180.64370.238*
C280.3171 (6)0.3303 (6)0.6760 (4)0.114 (2)
H28A0.30380.26630.66930.171*
H28B0.39690.34400.66750.171*
H28C0.29880.34580.72040.171*
C290.0846 (5)0.0309 (4)0.3958 (3)0.0804 (16)
H29A0.06500.08140.36720.097*
H29B0.01840.00980.39750.097*
C300.1879 (5)0.0203 (4)0.3673 (2)0.0715 (14)
H300.20720.06940.39790.086*
C310.2921 (5)0.0422 (4)0.3634 (2)0.0687 (14)
C320.4033 (6)0.0073 (5)0.3505 (3)0.106 (2)
H32A0.46560.03580.34790.160*
H32B0.41810.04960.38530.160*
H32C0.39740.04000.30990.160*
C330.2774 (7)0.1222 (5)0.3173 (3)0.112 (3)
H33A0.20590.15280.32670.169*
H33B0.34060.16400.32290.169*
H33C0.27640.10050.27300.169*
C340.1564 (6)0.0651 (5)0.3022 (3)0.097 (2)
H34A0.22680.08140.27910.116*
H34B0.11450.02160.27540.116*
C350.0839 (7)0.1488 (6)0.3112 (3)0.115 (3)
H350.10700.18710.34510.138*
C360.0068 (8)0.1762 (9)0.2788 (4)0.148 (4)
C370.0607 (10)0.2708 (9)0.2936 (6)0.228 (7)
H37A0.02230.29760.33060.342*
H37B0.14150.26370.30320.342*
H37C0.05160.30980.25630.342*
C380.0624 (9)0.1254 (12)0.2261 (5)0.227 (7)
H38A0.04950.06130.23230.340*
H38B0.03040.14400.18490.340*
H38C0.14400.13760.22650.340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.087 (3)0.066 (2)0.101 (3)0.012 (2)0.018 (2)0.011 (2)
O20.069 (2)0.078 (2)0.063 (2)0.0018 (19)0.0079 (18)0.0034 (18)
O30.085 (3)0.091 (3)0.060 (2)0.003 (2)0.0164 (19)0.0014 (19)
O40.074 (3)0.070 (2)0.107 (3)0.013 (2)0.021 (2)0.003 (2)
O50.100 (4)0.067 (3)0.239 (7)0.021 (3)0.020 (4)0.030 (4)
C10.057 (3)0.064 (3)0.062 (3)0.012 (2)0.007 (2)0.007 (3)
C20.057 (3)0.049 (3)0.060 (3)0.005 (2)0.006 (2)0.005 (2)
C30.062 (3)0.047 (2)0.064 (3)0.007 (2)0.009 (2)0.006 (2)
C40.068 (3)0.048 (3)0.064 (3)0.007 (2)0.012 (3)0.002 (2)
C50.067 (3)0.050 (2)0.065 (3)0.007 (2)0.001 (2)0.002 (2)
C60.061 (3)0.061 (3)0.081 (4)0.013 (2)0.003 (3)0.009 (3)
C70.078 (4)0.052 (3)0.079 (3)0.022 (3)0.009 (3)0.003 (3)
C80.071 (3)0.065 (3)0.076 (3)0.020 (3)0.012 (3)0.001 (3)
C90.059 (3)0.051 (3)0.078 (3)0.012 (2)0.010 (3)0.008 (2)
C100.061 (3)0.064 (3)0.063 (3)0.003 (3)0.014 (2)0.005 (2)
C110.055 (3)0.065 (3)0.068 (3)0.001 (3)0.013 (2)0.000 (3)
C120.053 (3)0.067 (3)0.097 (4)0.013 (3)0.012 (3)0.002 (3)
C130.072 (4)0.067 (4)0.122 (5)0.021 (3)0.016 (4)0.011 (4)
C140.081 (5)0.084 (4)0.121 (5)0.036 (4)0.004 (4)0.007 (4)
C150.058 (4)0.122 (6)0.132 (6)0.026 (4)0.007 (4)0.010 (5)
C160.063 (4)0.094 (4)0.100 (4)0.008 (3)0.011 (3)0.006 (4)
C170.080 (4)0.071 (3)0.086 (4)0.005 (3)0.011 (3)0.001 (3)
C180.073 (4)0.063 (3)0.104 (4)0.000 (3)0.002 (3)0.015 (3)
C190.092 (5)0.073 (4)0.085 (4)0.004 (3)0.001 (3)0.014 (3)
C200.130 (6)0.068 (4)0.131 (6)0.007 (4)0.005 (5)0.024 (4)
C210.101 (6)0.109 (5)0.209 (9)0.009 (5)0.045 (6)0.063 (6)
C220.070 (4)0.083 (4)0.114 (5)0.023 (3)0.002 (3)0.014 (4)
C230.104 (5)0.071 (4)0.075 (4)0.012 (3)0.004 (3)0.019 (3)
C240.092 (4)0.049 (3)0.087 (4)0.005 (3)0.006 (3)0.008 (3)
C250.102 (5)0.052 (3)0.117 (5)0.013 (3)0.009 (4)0.001 (3)
C260.076 (4)0.087 (4)0.106 (5)0.013 (4)0.006 (4)0.023 (4)
C270.101 (6)0.105 (6)0.268 (12)0.010 (5)0.000 (6)0.101 (7)
C280.083 (5)0.155 (7)0.104 (5)0.037 (5)0.009 (4)0.002 (5)
C290.073 (4)0.098 (4)0.070 (3)0.006 (3)0.021 (3)0.007 (3)
C300.081 (4)0.076 (3)0.057 (3)0.005 (3)0.006 (3)0.008 (3)
C310.076 (4)0.073 (3)0.058 (3)0.001 (3)0.004 (2)0.000 (3)
C320.098 (5)0.131 (6)0.089 (4)0.014 (5)0.014 (4)0.019 (4)
C330.142 (7)0.106 (5)0.089 (4)0.026 (5)0.028 (4)0.031 (4)
C340.108 (5)0.110 (5)0.072 (4)0.004 (4)0.007 (3)0.019 (3)
C350.122 (6)0.141 (6)0.083 (4)0.032 (5)0.007 (4)0.035 (4)
C360.114 (6)0.238 (11)0.092 (6)0.032 (7)0.018 (5)0.074 (7)
C370.211 (12)0.315 (17)0.158 (9)0.171 (13)0.044 (8)0.097 (10)
C380.115 (8)0.43 (2)0.132 (8)0.039 (12)0.033 (7)0.045 (12)
Geometric parameters (Å, º) top
O1—C91.219 (6)C21—H21B0.9600
O2—C21.337 (6)C21—H21C0.9600
O2—C311.500 (6)C22—H22A0.9600
O3—C41.221 (5)C22—H22B0.9600
O4—C101.218 (6)C22—H22C0.9600
O5—C131.359 (8)C23—H23A0.9600
O5—H50.8200C23—H23B0.9600
C1—C91.517 (7)C23—H23C0.9600
C1—C21.527 (7)C24—C251.485 (7)
C1—C291.544 (7)C24—H24A0.9700
C1—C81.563 (7)C24—H24B0.9700
C2—C31.352 (6)C25—C261.338 (9)
C3—C41.460 (7)C25—H250.9300
C3—C101.515 (7)C26—C281.487 (10)
C4—C51.556 (7)C26—C271.503 (10)
C5—C91.526 (7)C27—H27A0.9600
C5—C171.544 (7)C27—H27B0.9600
C5—C61.612 (7)C27—H27C0.9600
C6—C231.528 (7)C28—H28A0.9600
C6—C71.556 (7)C28—H28B0.9600
C6—C221.558 (8)C28—H28C0.9600
C7—C81.549 (7)C29—C301.527 (8)
C7—C241.581 (8)C29—H29A0.9700
C7—H70.9800C29—H29B0.9700
C8—H8A0.9700C30—C311.516 (8)
C8—H8B0.9700C30—C341.529 (8)
C10—C111.482 (7)C30—H300.9800
C11—C121.363 (7)C31—C321.499 (9)
C11—C161.411 (8)C31—C331.515 (8)
C12—C131.393 (7)C32—H32A0.9600
C12—H120.9300C32—H32B0.9600
C13—C141.370 (9)C32—H32C0.9600
C14—C151.366 (9)C33—H33A0.9600
C14—H140.9300C33—H33B0.9600
C15—C161.391 (9)C33—H33C0.9600
C15—H150.9300C34—C351.498 (10)
C16—H160.9300C34—H34A0.9700
C17—C181.500 (8)C34—H34B0.9700
C17—H17A0.9700C35—C361.304 (11)
C17—H17B0.9700C35—H350.9300
C18—C191.314 (8)C36—C381.459 (15)
C18—H180.9300C36—C371.551 (15)
C19—C211.501 (10)C37—H37A0.9600
C19—C201.522 (9)C37—H37B0.9600
C20—H20A0.9600C37—H37C0.9600
C20—H20B0.9600C38—H38A0.9600
C20—H20C0.9600C38—H38B0.9600
C21—H21A0.9600C38—H38C0.9600
C2—O2—C31120.3 (4)C6—C22—H22B109.5
C13—O5—H5109.5H22A—C22—H22B109.5
C9—C1—C2106.3 (4)C6—C22—H22C109.5
C9—C1—C29112.7 (4)H22A—C22—H22C109.5
C2—C1—C29109.9 (4)H22B—C22—H22C109.5
C9—C1—C8106.8 (4)C6—C23—H23A109.5
C2—C1—C8110.5 (4)C6—C23—H23B109.5
C29—C1—C8110.5 (4)H23A—C23—H23B109.5
O2—C2—C3117.5 (4)C6—C23—H23C109.5
O2—C2—C1119.1 (4)H23A—C23—H23C109.5
C3—C2—C1123.3 (4)H23B—C23—H23C109.5
C2—C3—C4121.7 (4)C25—C24—C7113.8 (5)
C2—C3—C10120.6 (4)C25—C24—H24A108.8
C4—C3—C10117.5 (4)C7—C24—H24A108.8
O3—C4—C3121.0 (5)C25—C24—H24B108.8
O3—C4—C5120.2 (5)C7—C24—H24B108.8
C3—C4—C5118.8 (4)H24A—C24—H24B107.7
C9—C5—C17111.1 (4)C26—C25—C24127.2 (6)
C9—C5—C4108.3 (4)C26—C25—H25116.4
C17—C5—C4108.5 (4)C24—C25—H25116.4
C9—C5—C6106.2 (4)C25—C26—C28124.0 (6)
C17—C5—C6112.8 (4)C25—C26—C27120.1 (7)
C4—C5—C6109.8 (4)C28—C26—C27115.9 (7)
C23—C6—C7110.1 (4)C26—C27—H27A109.5
C23—C6—C22108.2 (5)C26—C27—H27B109.5
C7—C6—C22108.3 (5)H27A—C27—H27B109.5
C23—C6—C5111.1 (4)C26—C27—H27C109.5
C7—C6—C5111.3 (4)H27A—C27—H27C109.5
C22—C6—C5107.8 (5)H27B—C27—H27C109.5
C8—C7—C6111.9 (4)C26—C28—H28A109.5
C8—C7—C24112.6 (4)C26—C28—H28B109.5
C6—C7—C24116.6 (4)H28A—C28—H28B109.5
C8—C7—H7104.8C26—C28—H28C109.5
C6—C7—H7104.8H28A—C28—H28C109.5
C24—C7—H7104.8H28B—C28—H28C109.5
C7—C8—C1115.4 (4)C30—C29—C1112.3 (4)
C7—C8—H8A108.4C30—C29—H29A109.1
C1—C8—H8A108.4C1—C29—H29A109.1
C7—C8—H8B108.4C30—C29—H29B109.1
C1—C8—H8B108.4C1—C29—H29B109.1
H8A—C8—H8B107.5H29A—C29—H29B107.9
O1—C9—C1123.1 (5)C31—C30—C29110.2 (5)
O1—C9—C5121.7 (5)C31—C30—C34113.8 (5)
C1—C9—C5115.2 (4)C29—C30—C34111.0 (5)
O4—C10—C11122.2 (5)C31—C30—H30107.2
O4—C10—C3121.2 (5)C29—C30—H30107.2
C11—C10—C3116.5 (4)C34—C30—H30107.2
C12—C11—C16119.2 (5)O2—C31—C32102.5 (4)
C12—C11—C10121.9 (4)O2—C31—C30108.4 (4)
C16—C11—C10118.9 (5)C32—C31—C30113.4 (5)
C11—C12—C13121.3 (5)O2—C31—C33106.1 (5)
C11—C12—H12119.3C32—C31—C33111.1 (5)
C13—C12—H12119.3C30—C31—C33114.3 (5)
O5—C13—C14123.9 (6)C31—C32—H32A109.5
O5—C13—C12116.7 (5)C31—C32—H32B109.5
C14—C13—C12119.4 (6)H32A—C32—H32B109.5
C15—C14—C13120.2 (6)C31—C32—H32C109.5
C15—C14—H14119.9H32A—C32—H32C109.5
C13—C14—H14119.9H32B—C32—H32C109.5
C14—C15—C16121.3 (6)C31—C33—H33A109.5
C14—C15—H15119.4C31—C33—H33B109.5
C16—C15—H15119.4H33A—C33—H33B109.5
C15—C16—C11118.5 (6)C31—C33—H33C109.5
C15—C16—H16120.7H33A—C33—H33C109.5
C11—C16—H16120.7H33B—C33—H33C109.5
C18—C17—C5114.9 (5)C35—C34—C30112.1 (5)
C18—C17—H17A108.5C35—C34—H34A109.2
C5—C17—H17A108.5C30—C34—H34A109.2
C18—C17—H17B108.5C35—C34—H34B109.2
C5—C17—H17B108.5C30—C34—H34B109.2
H17A—C17—H17B107.5H34A—C34—H34B107.9
C19—C18—C17126.1 (6)C36—C35—C34129.7 (9)
C19—C18—H18116.9C36—C35—H35115.2
C17—C18—H18116.9C34—C35—H35115.2
C18—C19—C21124.0 (6)C35—C36—C38125.0 (12)
C18—C19—C20119.8 (6)C35—C36—C37119.9 (11)
C21—C19—C20116.2 (6)C38—C36—C37115.0 (9)
C19—C20—H20A109.5C36—C37—H37A109.5
C19—C20—H20B109.5C36—C37—H37B109.5
H20A—C20—H20B109.5H37A—C37—H37B109.5
C19—C20—H20C109.5C36—C37—H37C109.5
H20A—C20—H20C109.5H37A—C37—H37C109.5
H20B—C20—H20C109.5H37B—C37—H37C109.5
C19—C21—H21A109.5C36—C38—H38A109.5
C19—C21—H21B109.5C36—C38—H38B109.5
H21A—C21—H21B109.5H38A—C38—H38B109.5
C19—C21—H21C109.5C36—C38—H38C109.5
H21A—C21—H21C109.5H38A—C38—H38C109.5
H21B—C21—H21C109.5H38B—C38—H38C109.5
C6—C22—H22A109.5
C31—O2—C2—C3142.2 (4)C17—C5—C9—C1173.2 (4)
C31—O2—C2—C142.4 (6)C4—C5—C9—C154.1 (5)
C9—C1—C2—O2157.5 (4)C6—C5—C9—C163.8 (5)
C29—C1—C2—O235.2 (6)C2—C3—C10—O489.8 (6)
C8—C1—C2—O287.0 (5)C4—C3—C10—O486.0 (6)
C9—C1—C2—C327.3 (6)C2—C3—C10—C1188.8 (6)
C29—C1—C2—C3149.6 (5)C4—C3—C10—C1195.3 (5)
C8—C1—C2—C388.2 (6)O4—C10—C11—C12177.7 (5)
O2—C2—C3—C4171.5 (4)C3—C10—C11—C123.6 (7)
C1—C2—C3—C43.8 (7)O4—C10—C11—C162.6 (8)
O2—C2—C3—C104.2 (6)C3—C10—C11—C16176.0 (5)
C1—C2—C3—C10179.5 (4)C16—C11—C12—C130.7 (9)
C2—C3—C4—O3174.5 (5)C10—C11—C12—C13179.0 (5)
C10—C3—C4—O31.4 (7)C11—C12—C13—O5179.7 (6)
C2—C3—C4—C57.9 (6)C11—C12—C13—C140.8 (10)
C10—C3—C4—C5176.2 (4)O5—C13—C14—C15179.2 (7)
O3—C4—C5—C9157.9 (4)C12—C13—C14—C152.0 (11)
C3—C4—C5—C919.7 (6)C13—C14—C15—C161.7 (12)
O3—C4—C5—C1737.2 (6)C14—C15—C16—C110.3 (10)
C3—C4—C5—C17140.4 (4)C12—C11—C16—C150.9 (9)
O3—C4—C5—C686.6 (6)C10—C11—C16—C15178.7 (5)
C3—C4—C5—C695.8 (5)C9—C5—C17—C1865.5 (6)
C9—C5—C6—C23179.1 (4)C4—C5—C17—C1853.4 (6)
C17—C5—C6—C2358.9 (6)C6—C5—C17—C18175.3 (5)
C4—C5—C6—C2362.2 (5)C5—C17—C18—C19146.8 (6)
C9—C5—C6—C756.0 (5)C17—C18—C19—C212.5 (11)
C17—C5—C6—C7178.0 (4)C17—C18—C19—C20179.4 (6)
C4—C5—C6—C760.8 (5)C8—C7—C24—C25127.5 (5)
C9—C5—C6—C2262.6 (6)C6—C7—C24—C25101.2 (6)
C17—C5—C6—C2259.4 (6)C7—C24—C25—C26132.7 (7)
C4—C5—C6—C22179.4 (4)C24—C25—C26—C284.3 (11)
C23—C6—C7—C8174.4 (4)C24—C25—C26—C27176.1 (7)
C22—C6—C7—C867.6 (5)C9—C1—C29—C30103.1 (5)
C5—C6—C7—C850.8 (6)C2—C1—C29—C3015.3 (6)
C23—C6—C7—C2442.8 (6)C8—C1—C29—C30137.5 (5)
C22—C6—C7—C24160.8 (4)C1—C29—C30—C3159.5 (6)
C5—C6—C7—C2480.8 (5)C1—C29—C30—C34173.6 (5)
C6—C7—C8—C149.5 (6)C2—O2—C31—C32124.8 (5)
C24—C7—C8—C184.1 (6)C2—O2—C31—C304.5 (6)
C9—C1—C8—C751.4 (6)C2—O2—C31—C33118.6 (5)
C2—C1—C8—C763.8 (6)C29—C30—C31—O253.9 (5)
C29—C1—C8—C7174.3 (5)C34—C30—C31—O2179.2 (5)
C2—C1—C9—O1124.2 (5)C29—C30—C31—C32167.0 (5)
C29—C1—C9—O13.7 (6)C34—C30—C31—C3267.7 (7)
C8—C1—C9—O1117.8 (5)C29—C30—C31—C3364.2 (6)
C2—C1—C9—C557.3 (5)C34—C30—C31—C3361.1 (7)
C29—C1—C9—C5177.8 (4)C31—C30—C34—C35159.6 (6)
C8—C1—C9—C560.7 (5)C29—C30—C34—C3575.5 (7)
C17—C5—C9—O18.3 (6)C30—C34—C35—C36137.6 (9)
C4—C5—C9—O1127.4 (5)C34—C35—C36—C383.4 (15)
C6—C5—C9—O1114.7 (5)C34—C35—C36—C37174.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.822.052.785 (6)150
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC38H50O5
Mr586.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.561 (5), 14.657 (7), 20.457 (10)
V3)3466 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.38 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22425, 4711, 2083
Rint0.119
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.246, 0.96
No. of reflections4711
No. of parameters395
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009)and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.822.052.785 (6)149.7
Symmetry code: (i) x+1/2, y+1/2, z+1.
Intermolecular hydrogen bond parameters in the crystals of 1 and isogarcinol (CSD refcode BEVHIT01; Marti et al., 2009). top
(I)O5H5O1i0.822.052.785 (6)149.7
Isogarcinol*O5H5O1ii0.822.1152.792139.7
Isogarcinol*O6H6O5ii0.822.0672.882172.9
(i) x+1/2, -y+1/2, -z+1; (ii) x+1/2, -y-1/2, -z+1. *Marti et al. (2009).
 

Acknowledgements

The X-ray diffraction facility at the IIT, Kanpur, is acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnonymous. (1956). The Wealth of India (Raw Materials), Vol. IV, pp. 99, 101–103. New Delhi: CSIR.  Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayaprakasha, G. K. & Sakariah, K. K. (2002). J. Pharm. Biomed. Anal. 28, 379–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaur, R., Chattopadhyay, S. K., Tandon, S. & Sharma, S. (2012). Ind. Crops Prod. 37, 420–426.  Web of Science CrossRef CAS Google Scholar
First citationKrishnamurthy, N., Lewis, Y. S. & Ravindranath, B. (1981). Tetrahedron Lett. 22, 793–796.  CrossRef CAS Web of Science Google Scholar
First citationKrishnamurthy, N., Ravindranath, B., Row, T. N. G. & Venkatesan, K. (1982). Tetrahedron Lett. 23, 2233–2236.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarti, G., Eparvier, V., Moretti, C., Susplugas, S., Prado, S., Grellier, P., Retailleau, P., Guéritte, F. & Litaudon, M. (2009). Phytochemistry, 70, 75–85.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPadhye, S., Ahmad, A., Oswal, N. & Sarkar, F. H. (2009). J. Hematol. Oncol. 2, 38.  Web of Science CrossRef PubMed Google Scholar
First citationRao, A. V. R. & Venkatswamy, G. (1980b). Indian J. Chem. 19B, 627–633.  CAS Google Scholar
First citationRao, A. V. R., Venkatswamy, G. & Pendse, A. D. (1980a). Tetrahedron Lett. 21, 1975–1978.  Google Scholar
First citationSahu, A., Das, B. & Chaterjee, A. (1989). Phytochemistry, 28, 1233–1235.  CrossRef CAS Web of Science Google Scholar
First citationSang, S., Pan, M. H., Cheng, X., Bai, N., Stark, R. E., Rosen, R. T., Lin-Shiau, S. Y., Lin, J. K. & Ho, C. T. (2001). Tetrahedron, 57, 9931–9938.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi, F., Ariga, T., Yoshimura, Y. & Nakazawa, H. (2000a). J. Agric. Food Chem. 48, 180–185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamaguchi, F., Saito, M., Ariga, T., Yoshimura, Y. & Nakazawa, H. (2000b). J. Agric. Food Chem. 48, 2320–2325.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1861-o1862
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds