metal-organic compounds
Poly[[(methanol)(μ4-2,4,5,6-tetrafluorobenzene-1,3-dicarboxylato)copper(II)] methanol monosolvate]
aSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
*Correspondence e-mail: duanqian88@hotmail.com
In the title compound, {[Cu(C8F4O4)(CH3OH)]·CH3OH}n, two CuII atoms are bridged by four carboxylate groups, forming the well known paddle-wheel secondary building unit (SBU) with axial methanol ligands. In each ligand, the dihedral angles between the benzene ring and the two carboxylate groups are 80.43 (17) and 62.5 (4)°. Within each SBU, the four carboxylate groups come from four symmetry-equivalent tetrafluoroisophthalate ligands. Each tetrafluoroisophthalate group connects two SBUs, forming a layered structure . In the crystal, O—H⋯O hydrogen bonds involving the free and ligated methanol molecules link the molecules into a three-dimensional supramolecular network.
Related literature
For background to coordination polymers, see: Kim et al. (2001); Kitagawa et al. (2004). For applications of coordination polymers, see: Wang et al. (2009); Dincă & Long (2008); Furukawa et al. (2008). For information on fluorinated coordination polymers, see: Yang et al. (2007); Hulvey et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812020740/pk2400sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020740/pk2400Isup2.hkl
Compound I was obtained by layering 5 ml of a methanol solution containing 2,4,5,6-tetrafluoro-1,3-benzenedicarboxylic acid (23 mg, 0.10 mmol) and 2,6-lutidine (0.034 ml, 0.30 mmol) onto 5 ml of a methanol/nitrobenzene solution (1.5:1, v/v) containing Cu(NO3)2.2.5H2O (23 mg, 0.10 mmol). Green crystals formed at the interlayer boundary within one week. After two weeks, blue block-shaped crystals of the title compound suitable for X-ray diffraction were obtained by slow diffusion of the solvents in 26% yield (9.5 mg, based on the ligand).
All H atoms bound to C atoms and O—H hydrogen atoms of the free methanol molecules were assigned to calculated positions with C—H = 0.96 Å, O—H = 0.82 Å, and refined using a riding model, with Uiso(H)=1.5 Ueq(C,O). O—H hydrogen atoms of the coordinated methanol molecules were found in difference Fourier maps and refined isotropically with the distance restraint: O—H = 0.85 Å and Uiso(H) = 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C8F4O4)(CH4O)]·CH4O | F(000) = 724 |
Mr = 363.70 | Dx = 1.863 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2575 reflections |
a = 8.6542 (7) Å | θ = 2.4–26.1° |
b = 12.1882 (10) Å | µ = 1.76 mm−1 |
c = 12.4272 (10) Å | T = 200 K |
β = 98.390 (1)° | Block, green |
V = 1296.78 (18) Å3 | 0.34 × 0.22 × 0.19 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2575 independent reflections |
Radiation source: fine-focus sealed tube | 2365 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 9.00 pixels mm-1 | θmax = 26.1°, θmin = 2.4° |
ϕ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −15→14 |
Tmin = 0.621, Tmax = 0.715 | l = −13→15 |
8122 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0551P)2 + 1.2274P] where P = (Fo2 + 2Fc2)/3 |
2575 reflections | (Δ/σ)max = 0.001 |
196 parameters | Δρmax = 1.05 e Å−3 |
1 restraint | Δρmin = −0.40 e Å−3 |
[Cu(C8F4O4)(CH4O)]·CH4O | V = 1296.78 (18) Å3 |
Mr = 363.70 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6542 (7) Å | µ = 1.76 mm−1 |
b = 12.1882 (10) Å | T = 200 K |
c = 12.4272 (10) Å | 0.34 × 0.22 × 0.19 mm |
β = 98.390 (1)° |
Bruker APEXII CCD area-detector diffractometer | 2575 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2365 reflections with I > 2σ(I) |
Tmin = 0.621, Tmax = 0.715 | Rint = 0.017 |
8122 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 1 restraint |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 1.05 e Å−3 |
2575 reflections | Δρmin = −0.40 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.86874 (3) | 0.96498 (2) | 0.53265 (2) | 0.01964 (12) | |
C1 | 0.8110 (3) | 1.2979 (2) | 0.4412 (2) | 0.0263 (5) | |
C2 | 0.7454 (3) | 1.32560 (19) | 0.33704 (19) | 0.0244 (5) | |
C3 | 0.6682 (3) | 1.4235 (2) | 0.30967 (19) | 0.0253 (5) | |
C4 | 0.6579 (4) | 1.4958 (2) | 0.3942 (2) | 0.0364 (7) | |
C5 | 0.7222 (5) | 1.4715 (2) | 0.4996 (2) | 0.0471 (9) | |
C6 | 0.7980 (4) | 1.3732 (2) | 0.5220 (2) | 0.0412 (7) | |
C7 | 0.8867 (3) | 1.18712 (19) | 0.46554 (18) | 0.0237 (5) | |
C8 | 0.6012 (3) | 1.45109 (18) | 0.1942 (2) | 0.0239 (5) | |
C9 | 0.6040 (4) | 0.8097 (3) | 0.5897 (3) | 0.0528 (9) | |
H9A | 0.5000 | 0.8111 | 0.6079 | 0.079* | |
H9B | 0.6736 | 0.7776 | 0.6485 | 0.079* | |
H9C | 0.6053 | 0.7668 | 0.5250 | 0.079* | |
C10 | 0.0958 (4) | 0.3426 (3) | 0.2112 (3) | 0.0545 (9) | |
H10A | 0.2061 | 0.3549 | 0.2157 | 0.082* | |
H10B | 0.0624 | 0.2914 | 0.1538 | 0.082* | |
H10C | 0.0735 | 0.3132 | 0.2790 | 0.082* | |
F1 | 0.7529 (2) | 1.25055 (12) | 0.25928 (11) | 0.0331 (4) | |
F2 | 0.5866 (3) | 1.59239 (14) | 0.37550 (13) | 0.0523 (5) | |
F3 | 0.7098 (4) | 1.54384 (16) | 0.57961 (16) | 0.0796 (9) | |
F4 | 0.8600 (3) | 1.35034 (16) | 0.62475 (14) | 0.0636 (6) | |
O1 | 0.8026 (2) | 1.11737 (14) | 0.50171 (15) | 0.0307 (4) | |
O2 | 1.0228 (2) | 1.17630 (14) | 0.44677 (15) | 0.0313 (4) | |
O3 | 0.4671 (2) | 1.48965 (17) | 0.17844 (14) | 0.0319 (4) | |
O4 | 0.6883 (2) | 1.43243 (16) | 0.12365 (13) | 0.0285 (4) | |
O5 | 0.6524 (2) | 0.91720 (17) | 0.57154 (19) | 0.0400 (5) | |
H5 | 0.601 (4) | 0.960 (2) | 0.606 (3) | 0.057 (12)* | |
O6 | 0.0148 (3) | 0.4435 (2) | 0.1894 (2) | 0.0569 (7) | |
H6 | −0.0781 | 0.4313 | 0.1697 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02543 (18) | 0.01590 (18) | 0.01669 (18) | −0.00318 (10) | 0.00001 (11) | 0.00040 (10) |
C1 | 0.0362 (13) | 0.0189 (11) | 0.0219 (12) | 0.0017 (10) | −0.0022 (10) | 0.0017 (9) |
C2 | 0.0350 (13) | 0.0201 (11) | 0.0173 (11) | 0.0010 (10) | 0.0014 (9) | −0.0004 (9) |
C3 | 0.0351 (13) | 0.0206 (11) | 0.0183 (11) | 0.0019 (10) | −0.0023 (9) | 0.0010 (9) |
C4 | 0.0620 (19) | 0.0204 (13) | 0.0239 (13) | 0.0141 (13) | −0.0028 (12) | 0.0015 (10) |
C5 | 0.088 (3) | 0.0274 (15) | 0.0208 (14) | 0.0171 (14) | −0.0073 (15) | −0.0089 (10) |
C6 | 0.073 (2) | 0.0284 (14) | 0.0171 (12) | 0.0104 (14) | −0.0107 (12) | 0.0024 (11) |
C7 | 0.0353 (13) | 0.0181 (11) | 0.0155 (11) | 0.0014 (9) | −0.0037 (9) | 0.0005 (9) |
C8 | 0.0335 (13) | 0.0162 (11) | 0.0200 (12) | 0.0003 (9) | −0.0022 (10) | −0.0006 (9) |
C9 | 0.0485 (19) | 0.0407 (18) | 0.070 (2) | −0.0086 (14) | 0.0117 (17) | 0.0131 (16) |
C10 | 0.0519 (19) | 0.061 (2) | 0.049 (2) | −0.0095 (17) | 0.0024 (15) | 0.0140 (17) |
F1 | 0.0550 (10) | 0.0226 (7) | 0.0197 (7) | 0.0083 (6) | −0.0017 (6) | −0.0035 (6) |
F2 | 0.0966 (15) | 0.0268 (8) | 0.0287 (9) | 0.0282 (9) | −0.0068 (9) | −0.0013 (7) |
F3 | 0.166 (3) | 0.0405 (12) | 0.0247 (10) | 0.0440 (13) | −0.0131 (12) | −0.0126 (8) |
F4 | 0.1242 (19) | 0.0373 (10) | 0.0196 (8) | 0.0251 (11) | −0.0217 (9) | −0.0025 (7) |
O1 | 0.0374 (10) | 0.0191 (8) | 0.0356 (10) | 0.0020 (7) | 0.0055 (8) | 0.0043 (7) |
O2 | 0.0369 (10) | 0.0207 (8) | 0.0359 (10) | 0.0013 (7) | 0.0046 (8) | 0.0085 (7) |
O3 | 0.0376 (10) | 0.0376 (10) | 0.0192 (9) | 0.0111 (8) | 0.0001 (7) | 0.0032 (8) |
O4 | 0.0319 (9) | 0.0330 (9) | 0.0190 (8) | 0.0050 (8) | −0.0016 (7) | 0.0054 (7) |
O5 | 0.0375 (11) | 0.0297 (10) | 0.0566 (13) | −0.0091 (8) | 0.0192 (10) | −0.0092 (9) |
O6 | 0.0374 (12) | 0.0643 (15) | 0.0666 (17) | −0.0080 (11) | −0.0002 (11) | 0.0208 (13) |
Cu1—O2i | 1.9600 (18) | C7—O2 | 1.241 (3) |
Cu1—O1 | 1.9650 (18) | C7—O1 | 1.245 (3) |
Cu1—O3ii | 1.9656 (18) | C8—O3 | 1.240 (3) |
Cu1—O4iii | 1.9734 (17) | C8—O4 | 1.258 (3) |
Cu1—O5 | 2.0834 (19) | C9—O5 | 1.404 (4) |
Cu1—Cu1i | 2.6622 (6) | C9—H9A | 0.9600 |
C1—C6 | 1.377 (4) | C9—H9B | 0.9600 |
C1—C2 | 1.378 (3) | C9—H9C | 0.9600 |
C1—C7 | 1.512 (3) | C10—O6 | 1.422 (5) |
C2—F1 | 1.339 (3) | C10—H10A | 0.9600 |
C2—C3 | 1.385 (3) | C10—H10B | 0.9600 |
C3—C4 | 1.384 (4) | C10—H10C | 0.9600 |
C3—C8 | 1.505 (3) | O2—Cu1i | 1.9600 (18) |
C4—F2 | 1.334 (3) | O3—Cu1iv | 1.9656 (18) |
C4—C5 | 1.379 (4) | O4—Cu1v | 1.9733 (17) |
C5—F3 | 1.344 (3) | O5—H5 | 0.842 (10) |
C5—C6 | 1.375 (4) | O6—H6 | 0.8200 |
C6—F4 | 1.340 (3) | ||
O2i—Cu1—O1 | 167.50 (8) | F4—C6—C5 | 119.1 (3) |
O2i—Cu1—O3ii | 89.55 (8) | F4—C6—C1 | 119.5 (2) |
O1—Cu1—O3ii | 89.38 (8) | C5—C6—C1 | 121.4 (2) |
O2i—Cu1—O4iii | 89.89 (8) | O2—C7—O1 | 128.0 (2) |
O1—Cu1—O4iii | 88.48 (8) | O2—C7—C1 | 116.9 (2) |
O3ii—Cu1—O4iii | 167.51 (8) | O1—C7—C1 | 115.0 (2) |
O2i—Cu1—O5 | 98.84 (8) | O3—C8—O4 | 126.9 (2) |
O1—Cu1—O5 | 93.64 (8) | O3—C8—C3 | 117.2 (2) |
O3ii—Cu1—O5 | 98.51 (8) | O4—C8—C3 | 115.9 (2) |
O4iii—Cu1—O5 | 93.91 (8) | O5—C9—H9A | 109.5 |
O2i—Cu1—Cu1i | 84.70 (5) | O5—C9—H9B | 109.5 |
O1—Cu1—Cu1i | 82.79 (6) | H9A—C9—H9B | 109.5 |
O3ii—Cu1—Cu1i | 85.21 (6) | O5—C9—H9C | 109.5 |
O4iii—Cu1—Cu1i | 82.31 (5) | H9A—C9—H9C | 109.5 |
O5—Cu1—Cu1i | 174.85 (7) | H9B—C9—H9C | 109.5 |
C6—C1—C2 | 117.1 (2) | O6—C10—H10A | 109.5 |
C6—C1—C7 | 121.9 (2) | O6—C10—H10B | 109.5 |
C2—C1—C7 | 120.9 (2) | H10A—C10—H10B | 109.5 |
F1—C2—C1 | 117.0 (2) | O6—C10—H10C | 109.5 |
F1—C2—C3 | 118.9 (2) | H10A—C10—H10C | 109.5 |
C1—C2—C3 | 124.0 (2) | H10B—C10—H10C | 109.5 |
C4—C3—C2 | 116.4 (2) | C7—O1—Cu1 | 123.16 (17) |
C4—C3—C8 | 121.5 (2) | C7—O2—Cu1i | 121.24 (15) |
C2—C3—C8 | 122.1 (2) | C8—O3—Cu1iv | 121.44 (17) |
F2—C4—C5 | 117.8 (2) | C8—O4—Cu1v | 124.10 (16) |
F2—C4—C3 | 120.6 (2) | C9—O5—Cu1 | 126.70 (19) |
C5—C4—C3 | 121.5 (2) | C9—O5—H5 | 108 (3) |
F3—C5—C6 | 120.6 (3) | Cu1—O5—H5 | 120 (3) |
F3—C5—C4 | 119.8 (3) | C10—O6—H6 | 109.5 |
C6—C5—C4 | 119.6 (3) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1/2, −y+5/2, z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1/2, −y+5/2, z−1/2; (v) −x+3/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O6vi | 0.84 (1) | 1.80 (1) | 2.637 (3) | 173 (4) |
O6—H6···O4vii | 0.82 | 2.02 | 2.828 (3) | 169 |
Symmetry codes: (vi) x+1/2, −y+3/2, z+1/2; (vii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8F4O4)(CH4O)]·CH4O |
Mr | 363.70 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 8.6542 (7), 12.1882 (10), 12.4272 (10) |
β (°) | 98.390 (1) |
V (Å3) | 1296.78 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.76 |
Crystal size (mm) | 0.34 × 0.22 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.621, 0.715 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8122, 2575, 2365 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.620 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.092, 1.07 |
No. of reflections | 2575 |
No. of parameters | 196 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.05, −0.40 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
Cu1—O2i | 1.9600 (18) | Cu1—O4iii | 1.9734 (17) |
Cu1—O1 | 1.9650 (18) | Cu1—O5 | 2.0834 (19) |
Cu1—O3ii | 1.9656 (18) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1/2, −y+5/2, z+1/2; (iii) −x+3/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O6iv | 0.842 (10) | 1.800 (12) | 2.637 (3) | 173 (4) |
O6—H6···O4v | 0.82 | 2.02 | 2.828 (3) | 169.0 |
Symmetry codes: (iv) x+1/2, −y+3/2, z+1/2; (v) x−1, y−1, z. |
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dincă, M. & Long, J. R. (2008). Angew. Chem. Int. Ed. 47, 6766–6779. Google Scholar
Furukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. M. (2008). J. Am. Chem. Soc. 130, 11650–11651. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hulvey, Z., Falcao, E. H. L., Eckert, J. & Cheetham, A. K. (2009). J. Mater. Chem. 19, 4307–4309. Web of Science CSD CrossRef CAS Google Scholar
Kim, J., Chen, B., Reineke, T. M., Li, H. L., Eddaoudi, M., Moler, D. B., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239–8247. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Chen, G. & Ding, K. (2009). Chem. Rev. 109, 322–359. Web of Science CrossRef PubMed CAS Google Scholar
Yang, C., Wang, X. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454–15455. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of coordination polymers is an active area of research as these compounds have potential uses in gas storage, catalysis, magnetism and so on. The Omary and Cheetham groups have both reported interesting hydrogen adsorption properties in porous coordination polymers containing fluorinated ligands (Yang et al. 2007; Hulvey et al. 2009). Indeed, most of the reports to date of coordination polymers containing perfluorinated dicarboxylates involve a second ligand, which is typically a simple, nonfluorinated, nitrogen-containing molecule. The well known paddlewheel secondary building unit (M2(O2CR)4L2, M=Cu, Zn, etc.; L=terminal ligand) has been used extensively in generating porous coordination polymers. Here, we report a perfluorinated coordination polymer (I), {[Cu(C8F4O4)(CH3OH)].CH3OH}n, which is constructed using the paddlewheel SBU Cu2(O2CR)4L2 (L=CH3OH).
The asymmetric unit is composed of one CuII center, one tetrafluoroisophthalate anion, one coordinated methanol ligand, and one methanol solvent molecule (Fig. 1). Each CuII ion is five-coordinated by four oxygen donors from four different tetrafluoroisophthalate ligands and one oxygen atom from a terminal methanol molecule. In the paddlewheel SBU, the two copper ions are separated by 2.6622 (6) Å. Each SBU connects four tetrafluoroisophthalate ligands, and each tetrafluoroisophthalate group connect two SBUs to form a two dimensional layered structure (Fig. 2). Adjacent parallel layers are connected by O—H···O hydrogen bonds between guest methanol molecules and the coordinated methanol molecules to create a three-dimensional supramolecular network.