organic compounds
2,4,5-Tris(pyridin-4-yl)-4,5-dihydro-1,3-oxazole
aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores, 81223 Los Mochis, Sinaloa, Mexico, bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico, and cCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, BC, Mexico
*Correspondence e-mail: gaxiolajose@yahoo.com.mx
In the title compound, C18H14N4O, the molecules are disordered about a crystallographic twofold axis, leading to 50:50 disorder of the O- and N-atom sites within the oxazole ring. As a consequence, symmetry-related oxazole C—N and C—O bonds are averaged. The oxazole ring makes a dihedral angle of 6.920 (1)° with the pyridyl ring in the 2-position and 60.960 (2)° with the pyridyl rings in the 4- and 5-positions.
Related literature
For background to the synthesis of oxazoles see: Graham (2010); Aspinall et al. (2011). For the use of pyridyloxazole ligands in the construction of metal-organic complexes see: Bettencourt-Dias et al. (2010, 2012). For the use of tripyridyl ligands in the construction of metal-organic coordination complexes and polymers, see: Campos-Gaxiola et al. (2007, 2008, 2010); Liang et al. (2008, 2009); Yang et al. (2010); Chen et al. (2011).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812022611/pk2402sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812022611/pk2402Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812022611/pk2402Isup3.cml
The synthesis of the title compound included reagent grade starting materials and solvents. A mixture of pyridine-4-carboxaldehyde (5 ml, 0.0531 mol) and ammonium hydroxide (15 ml, 0.3843 mol), dissolved in THF (100 ml) was stirred at 50 °C for 72 h and the solvent removed under reduced pressure. The remaining solid was re-crystallized in methanol, providing colorless crystals. Yield (3.5 g, 60%). IR (KBr): 3154, 3035, 3005, 2889, 1660, 1596, 1557, 1486, 1492, 1412, 1333, 1290, 1077, 992, 823, 677 cm-1.
All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and Uiso(H) = 1.2 Ueq(C). The molecules are disordered over crystallographic 2-fold axes, therefore, the C1—N1/C1—O1 and C2—N1/C2—O1 distances are average values. The EXYZ and EADP constraint instructions in SHELXL-97 were used for atoms N1 and O1 in order to model the disorder properly during the refinement.
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H14N4O | F(000) = 632 |
Mr = 302.33 | Dx = 1.415 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 5620 reflections |
a = 15.9777 (13) Å | θ = 2.2–28.3° |
b = 11.4504 (9) Å | µ = 0.09 mm−1 |
c = 7.7573 (6) Å | T = 293 K |
V = 1419.21 (19) Å3 | Rectangular prism, colorless |
Z = 4 | 0.43 × 0.38 × 0.34 mm |
Bruker SMART CCD area-detector diffractometer | 1254 independent reflections |
Radiation source: fine-focus sealed tube | 1107 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −19→19 |
Tmin = 0.962, Tmax = 0.969 | k = −13→13 |
12571 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3873P] where P = (Fo2 + 2Fc2)/3 |
1254 reflections | (Δ/σ)max < 0.001 |
106 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C18H14N4O | V = 1419.21 (19) Å3 |
Mr = 302.33 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 15.9777 (13) Å | µ = 0.09 mm−1 |
b = 11.4504 (9) Å | T = 293 K |
c = 7.7573 (6) Å | 0.43 × 0.38 × 0.34 mm |
Bruker SMART CCD area-detector diffractometer | 1254 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1107 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.969 | Rint = 0.030 |
12571 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.16 e Å−3 |
1254 reflections | Δρmin = −0.23 e Å−3 |
106 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5000 | 0.86189 (17) | 0.2500 | 0.0382 (5) | |
N1 | 0.44050 (7) | 0.80349 (9) | 0.17275 (14) | 0.0380 (3) | 0.50 |
O1 | 0.44050 (7) | 0.80349 (9) | 0.17275 (14) | 0.0380 (3) | 0.50 |
C2 | 0.45914 (8) | 0.68010 (11) | 0.19468 (17) | 0.0327 (3) | |
H2 | 0.4713 | 0.6458 | 0.0817 | 0.039* | |
N2 | 0.5000 | 1.23405 (16) | 0.2500 | 0.0507 (5) | |
N3 | 0.25339 (8) | 0.49131 (13) | 0.42490 (18) | 0.0509 (4) | |
C3 | 0.5000 | 0.99035 (17) | 0.2500 | 0.0327 (4) | |
C4 | 0.43313 (9) | 1.05212 (13) | 0.18356 (19) | 0.0405 (4) | |
H4 | 0.3870 | 1.0136 | 0.1374 | 0.049* | |
C5 | 0.43658 (11) | 1.17225 (14) | 0.1875 (2) | 0.0480 (4) | |
H5 | 0.3911 | 1.2131 | 0.1431 | 0.058* | |
C6 | 0.38645 (8) | 0.61604 (12) | 0.27474 (18) | 0.0334 (3) | |
C7 | 0.31909 (9) | 0.67265 (13) | 0.34906 (19) | 0.0406 (4) | |
H7 | 0.3168 | 0.7538 | 0.3508 | 0.049* | |
C8 | 0.25525 (9) | 0.60737 (15) | 0.4207 (2) | 0.0487 (4) | |
H8 | 0.2105 | 0.6474 | 0.4694 | 0.058* | |
C9 | 0.31870 (10) | 0.43864 (13) | 0.3541 (2) | 0.0500 (4) | |
H9 | 0.3197 | 0.3574 | 0.3560 | 0.060* | |
C10 | 0.38510 (9) | 0.49502 (13) | 0.2781 (2) | 0.0423 (4) | |
H10 | 0.4287 | 0.4524 | 0.2295 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0407 (12) | 0.0313 (10) | 0.0426 (11) | 0.000 | 0.0142 (9) | 0.000 |
N1 | 0.0352 (6) | 0.0292 (6) | 0.0495 (7) | −0.0013 (4) | −0.0024 (5) | 0.0045 (5) |
O1 | 0.0352 (6) | 0.0292 (6) | 0.0495 (7) | −0.0013 (4) | −0.0024 (5) | 0.0045 (5) |
C2 | 0.0306 (7) | 0.0276 (7) | 0.0399 (7) | 0.0015 (6) | 0.0005 (6) | −0.0017 (6) |
N2 | 0.0645 (13) | 0.0313 (9) | 0.0562 (12) | 0.000 | 0.0062 (10) | 0.000 |
N3 | 0.0354 (7) | 0.0536 (8) | 0.0637 (9) | −0.0076 (6) | −0.0014 (6) | 0.0109 (7) |
C3 | 0.0340 (10) | 0.0289 (10) | 0.0352 (10) | 0.000 | 0.0077 (8) | 0.000 |
C4 | 0.0365 (8) | 0.0394 (8) | 0.0456 (9) | −0.0001 (6) | 0.0006 (6) | −0.0014 (7) |
C5 | 0.0526 (9) | 0.0391 (8) | 0.0523 (9) | 0.0118 (7) | 0.0019 (7) | 0.0053 (7) |
C6 | 0.0289 (7) | 0.0326 (7) | 0.0387 (7) | −0.0005 (6) | −0.0048 (6) | −0.0003 (6) |
C7 | 0.0322 (8) | 0.0360 (8) | 0.0536 (9) | 0.0030 (6) | −0.0006 (7) | 0.0008 (7) |
C8 | 0.0296 (8) | 0.0565 (10) | 0.0602 (10) | 0.0049 (7) | 0.0043 (7) | 0.0032 (8) |
C9 | 0.0430 (9) | 0.0354 (8) | 0.0717 (11) | −0.0077 (7) | −0.0053 (8) | 0.0049 (7) |
C10 | 0.0342 (7) | 0.0329 (7) | 0.0598 (9) | −0.0008 (6) | 0.0004 (7) | −0.0039 (7) |
C1—N1 | 1.3077 (14) | C3—C4i | 1.3811 (18) |
C1—O1i | 1.3077 (14) | C4—C5 | 1.377 (2) |
C1—C3 | 1.471 (3) | C4—H4 | 0.9300 |
N1—C2 | 1.4539 (17) | C5—H5 | 0.9300 |
C2—C6 | 1.5076 (19) | C6—C7 | 1.382 (2) |
C2—C2i | 1.563 (3) | C6—C10 | 1.386 (2) |
C2—H2 | 0.9800 | C7—C8 | 1.381 (2) |
N2—C5 | 1.3277 (19) | C7—H7 | 0.9300 |
N2—C5i | 1.3277 (19) | C8—H8 | 0.9300 |
N3—C9 | 1.324 (2) | C9—C10 | 1.375 (2) |
N3—C8 | 1.330 (2) | C9—H9 | 0.9300 |
C3—C4 | 1.3811 (18) | C10—H10 | 0.9300 |
N1—C1—O1i | 118.50 (17) | N2—C5—C4 | 124.82 (15) |
N1—C1—C3 | 120.75 (9) | N2—C5—H5 | 117.6 |
O1i—C1—C3 | 120.75 (9) | C4—C5—H5 | 117.6 |
N1i—C1—C3 | 120.75 (9) | C7—C6—C10 | 116.67 (13) |
C1—N1—C2 | 107.12 (12) | C7—C6—C2 | 122.92 (12) |
N1—C2—C6 | 111.30 (11) | C10—C6—C2 | 120.41 (12) |
N1—C2—C2i | 103.62 (7) | C8—C7—C6 | 119.27 (14) |
C6—C2—C2i | 114.67 (12) | C8—C7—H7 | 120.4 |
N1—C2—H2 | 109.0 | C6—C7—H7 | 120.4 |
C6—C2—H2 | 109.0 | N3—C8—C7 | 124.56 (15) |
C2i—C2—H2 | 109.0 | N3—C8—H8 | 117.7 |
C5—N2—C5i | 115.59 (19) | C7—C8—H8 | 117.7 |
C9—N3—C8 | 115.29 (13) | N3—C9—C10 | 124.89 (14) |
C4—C3—C4i | 118.38 (19) | N3—C9—H9 | 117.6 |
C4—C3—C1 | 120.81 (9) | C10—C9—H9 | 117.6 |
C4i—C3—C1 | 120.81 (9) | C9—C10—C6 | 119.31 (14) |
C5—C4—C3 | 118.19 (15) | C9—C10—H10 | 120.3 |
C5—C4—H4 | 120.9 | C6—C10—H10 | 120.3 |
C3—C4—H4 | 120.9 | ||
O1i—C1—N1—C2 | −0.62 (6) | C3—C4—C5—N2 | 0.4 (2) |
N1i—C1—N1—C2 | −0.62 (6) | N1—C2—C6—C7 | −12.42 (18) |
C3—C1—N1—C2 | 179.38 (6) | C2i—C2—C6—C7 | 104.78 (14) |
C1—N1—C2—C6 | 125.19 (10) | N1—C2—C6—C10 | 168.25 (12) |
C1—N1—C2—C2i | 1.45 (15) | C2i—C2—C6—C10 | −74.55 (15) |
N1—C1—C3—C4 | 6.47 (9) | C10—C6—C7—C8 | −0.2 (2) |
O1i—C1—C3—C4 | −173.53 (9) | C2—C6—C7—C8 | −179.56 (13) |
N1i—C1—C3—C4 | −173.53 (9) | C9—N3—C8—C7 | 0.1 (2) |
N1—C1—C3—C4i | −173.53 (9) | C6—C7—C8—N3 | 0.3 (2) |
O1i—C1—C3—C4i | 6.47 (9) | C8—N3—C9—C10 | −0.7 (3) |
N1i—C1—C3—C4i | 6.47 (9) | N3—C9—C10—C6 | 0.8 (3) |
C4i—C3—C4—C5 | −0.17 (10) | C7—C6—C10—C9 | −0.3 (2) |
C1—C3—C4—C5 | 179.83 (10) | C2—C6—C10—C9 | 179.05 (14) |
C5i—N2—C5—C4 | −0.19 (11) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H14N4O |
Mr | 302.33 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 15.9777 (13), 11.4504 (9), 7.7573 (6) |
V (Å3) | 1419.21 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.43 × 0.38 × 0.34 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.962, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12571, 1254, 1107 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.107, 1.07 |
No. of reflections | 1254 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.23 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Secretaría de Educación Pública (PROMEP, UAS-PTC-033) and the Universidad Autónoma de Sinaloa (DGIP, PROFAPI2011/033).
References
Aspinall, H. C., Beckingham, O., Farrar, M. D., Greeves, N. & Thomas, C. D. (2011). Tetrahedron Lett. 52, 5120–5123. Web of Science CrossRef CAS Google Scholar
Bettencourt-Dias, A., Barber, P. S. & Bauer, S. (2012). J. Am. Chem. Soc. 134, 6987–6994. PubMed Google Scholar
Bettencourt-Dias, A., Barber, P. S., Viswanathan, S., Lill, D. T., Rollett, A., Ling, G. & Altun, S. (2010). Inorg. Chem. 49, 8848–8861. Web of Science PubMed Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2007). J. Mex. Chem. Soc. 51, 27–32. CAS Google Scholar
Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2008). Inorg. Chim. Acta, 361, 248–254. CAS Google Scholar
Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2010). Inorg. Chim. Acta, 363, 1179–1185. CAS Google Scholar
Chen, H., Xiao, D., Fan, L., He, J., Yan, S., Zhang, G., Sun, D., Ye, Z., Yuan, R. & Wang, E. (2011). CrystEngComm, 13, 7098–7107. Web of Science CSD CrossRef CAS Google Scholar
Graham, T. H. (2010). Org. Lett. 12, 3614–3617. Web of Science CrossRef CAS PubMed Google Scholar
Liang, X.-Q., Xiao, H.-P., Liu, B.-L., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2008). Polyhedron, 27, 2494–2500. Web of Science CSD CrossRef CAS Google Scholar
Liang, X.-Q., Zhou, X.-H., Chen, C., Xiao, H.-P., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2009). Cryst. Growth Des. 9, 1041–1053. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, F. L., Li, B., Hanajima, T., Einaga, Y., Huang, R. B., Zheng, L. S. & Tao, J. (2010). Dalton Trans. 39, 2288–2292. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Several pyridyloxazole derivatives (Bettencourt-Dias et al., 2010 and 2012) have provided effective highly luminescent Ln(III) complexes. Moreover, the coordination chemistry of transition metals with polypyridyl ligands has progressed considerably during the last decade, and has been widely used for the construction of coordination polymers with luminescent properties (Liang et al., 2008, 2009; Chen et al., 2011).
In the course of our studies on transition metal complexes with tripyridyl ligands (Campos-Gaxiola et al., 2008, 2010), we have synthesized the title compound (I) and report its crystal structure here (Fig. 1).
As part of our ongoing research on the design and synthesis of new metal complexes with fluorescent properties, we are interested in using the title compound as a ligand for the synthesis of transition and rare earth metal complexes.
In (I), the molecules are disordered about crystallographic 2-fold-axes, therefore, the C1—N1/C1—O1 and C2—N1/C2—O1 distances are average values. The pyridyl rings attached at positions 4 and 5 show trans configuration. The torsion angles for the fragments C(2)i—C(2)—C(6)—C(7) and C(2)i—C(2)—C(6)—C(10) (symmetry code: (i) -x + 1,y,-z + 1/2) are 104.78 (14)° and -74.55 (15)°, respectively. The oxazole ring forms dihedral angles of 6.920 (2)° with the pyridyl ring in position 2, and 60.960 (1)° with pyridyl rings in positions 4 and 5. No classical hydrogen bonds are observed in the crystal structure.