organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl-3-hy­dr­oxy-3-methyl-2,3-di­hydro-1H-isoindol-1-one

aCollege of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
*Correspondence e-mail: why5421700@163.com

(Received 26 April 2012; accepted 12 May 2012; online 19 May 2012)

In the title compound, C16H15NO2, the isoindoline ring system is approximately planar (mean deviation = 0.0186 Å) and makes a dihedral angle of 61.91 (4)° with the phenyl ring. In the crystal, mol­ecules form inversion dimers via pairs of O—H⋯O hydrogen bonds.

Related literature

For background to the synthesis of the title compound, see: Griffiths et al. (1983[Griffiths, P. G., Moad, G. & Rizzardo, E. (1983). Aust. J. Chem. 36, 397-401.]); For its applications in synthesis, see: Winn & Zaugg (1968[Winn, M. & Zaugg, H. E. (1968). J. Org. Chem. 33, 3779-3783.]); Katsuhiko et al. (2006[Katsuhiko, T., Takahiro, T., Takayuki, H. & Kazunobu, I. (2006). Synlett, 15, 2449-2453.]). For related structures, see: Wang et al. (2008[Wang, J. Y., Johnson, D. M. & Tiekink, E. R. T. (2008). Z. Kristallogr. New Cryst. Struct. 223, 25-26.]); Orzeszko et al. (1998[Orzeszko, A., Maurin, J. K., Niedzwiecka-Kornas, A. & Kazimierczuk, Z. (1998). Tetrahedron, 54, 7517-7524.]); Liu et al. (2009[Liu, S., Zhang, X.-L., Zhang, W.-H. & Zhu, H.-J. (2009). Acta Cryst. E65, o3011.]); Rosamilia et al. (2002[Rosamilia, A. E., Mayes, P. A., Papadopoulos, R., Campi, E. M., Jackson, W. R., Rash, L. & Jarrott, B. (2002). Aust. J. Chem. 55, 577-585.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO2

  • Mr = 253.29

  • Monoclinic, C 2/c

  • a = 11.093 (4) Å

  • b = 11.604 (4) Å

  • c = 21.226 (7) Å

  • β = 101.777 (5)°

  • V = 2674.7 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.47 × 0.34 × 0.23 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 11602 measured reflections

  • 3479 independent reflections

  • 2673 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.11

  • 3479 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.960 (15) 1.836 (15) 2.7938 (14) 175.3 (12)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was obtained as a byproduct in the preparation of 2-benzyl-1,1,3,3-tetramethylisoindoline, an important intermediate in the synthesis of the radical 1,1,3,3-Tetramethylisoindolin-2-yloxyl (TMIO), which is used as spin probe and radical scavenger (Griffiths et al., 1983). The title compound can be applied in the synthesis of heterocyclic amines through intramolecular amidoalkylation (Winn & Zaugg, 1968) and anionic ring-enlarging reaction (Katsuhiko et al., 2006).

The molecular structure of the title compound is shown in Fig. 1 and there are some similiar stuctures reported before (Wang et al., 2008; Orzeszko et al., 1998; Liu et al., 2009; Rosamilia et al., 2002). In the molecule, the isoindol ring system is approximately planar [mean deviation = 0.0186 Å] and has a dihedral angle of 61.91 (4)° with the benzene ring. In the crystal (Fig. 2), molecules form centrosymmetric dimers via pairs of O—H···O hydrogen bonds (Table 1).

Related literature top

For background to the synthesis of the title compound, see: Griffiths et al. (1983); For its applications in synthesis, see: Winn & Zaugg (1968); Katsuhiko et al. (2006). For related structures, see: Wang et al. (2008); Orzeszko et al. (1998); Liu et al. (2009); Rosamilia et al. (2002).

Experimental top

1.4 ml me thyl magnesium bromide solution (3 M in ether) was added to a 25 ml round-bottom flask filled with nitrogen and heated to 60 °C. A solution of N-benzylphthalimides (500 mg, 2.11 mmol) in toluene (15 ml) was added dropwise with stirring at a sufficient rate to maintain this temperature. When the addition was complete, the solution was heated to 110 °C and maintained at this temperature for 4 h. The reaction mixture was cooled to room temperature and petroleum was added. The mixture turned purple after stirring in air for 12 h. At the end, the mixture was filtered on celite and the filtrate obtained was dried, giving a precipitate which was separated by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:3). The title compound was obtained as a colorless solid (123 mg, 23%) and evaporation of a solution in ethanol for 24 h afforded colorless single crystals suitable for X-ray diffraction.

Refinement top

The hydroxy H atom was obtained by difference Fourier synthesis and refined freely. All other H atoms were placed at calculated positions, with C—H = 0.95–0.98 Å. The Uiso(H) values were constrained to be 1.5Ueq(C) for the methyl H atoms or 1.2Ueq(C) for the aromatic H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular conformation of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound.
2-Benzyl-3-hydroxy-3-methyl-2,3-dihydro-1H-isoindol-1-one top
Crystal data top
C16H15NO2F(000) = 1072
Mr = 253.29Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.093 (4) ÅCell parameters from 4918 reflections
b = 11.604 (4) Åθ = 2.6–29.1°
c = 21.226 (7) ŵ = 0.08 mm1
β = 101.777 (5)°T = 153 K
V = 2674.7 (15) Å3Block, colorless
Z = 80.47 × 0.34 × 0.23 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2673 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.032
Graphite monochromatorθmax = 29.1°, θmin = 2.6°
Detector resolution: 28.5714 pixels mm-1h = 1215
phi and ω scansk = 1515
11602 measured reflectionsl = 2828
3479 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.056P)2 + 0.0264P]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H15NO2V = 2674.7 (15) Å3
Mr = 253.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.093 (4) ŵ = 0.08 mm1
b = 11.604 (4) ÅT = 153 K
c = 21.226 (7) Å0.47 × 0.34 × 0.23 mm
β = 101.777 (5)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2673 reflections with I > 2σ(I)
11602 measured reflectionsRint = 0.032
3479 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.21 e Å3
3479 reflectionsΔρmin = 0.18 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48310 (7)0.73617 (7)0.04556 (4)0.0310 (2)
O20.49294 (7)0.35635 (7)0.07278 (4)0.0321 (2)
N10.46720 (9)0.54981 (8)0.09038 (4)0.0256 (2)
C10.53806 (10)0.65930 (9)0.09452 (5)0.0263 (2)
C20.66237 (10)0.61485 (9)0.08633 (5)0.0242 (2)
C30.76900 (10)0.67523 (10)0.08427 (5)0.0300 (3)
H30.77190.75680.08800.036*
C40.87197 (11)0.61253 (10)0.07655 (6)0.0314 (3)
H40.94590.65250.07460.038*
C50.86960 (11)0.49285 (10)0.07166 (5)0.0290 (3)
H50.94180.45230.06720.035*
C60.76204 (10)0.43254 (9)0.07334 (5)0.0257 (3)
H60.75890.35090.06990.031*
C70.65951 (10)0.49583 (9)0.08021 (5)0.0227 (2)
C80.53351 (11)0.45578 (9)0.08088 (5)0.0247 (2)
C90.33419 (10)0.54720 (10)0.08518 (5)0.0295 (3)
H9A0.30060.48090.05780.035*
H9B0.29890.61810.06280.035*
C100.29071 (10)0.53813 (10)0.14795 (5)0.0283 (3)
C110.33512 (12)0.45438 (11)0.19347 (6)0.0352 (3)
H110.40020.40520.18730.042*
C120.28499 (13)0.44209 (12)0.24794 (6)0.0409 (3)
H120.31590.38440.27880.049*
C130.19061 (13)0.51312 (13)0.25754 (6)0.0433 (3)
H130.15570.50370.29450.052*
C140.14733 (12)0.59773 (14)0.21325 (7)0.0470 (4)
H140.08320.64750.22000.056*
C150.19722 (11)0.61047 (12)0.15877 (6)0.0391 (3)
H150.16710.66930.12850.047*
C160.54084 (11)0.71985 (10)0.15828 (6)0.0339 (3)
H16A0.59280.78870.16090.041*
H16B0.57450.66750.19380.041*
H16C0.45700.74230.16130.041*
H1O0.4958 (12)0.7058 (13)0.0054 (7)0.059 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (5)0.0236 (4)0.0314 (4)0.0059 (3)0.0092 (4)0.0017 (3)
O20.0404 (5)0.0228 (4)0.0347 (5)0.0094 (3)0.0114 (4)0.0022 (3)
N10.0259 (5)0.0244 (5)0.0278 (5)0.0027 (4)0.0085 (4)0.0011 (4)
C10.0305 (6)0.0207 (5)0.0280 (6)0.0010 (4)0.0069 (5)0.0011 (4)
C20.0286 (6)0.0202 (5)0.0240 (5)0.0011 (4)0.0060 (4)0.0005 (4)
C30.0333 (6)0.0208 (5)0.0357 (6)0.0046 (5)0.0063 (5)0.0001 (5)
C40.0281 (6)0.0308 (6)0.0355 (6)0.0052 (5)0.0067 (5)0.0040 (5)
C50.0290 (6)0.0295 (6)0.0290 (6)0.0023 (5)0.0073 (5)0.0025 (5)
C60.0331 (7)0.0202 (5)0.0242 (5)0.0007 (4)0.0068 (5)0.0009 (4)
C70.0287 (6)0.0193 (5)0.0202 (5)0.0024 (4)0.0054 (4)0.0007 (4)
C80.0322 (6)0.0225 (5)0.0201 (5)0.0037 (4)0.0071 (4)0.0001 (4)
C90.0266 (6)0.0361 (6)0.0260 (6)0.0022 (5)0.0059 (5)0.0008 (5)
C100.0238 (6)0.0353 (6)0.0256 (6)0.0062 (5)0.0050 (4)0.0023 (5)
C110.0401 (7)0.0376 (7)0.0284 (6)0.0017 (5)0.0080 (5)0.0007 (5)
C120.0494 (9)0.0469 (8)0.0259 (6)0.0046 (6)0.0069 (6)0.0030 (5)
C130.0405 (8)0.0640 (9)0.0279 (6)0.0108 (7)0.0132 (5)0.0030 (6)
C140.0350 (7)0.0681 (10)0.0419 (8)0.0064 (7)0.0174 (6)0.0024 (7)
C150.0292 (7)0.0531 (8)0.0367 (7)0.0031 (6)0.0107 (5)0.0069 (6)
C160.0387 (7)0.0311 (6)0.0325 (6)0.0011 (5)0.0086 (5)0.0084 (5)
Geometric parameters (Å, º) top
O1—C11.4102 (13)C7—C81.4757 (16)
O1—H1O0.960 (15)C9—C101.5103 (16)
O2—C81.2377 (13)C9—H9A0.9900
N1—C81.3538 (14)C9—H9B0.9900
N1—C91.4573 (16)C10—C111.3880 (17)
N1—C11.4871 (14)C10—C151.3894 (17)
C1—C21.5151 (16)C11—C121.3888 (18)
C1—C161.5196 (15)C11—H110.9500
C2—C31.3831 (15)C12—C131.380 (2)
C2—C71.3870 (15)C12—H120.9500
C3—C41.3918 (16)C13—C141.376 (2)
C3—H30.9500C13—H130.9500
C4—C51.3925 (17)C14—C151.3879 (18)
C4—H40.9500C14—H140.9500
C5—C61.3900 (16)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—C71.3864 (15)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C1—O1—H1O107.6 (9)N1—C9—C10115.80 (10)
C8—N1—C9122.99 (10)N1—C9—H9A108.3
C8—N1—C1113.62 (9)C10—C9—H9A108.3
C9—N1—C1122.48 (9)N1—C9—H9B108.3
O1—C1—N1110.67 (9)C10—C9—H9B108.3
O1—C1—C2113.42 (9)H9A—C9—H9B107.4
N1—C1—C2100.65 (8)C11—C10—C15118.60 (11)
O1—C1—C16106.91 (9)C11—C10—C9122.08 (11)
N1—C1—C16111.22 (9)C15—C10—C9119.16 (11)
C2—C1—C16113.96 (9)C10—C11—C12120.40 (12)
C3—C2—C7120.32 (10)C10—C11—H11119.8
C3—C2—C1129.45 (10)C12—C11—H11119.8
C7—C2—C1110.23 (9)C13—C12—C11120.42 (13)
C2—C3—C4117.82 (10)C13—C12—H12119.8
C2—C3—H3121.1C11—C12—H12119.8
C4—C3—H3121.1C14—C13—C12119.65 (13)
C3—C4—C5121.78 (10)C14—C13—H13120.2
C3—C4—H4119.1C12—C13—H13120.2
C5—C4—H4119.1C13—C14—C15120.15 (13)
C6—C5—C4120.23 (11)C13—C14—H14119.9
C6—C5—H5119.9C15—C14—H14119.9
C4—C5—H5119.9C14—C15—C10120.77 (13)
C7—C6—C5117.57 (10)C14—C15—H15119.6
C7—C6—H6121.2C10—C15—H15119.6
C5—C6—H6121.2C1—C16—H16A109.5
C6—C7—C2122.26 (10)C1—C16—H16B109.5
C6—C7—C8129.28 (10)H16A—C16—H16B109.5
C2—C7—C8108.44 (9)C1—C16—H16C109.5
O2—C8—N1125.37 (11)H16A—C16—H16C109.5
O2—C8—C7127.62 (10)H16B—C16—H16C109.5
N1—C8—C7106.98 (9)
C8—N1—C1—O1119.71 (10)C1—C2—C7—C82.63 (12)
C9—N1—C1—O149.64 (13)C9—N1—C8—O27.00 (17)
C8—N1—C1—C20.51 (11)C1—N1—C8—O2176.29 (10)
C9—N1—C1—C2169.86 (9)C9—N1—C8—C7171.34 (9)
C8—N1—C1—C16121.59 (10)C1—N1—C8—C72.05 (12)
C9—N1—C1—C1669.06 (12)C6—C7—C8—O23.10 (19)
O1—C1—C2—C360.18 (15)C2—C7—C8—O2175.41 (11)
N1—C1—C2—C3178.40 (11)C6—C7—C8—N1178.60 (10)
C16—C1—C2—C362.48 (15)C2—C7—C8—N12.89 (12)
O1—C1—C2—C7119.60 (10)C8—N1—C9—C1099.09 (13)
N1—C1—C2—C71.37 (11)C1—N1—C9—C1092.55 (12)
C16—C1—C2—C7117.75 (11)N1—C9—C10—C1151.07 (15)
C7—C2—C3—C40.60 (16)N1—C9—C10—C15133.51 (12)
C1—C2—C3—C4179.64 (10)C15—C10—C11—C121.30 (18)
C2—C3—C4—C50.64 (17)C9—C10—C11—C12174.15 (11)
C3—C4—C5—C61.07 (17)C10—C11—C12—C130.1 (2)
C4—C5—C6—C70.23 (16)C11—C12—C13—C141.0 (2)
C5—C6—C7—C21.03 (16)C12—C13—C14—C150.9 (2)
C5—C6—C7—C8177.31 (10)C13—C14—C15—C100.3 (2)
C3—C2—C7—C61.47 (16)C11—C10—C15—C141.39 (19)
C1—C2—C7—C6178.73 (9)C9—C10—C15—C14174.19 (12)
C3—C2—C7—C8177.17 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.960 (15)1.836 (15)2.7938 (14)175.3 (12)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H15NO2
Mr253.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)11.093 (4), 11.604 (4), 21.226 (7)
β (°) 101.777 (5)
V3)2674.7 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.34 × 0.23
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11602, 3479, 2673
Rint0.032
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.11
No. of reflections3479
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.960 (15)1.836 (15)2.7938 (14)175.3 (12)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank the National Natural Science Foundation of China and the Laboratory of Mol­ecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, for financial support.

References

First citationGriffiths, P. G., Moad, G. & Rizzardo, E. (1983). Aust. J. Chem. 36, 397–401.  CrossRef CAS Google Scholar
First citationKatsuhiko, T., Takahiro, T., Takayuki, H. & Kazunobu, I. (2006). Synlett, 15, 2449–2453.  Google Scholar
First citationLiu, S., Zhang, X.-L., Zhang, W.-H. & Zhu, H.-J. (2009). Acta Cryst. E65, o3011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrzeszko, A., Maurin, J. K., Niedzwiecka-Kornas, A. & Kazimierczuk, Z. (1998). Tetrahedron, 54, 7517–7524.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRosamilia, A. E., Mayes, P. A., Papadopoulos, R., Campi, E. M., Jackson, W. R., Rash, L. & Jarrott, B. (2002). Aust. J. Chem. 55, 577–585.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. Y., Johnson, D. M. & Tiekink, E. R. T. (2008). Z. Kristallogr. New Cryst. Struct. 223, 25–26.  CAS Google Scholar
First citationWinn, M. & Zaugg, H. E. (1968). J. Org. Chem. 33, 3779–3783.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds