organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (2E,4Z)-5-di­ethyl­amino-2-(phenyl­sulfon­yl)penta-2,4-dienoate

aSchool of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: xianfenghh@163.com

(Received 4 April 2012; accepted 23 May 2012; online 31 May 2012)

In the title compound, C17H23NO4S, the penta­diene group adopts a planar conformation, with an r.m.s. deviation of 0.0410 (14) Å. The phenyl ring makes a dihedral angle of 85.73 (11)° with the penta­diene group, while the penta­diene group makes dihedral angles of 11.38 (11) and 14.08 (10)°, respectively, with the amino and ester groups. In the crystal, molecules are linked via pairs of C—H⋯O inter­actions, forming inversion dimers.

Related literature

For background information on penta­dienoates, see: Sorbetti et al. (2007[Sorbetti, J. M., Clary, K. N., Rankic, D. A., Wulff, J. E., Parvez, M. & Back, T. G. (2007). J. Org. Chem. 72, 3326-3331.]). For structural data of penta­dienoates, see: Ceard et al. (2002[Ceard, S., Roche, D., Gaumet, V., Gardette, D., Metin, J. & Madesclaire, M. (2002). J. Mol. Struct. 608, 27-33.]). For details of weak hydrogen-bonding inter­actions, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23NO4S

  • Mr = 337.42

  • Monoclinic, P 21 /n

  • a = 14.489 (2) Å

  • b = 8.2989 (12) Å

  • c = 16.706 (3) Å

  • β = 114.313 (3)°

  • V = 1830.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.669, Tmax = 0.746

  • 11618 measured reflections

  • 4183 independent reflections

  • 2977 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.168

  • S = 1.04

  • 4183 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.93 2.41 3.277 (3) 155
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Analogues of pentadienoate have been used widely in perfumes, lubricants, as pharmaceutical intermediates and in other chemical industries (Ceard et al., 2002; Sorbetti et al., 2007). In this work, we report the crystal structure of the title compound, C17H23NO4S, (I). In the crystal (Fig. 1), the pentadiene group adopts a planar conformation with an r.m.s. deviation of 0.0410 (14) Å. The phenyl ring makes a dihedral angle of 85.73 (11)° with the pentadiene group. The dihedral angle of pentadiene with the amino group (atoms N1, C14, C16) is 11.38 (11)° and the dihedral angle between pentadiene and the ester group (atoms C8, O3, O4) is 14.08 (10)°. The crystal structure exhibits weak intermolecular C—H···O hydrogen bonds (Steiner, 2002; Table 1) between pairs of inversion related (-x, 1-y, 1-z) molecules to produce a weakly hydrogen-bonded dimer as shown in Fig. 2.

Related literature top

For background information on pentadienoates, see: Sorbetti et al. (2007). For structural data of pentadienoates, see: Ceard et al. (2002). For details of weak hydrogen-bonding interactions, see: Steiner (2002).

Experimental top

The title compound was prepared by stirring a mixture of malonaldehyde bis(dimethyl acetal) (411 mg, 2.5 mmol), ethanamine (366 mg, 2.5 mmol) and acetic acid (300 mg, 5 mmol) under reflux for 1 h. After cooling, ethyl 2-(phenylsulfonyl)acetate (428 mg, 1.87 mmol), DMF (1.5 ml) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 761 mg, 5 mmol) were added and stirred for 6 h. Then the reaction mixture was added dropwise to ice water (20 ml) to give a yellow solid (259 mg), which was dissolved in 2-propanol. Pale yellow rhomboid-shaped crystals of (I) formed upon evaporation after 7d.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing diagram of (I) with weak hydrogen bonds indicated as dashed lines.
Ethyl (2E,4Z)-5-diethylamino-2-(phenylsulfonyl)penta-2,4-dienoate top
Crystal data top
C17H23NO4SF(000) = 720
Mr = 337.42Dx = 1.224 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3554 reflections
a = 14.489 (2) Åθ = 2.7–25.5°
b = 8.2989 (12) ŵ = 0.20 mm1
c = 16.706 (3) ÅT = 296 K
β = 114.313 (3)°Block, pale yellow
V = 1830.6 (5) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4183 independent reflections
Radiation source: fine-focus sealed tube2977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1818
Tmin = 0.669, Tmax = 0.746k = 1010
11618 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.7143P]
where P = (Fo2 + 2Fc2)/3
4183 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H23NO4SV = 1830.6 (5) Å3
Mr = 337.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.489 (2) ŵ = 0.20 mm1
b = 8.2989 (12) ÅT = 296 K
c = 16.706 (3) Å0.28 × 0.24 × 0.20 mm
β = 114.313 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4183 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2977 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.746Rint = 0.031
11618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
4183 reflectionsΔρmin = 0.44 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11499 (4)0.59041 (7)0.39164 (4)0.04777 (19)
O10.02067 (12)0.5770 (2)0.40107 (12)0.0639 (5)
O20.12167 (17)0.7075 (2)0.33125 (13)0.0767 (6)
O30.38118 (13)0.6802 (3)0.58018 (13)0.0790 (7)
O40.33628 (15)0.6001 (3)0.44145 (14)0.0809 (7)
N10.22370 (15)0.6412 (3)0.79523 (13)0.0586 (5)
C10.13732 (16)0.3988 (3)0.35660 (15)0.0445 (5)
C20.1630 (2)0.3849 (3)0.28691 (19)0.0635 (7)
H2A0.17090.47630.25810.076*
C30.1772 (2)0.2316 (4)0.2595 (2)0.0825 (10)
H3A0.19420.22020.21190.099*
C40.1661 (2)0.0986 (4)0.3026 (2)0.0787 (9)
H4A0.17640.00320.28440.094*
C50.1404 (3)0.1130 (3)0.3716 (2)0.0789 (9)
H5A0.13380.02130.40090.095*
C60.1240 (2)0.2627 (3)0.39856 (18)0.0623 (7)
H6A0.10410.27240.44460.075*
C70.21004 (16)0.6228 (3)0.49653 (15)0.0455 (5)
C80.31330 (19)0.6342 (3)0.50106 (17)0.0572 (6)
C90.4909 (2)0.6711 (6)0.5980 (3)0.1000 (12)
H9A0.53110.65660.66040.120*
H9B0.50270.57960.56730.120*
C100.5202 (4)0.8158 (8)0.5691 (4)0.153 (2)
H10A0.59160.81280.58360.229*
H10B0.50530.90640.59750.229*
H10C0.48360.82580.50660.229*
C110.18153 (17)0.6212 (3)0.56550 (15)0.0453 (5)
H11A0.11300.60140.54930.054*
C120.23716 (17)0.6439 (3)0.65536 (15)0.0480 (5)
H12A0.30550.67100.67800.058*
C130.18773 (18)0.6250 (3)0.70915 (16)0.0522 (6)
H13A0.11970.59690.68130.063*
C140.1598 (3)0.6048 (4)0.8424 (2)0.0772 (9)
H14A0.10370.53720.80560.093*
H14B0.19930.54470.89530.093*
C150.1196 (3)0.7509 (5)0.8664 (3)0.1104 (14)
H15A0.07890.72120.89710.166*
H15B0.07880.80940.81410.166*
H15C0.17480.81750.90350.166*
C160.32789 (19)0.6914 (3)0.84751 (16)0.0595 (6)
H16A0.33000.75480.89700.071*
H16B0.35040.75970.81190.071*
C170.3990 (3)0.5521 (4)0.8809 (3)0.0984 (11)
H17A0.46490.59090.91930.148*
H17B0.40340.49620.83230.148*
H17C0.37440.47990.91260.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0517 (3)0.0390 (3)0.0470 (3)0.0037 (2)0.0147 (2)0.0007 (2)
O10.0429 (9)0.0721 (12)0.0661 (11)0.0088 (8)0.0118 (8)0.0138 (9)
O20.1097 (16)0.0469 (10)0.0628 (12)0.0035 (10)0.0246 (11)0.0143 (9)
O30.0504 (10)0.1203 (18)0.0705 (12)0.0272 (11)0.0292 (9)0.0313 (12)
O40.0694 (12)0.1177 (18)0.0694 (12)0.0237 (11)0.0426 (10)0.0264 (12)
N10.0557 (12)0.0719 (14)0.0515 (12)0.0186 (10)0.0256 (10)0.0151 (10)
C10.0456 (11)0.0395 (11)0.0466 (12)0.0035 (9)0.0172 (9)0.0058 (9)
C20.0724 (17)0.0638 (16)0.0657 (16)0.0099 (13)0.0399 (14)0.0077 (13)
C30.088 (2)0.092 (2)0.090 (2)0.0117 (18)0.0583 (19)0.0339 (19)
C40.0771 (19)0.0543 (16)0.112 (3)0.0126 (14)0.0456 (19)0.0323 (17)
C50.095 (2)0.0443 (15)0.104 (2)0.0059 (14)0.047 (2)0.0028 (15)
C60.0828 (19)0.0460 (13)0.0643 (16)0.0011 (12)0.0366 (14)0.0006 (12)
C70.0447 (11)0.0422 (11)0.0499 (12)0.0043 (9)0.0197 (10)0.0079 (9)
C80.0533 (13)0.0644 (15)0.0590 (15)0.0143 (12)0.0284 (12)0.0131 (12)
C90.0607 (18)0.154 (4)0.091 (2)0.019 (2)0.0365 (18)0.023 (3)
C100.114 (4)0.185 (6)0.178 (5)0.061 (4)0.079 (4)0.030 (4)
C110.0413 (11)0.0406 (11)0.0544 (13)0.0010 (9)0.0203 (10)0.0077 (10)
C120.0435 (11)0.0493 (12)0.0522 (13)0.0061 (10)0.0205 (10)0.0104 (10)
C130.0470 (12)0.0545 (14)0.0549 (13)0.0104 (10)0.0208 (10)0.0143 (11)
C140.082 (2)0.092 (2)0.0699 (18)0.0248 (17)0.0428 (16)0.0180 (16)
C150.102 (3)0.121 (3)0.137 (3)0.019 (2)0.079 (3)0.033 (3)
C160.0630 (15)0.0623 (16)0.0482 (13)0.0171 (12)0.0177 (11)0.0118 (12)
C170.080 (2)0.078 (2)0.115 (3)0.0047 (18)0.018 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—O21.4324 (19)C9—C101.423 (7)
S1—O11.4429 (18)C9—H9A0.9700
S1—C71.747 (2)C9—H9B0.9700
S1—C11.770 (2)C10—H10A0.9600
O3—C81.338 (3)C10—H10B0.9600
O3—C91.494 (4)C10—H10C0.9600
O4—C81.206 (3)C11—C121.394 (3)
N1—C131.319 (3)C11—H11A0.9300
N1—C161.459 (3)C12—C131.369 (3)
N1—C141.473 (3)C12—H12A0.9300
C1—C21.365 (3)C13—H13A0.9300
C1—C61.384 (3)C14—C151.471 (5)
C2—C31.396 (4)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.363 (5)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.355 (5)C15—H15C0.9600
C4—H4A0.9300C16—C171.495 (4)
C5—C61.375 (4)C16—H16A0.9700
C5—H5A0.9300C16—H16B0.9700
C6—H6A0.9300C17—H17A0.9600
C7—C111.375 (3)C17—H17B0.9600
C7—C81.470 (3)C17—H17C0.9600
O2—S1—O1118.10 (12)C9—C10—H10A109.5
O2—S1—C7110.37 (12)C9—C10—H10B109.5
O1—S1—C7107.05 (11)H10A—C10—H10B109.5
O2—S1—C1107.58 (11)C9—C10—H10C109.5
O1—S1—C1106.07 (11)H10A—C10—H10C109.5
C7—S1—C1107.10 (10)H10B—C10—H10C109.5
C8—O3—C9118.1 (2)C7—C11—C12131.4 (2)
C13—N1—C16121.9 (2)C7—C11—H11A114.3
C13—N1—C14120.6 (2)C12—C11—H11A114.3
C16—N1—C14117.5 (2)C13—C12—C11117.7 (2)
C2—C1—C6120.5 (2)C13—C12—H12A121.2
C2—C1—S1120.57 (19)C11—C12—H12A121.2
C6—C1—S1118.88 (18)N1—C13—C12128.7 (2)
C1—C2—C3119.0 (3)N1—C13—H13A115.7
C1—C2—H2A120.5C12—C13—H13A115.7
C3—C2—H2A120.5C15—C14—N1112.5 (3)
C4—C3—C2120.0 (3)C15—C14—H14A109.1
C4—C3—H3A120.0N1—C14—H14A109.1
C2—C3—H3A120.0C15—C14—H14B109.1
C5—C4—C3120.7 (3)N1—C14—H14B109.1
C5—C4—H4A119.6H14A—C14—H14B107.8
C3—C4—H4A119.6C14—C15—H15A109.5
C4—C5—C6120.2 (3)C14—C15—H15B109.5
C4—C5—H5A119.9H15A—C15—H15B109.5
C6—C5—H5A119.9C14—C15—H15C109.5
C5—C6—C1119.5 (3)H15A—C15—H15C109.5
C5—C6—H6A120.3H15B—C15—H15C109.5
C1—C6—H6A120.3N1—C16—C17112.8 (2)
C11—C7—C8127.5 (2)N1—C16—H16A109.0
C11—C7—S1117.03 (17)C17—C16—H16A109.0
C8—C7—S1115.27 (17)N1—C16—H16B109.0
O4—C8—O3122.8 (2)C17—C16—H16B109.0
O4—C8—C7124.3 (2)H16A—C16—H16B107.8
O3—C8—C7112.8 (2)C16—C17—H17A109.5
C10—C9—O3109.3 (4)C16—C17—H17B109.5
C10—C9—H9A109.8H17A—C17—H17B109.5
O3—C9—H9A109.8C16—C17—H17C109.5
C10—C9—H9B109.8H17A—C17—H17C109.5
O3—C9—H9B109.8H17B—C17—H17C109.5
H9A—C9—H9B108.3
O2—S1—C1—C24.3 (2)C1—S1—C7—C864.6 (2)
O1—S1—C1—C2131.5 (2)C9—O3—C8—O47.0 (5)
C7—S1—C1—C2114.4 (2)C9—O3—C8—C7170.3 (3)
O2—S1—C1—C6172.9 (2)C11—C7—C8—O4163.0 (3)
O1—S1—C1—C645.7 (2)S1—C7—C8—O411.1 (4)
C7—S1—C1—C668.4 (2)C11—C7—C8—O314.3 (4)
C6—C1—C2—C31.0 (4)S1—C7—C8—O3171.59 (19)
S1—C1—C2—C3178.2 (2)C8—O3—C9—C1086.6 (4)
C1—C2—C3—C40.5 (5)C8—C7—C11—C126.7 (4)
C2—C3—C4—C50.7 (5)S1—C7—C11—C12179.3 (2)
C3—C4—C5—C60.7 (5)C7—C11—C12—C13176.0 (2)
C4—C5—C6—C12.2 (5)C16—N1—C13—C122.6 (4)
C2—C1—C6—C52.4 (4)C14—N1—C13—C12175.8 (3)
S1—C1—C6—C5179.6 (2)C11—C12—C13—N1179.4 (2)
O2—S1—C7—C11132.99 (19)C13—N1—C14—C15101.9 (3)
O1—S1—C7—C113.2 (2)C16—N1—C14—C1579.6 (4)
C1—S1—C7—C11110.18 (18)C13—N1—C16—C1791.9 (3)
O2—S1—C7—C852.3 (2)C14—N1—C16—C1786.6 (3)
O1—S1—C7—C8177.97 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.413.277 (3)155
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H23NO4S
Mr337.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.489 (2), 8.2989 (12), 16.706 (3)
β (°) 114.313 (3)
V3)1830.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.669, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11618, 4183, 2977
Rint0.031
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.168, 1.04
No. of reflections4183
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.413.277 (3)155.1
Symmetry code: (i) x, y+1, z+1.
 

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCeard, S., Roche, D., Gaumet, V., Gardette, D., Metin, J. & Madesclaire, M. (2002). J. Mol. Struct. 608, 27–33.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorbetti, J. M., Clary, K. N., Rankic, D. A., Wulff, J. E., Parvez, M. & Back, T. G. (2007). J. Org. Chem. 72, 3326–3331.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds