organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­kis(pyridin-4-yl)methane­di­amine monohydrate

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: minks@knu.ac.kr

(Received 16 April 2012; accepted 27 April 2012; online 2 May 2012)

In the title compound, C21H18N6·H2O, two 4,4′-dipyridyl­amine groups are linked by a methyl­ene C atom, which sits on a twofold axis. The lattice water mol­ecule is located slightly off a twofold axis, and is therefore disordered over two positions. In the crystal, the organic mol­ecules and the water mol­ecule are linked by O—H⋯N hydrogen bonds. The organic mol­ecules exhibit extensive offset face-to-face ππ inter­actions to symmetry equivalents [centroid–centroid distances = 3.725 (3) and 4.059 (3) Å].

Related literature

For metal-organic frameworks including 4,4′-dipyridyl­amine, see: Braverman & LaDuca (2007[Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2343-2351.]); Shyu et al. (2009[Shyu, E., Supkowski, R. M. & LaDuca, R. L. (2009). Cryst. Growth Des. 9, 2481-2491.]). For the catalysis of multidimensional metal-organic frameworks, see: Welbes & Borovik (2005[Welbes, L. L. & Borovik, A. S. (2005). Acc. Chem. Res. 38, 765-774.]). For self-assembled metal-organic networks and their luminescent properties, see: Shin et al. (2012[Shin, J. W., Cho, H. J. & Min, K. S. (2012). Inorg. Chem. Commun. 16, 12-16.]); Zeng et al. (2010[Zeng, F., Ni, J., Wang, Q., Ding, Y., Ng, S. W., Zhu, W. & Xie, Y. (2010). Cryst. Growth Des. 10, 1611-1622.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N6·H2O

  • Mr = 372.42

  • Monoclinic, C 2/c

  • a = 13.9048 (11) Å

  • b = 13.7637 (11) Å

  • c = 10.0569 (8) Å

  • β = 109.142 (2)°

  • V = 1818.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.34 × 0.26 × 0.25 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.978

  • 6540 measured reflections

  • 2241 independent reflections

  • 1313 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.163

  • S = 1.09

  • 2241 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N2i 1.02 1.88 2.869 (2) 161
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polypyridyl ligands have attracted considerable attention in materials science because they can be used for the construction of multidimensional metal-organic frameworks. These have potential applications in catalysis and as luminescent materials (Shin et al., 2012; Welbes & Borovik, 2005; Zeng et al., 2010). For example, as a building block, bis(4-pyridyl)amine (bpa) has been extensively used for self-assembly of multidimensional coordination polymers, because the ligand has significant functionalities, e.g. hydrogen bonding capability (Braverman & LaDuca, 2007; Shyu, et al., 2009). Thus, we have made a new ligand, N,N,N',N'-tetra-4-pyridyl-methylenediamine (TPMD), which can be used as a building unit for self-assembly of potential luminescent materials and catalysts. Here, we report the synthesis and crystal structure of N,N,N',N'-tetra-4-pyridyl-methylenediamine monohydrate.

The title compound in its crystalline state is centrosymmetric (Fig. 1). The dihedral angle between neighboring pyridyl rings is 63.74 (7)°, and the angle of N1—C11—N1(-x, y, 1.5 - z) is 114.5 (2)°. The water molecule appears to be slightly off a 2-fold axis, and was refined using a disordered model, which gave a lower R value and a flatter difference map compared to a non-disordered model. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds (Table 1) that connect pairs of organic molecules by water molecules into chains along the (101) direction (Fig. 2). The crystal is also stabilized by intermolecular offset face-to-face π-π interactions [centroid-centroid distances = 3.725 (3) Å (-x + 1/2, -y + 1/2, 2 - z) and 4.059 (3) Å (-x + 1/2, -y + 1/2, 1 - z)] (Fig. 3).

Related literature top

For metal-organic frameworks including 4,4'-dipyridylamine, see: Braverman & LaDuca (2007); Shyu et al. (2009). For the catalysis of multidimensional metal-organic frameworks, see: Welbes & Borovik (2005). For self-assembled metal-organic networks and their luminescent properties, see: Shin et al. (2012); Zeng et al. (2010).

Experimental top

The title compound was prepared as follows. NaH (0.561 g, 0.0234 mol) was added carefully to a DMF solution (50 ml) of 4,4'-dipyridylamine (2.00 g, 0.0117 mol) and stirred for 2 days at room temperature. To the mixture was added dropwise dichloromethane (20 ml) and the mixture solution was again stirred for 2 days, which resulted in a dark red solution. Then the mixture was quenched with H2O (50 ml), and the organic layer was extracted with CHCl3 (3 times, 100 ml). The extract was washed with NaCl solution to purify and then dried with Na2SO4. After removing the organic solvent, a pale yellow oil was obtained, from which colorless crystals formed in 1 day. The crystals were filtered and washed with n-hexane and acetonitrile. Yield: 0.86 g (42%). Anal. Calcd. for C21H20N6O: C, 67.73; H, 5.41; N, 22.57. Found: C, 67.63; H, 5.23; N, 22.51. 1H NMR (400 MHz, DMSO-d6, 300 K): δ = 8.35 (dd, J = 1.52, 1.52 Hz, 8 H), 6.91 (dd, J = 1.56, 1.60 Hz, 8 H), 5.95 (s, 2H). GC—MS: m/z = 354.1 (M+). IR (KBr, cm-1): 3425, 3050, 3024, 1601, 1581, 1497, 1207, 1068, 850, 602.

Refinement top

The H atom of O1 was located in a difference Fourier map and refined isotropically. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) Å and 0.99 (open chain H atoms) Å, and with Uiso(H) values of 1.2 times the equivalent anisotropic displacement parameters of the parent C atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (40% probability) of the title compound. The unlabelled half of the molecule is related by a crystallographic 2-fold axis. The water molecule is disordered about a 2-fold axis (for clarity, only one component is shown).
[Figure 2] Fig. 2. A view of the title compound showing a one-dimensional chain formed by O—H···N hydrogen bonding interactions. The chain extends along the (101) direction.
[Figure 3] Fig. 3. A view of the title compound showing offset face-to-face π-π interactions.
N,N,N',N'-Tetrakis(pyridin-4-yl)methanediamine monohydrate top
Crystal data top
C21H18N6·H2OF(000) = 784
Mr = 372.42Dx = 1.360 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2155 reflections
a = 13.9048 (11) Åθ = 2.7–28.2°
b = 13.7637 (11) ŵ = 0.09 mm1
c = 10.0569 (8) ÅT = 200 K
β = 109.142 (2)°Block, colorless
V = 1818.3 (3) Å30.34 × 0.26 × 0.25 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2241 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1418
Tmin = 0.973, Tmax = 0.978k = 1816
6540 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.1675P]
where P = (Fo2 + 2Fc2)/3
2241 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H18N6·H2OV = 1818.3 (3) Å3
Mr = 372.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.9048 (11) ŵ = 0.09 mm1
b = 13.7637 (11) ÅT = 200 K
c = 10.0569 (8) Å0.34 × 0.26 × 0.25 mm
β = 109.142 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2241 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1313 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.033
6540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2241 reflectionsΔρmin = 0.22 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.08225 (11)0.18977 (10)0.72834 (16)0.0378 (4)
N20.32207 (12)0.08225 (11)1.07690 (17)0.0456 (4)
N30.12205 (15)0.19990 (14)0.3297 (2)0.0627 (6)
C10.24926 (14)0.11276 (13)0.8290 (2)0.0415 (5)
H10.25690.10850.73870.050*
C20.32458 (14)0.07990 (13)0.9453 (2)0.0455 (5)
H20.38360.05320.93150.055*
C30.23734 (15)0.12101 (13)1.0907 (2)0.0444 (5)
H30.23270.12491.18270.053*
C40.15609 (14)0.15572 (12)0.9798 (2)0.0388 (5)
H40.09770.18130.99660.047*
C50.16063 (13)0.15281 (11)0.84383 (19)0.0356 (4)
C60.09476 (13)0.19319 (12)0.5933 (2)0.0373 (4)
C70.09792 (15)0.28090 (13)0.5269 (2)0.0461 (5)
H70.09180.34060.57080.055*
C80.11000 (16)0.28004 (16)0.3965 (2)0.0569 (6)
H80.10970.34070.35120.068*
C90.11687 (16)0.11622 (16)0.3940 (2)0.0555 (6)
H90.12380.05770.34800.067*
C100.10220 (14)0.10896 (14)0.5221 (2)0.0452 (5)
H100.09720.04710.56130.054*
C110.00000.24732 (13)0.75000.0355 (6)
H11A0.02930.28980.83290.043*0.50
H11B0.02930.28980.66710.043*0.50
O10.4878 (6)0.01031 (13)0.7761 (8)0.0617 (12)0.50
H1W0.55320.03000.80880.130 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0315 (8)0.0354 (8)0.0500 (9)0.0046 (6)0.0180 (7)0.0039 (6)
N20.0331 (9)0.0417 (9)0.0577 (11)0.0006 (7)0.0089 (8)0.0033 (7)
N30.0592 (13)0.0774 (13)0.0613 (12)0.0230 (10)0.0331 (10)0.0175 (10)
C10.0353 (11)0.0379 (10)0.0547 (12)0.0007 (8)0.0193 (9)0.0021 (8)
C20.0335 (11)0.0403 (10)0.0650 (14)0.0014 (8)0.0190 (9)0.0005 (9)
C30.0454 (12)0.0394 (10)0.0498 (12)0.0056 (9)0.0175 (9)0.0005 (8)
C40.0315 (10)0.0314 (9)0.0577 (12)0.0013 (7)0.0203 (9)0.0024 (8)
C50.0319 (10)0.0260 (8)0.0497 (11)0.0037 (7)0.0146 (8)0.0022 (7)
C60.0262 (9)0.0382 (10)0.0498 (11)0.0035 (7)0.0158 (8)0.0066 (8)
C70.0407 (12)0.0382 (10)0.0663 (14)0.0027 (8)0.0270 (10)0.0090 (9)
C80.0490 (14)0.0604 (14)0.0709 (15)0.0124 (10)0.0326 (11)0.0269 (11)
C90.0514 (14)0.0595 (13)0.0595 (14)0.0176 (10)0.0235 (11)0.0006 (10)
C100.0433 (12)0.0387 (10)0.0572 (12)0.0078 (8)0.0214 (10)0.0033 (8)
C110.0285 (13)0.0291 (12)0.0509 (15)0.0000.0158 (11)0.000
O10.052 (2)0.0452 (13)0.072 (2)0.0162 (17)0.0008 (17)0.0107 (16)
Geometric parameters (Å, º) top
N1—C51.402 (2)C4—H40.9500
N1—C61.425 (2)C6—C101.384 (3)
N1—C111.4649 (17)C6—C71.387 (2)
N2—C21.335 (2)C7—C81.376 (3)
N2—C31.341 (2)C7—H70.9500
N3—C81.330 (3)C8—H80.9500
N3—C91.335 (3)C9—C101.373 (3)
C1—C21.366 (3)C9—H90.9500
C1—C51.402 (2)C10—H100.9500
C1—H10.9500C11—N1i1.4649 (17)
C2—H20.9500C11—H11A0.9900
C3—C41.387 (3)C11—H11B0.9900
C3—H30.9500O1—O1ii0.7127
C4—C51.390 (2)O1—H1W1.0230
C5—N1—C6119.78 (14)C10—C6—N1121.22 (15)
C5—N1—C11120.38 (13)C7—C6—N1121.38 (16)
C6—N1—C11117.96 (12)C8—C7—C6118.99 (18)
C2—N2—C3114.92 (16)C8—C7—H7120.5
C8—N3—C9115.77 (19)C6—C7—H7120.5
C2—C1—C5119.54 (18)N3—C8—C7124.30 (18)
C2—C1—H1120.2N3—C8—H8117.8
C5—C1—H1120.2C7—C8—H8117.8
N2—C2—C1125.35 (19)N3—C9—C10124.49 (19)
N2—C2—H2117.3N3—C9—H9117.8
C1—C2—H2117.3C10—C9—H9117.8
N2—C3—C4124.43 (18)C9—C10—C6118.94 (17)
N2—C3—H3117.8C9—C10—H10120.5
C4—C3—H3117.8C6—C10—H10120.5
C3—C4—C5119.59 (17)N1i—C11—N1114.54 (16)
C3—C4—H4120.2N1i—C11—H11A108.6
C5—C4—H4120.2N1—C11—H11A108.6
C4—C5—C1116.16 (16)N1i—C11—H11B108.6
C4—C5—N1122.06 (16)N1—C11—H11B108.6
C1—C5—N1121.76 (17)H11A—C11—H11B107.6
C10—C6—C7117.39 (18)O1ii—O1—H1W69.5
C3—N2—C2—C10.3 (3)C11—N1—C6—C10129.57 (17)
C5—C1—C2—N20.0 (3)C5—N1—C6—C7115.35 (19)
C2—N2—C3—C40.8 (3)C11—N1—C6—C749.1 (2)
N2—C3—C4—C51.1 (3)C10—C6—C7—C81.2 (3)
C3—C4—C5—C10.7 (2)N1—C6—C7—C8179.92 (17)
C3—C4—C5—N1177.87 (15)C9—N3—C8—C73.2 (3)
C2—C1—C5—C40.2 (2)C6—C7—C8—N32.1 (3)
C2—C1—C5—N1178.37 (16)C8—N3—C9—C101.2 (3)
C6—N1—C5—C4174.20 (15)N3—C9—C10—C61.8 (3)
C11—N1—C5—C410.1 (2)C7—C6—C10—C92.9 (3)
C6—N1—C5—C14.3 (2)N1—C6—C10—C9178.31 (17)
C11—N1—C5—C1168.41 (15)C5—N1—C11—N1i82.93 (13)
C5—N1—C6—C1065.9 (2)C6—N1—C11—N1i112.69 (14)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N2iii1.021.882.869 (2)161
Symmetry code: (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC21H18N6·H2O
Mr372.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)13.9048 (11), 13.7637 (11), 10.0569 (8)
β (°) 109.142 (2)
V3)1818.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.26 × 0.25
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6540, 2241, 1313
Rint0.033
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.163, 1.09
No. of reflections2241
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N2i1.0231.8812.869 (2)161.38
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0003672). The authors acknowledge the Korea Basic Science Institute for the X-ray data collection.

References

First citationBraverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2343–2351.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, J. W., Cho, H. J. & Min, K. S. (2012). Inorg. Chem. Commun. 16, 12–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationShyu, E., Supkowski, R. M. & LaDuca, R. L. (2009). Cryst. Growth Des. 9, 2481–2491.  Web of Science CSD CrossRef CAS Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWelbes, L. L. & Borovik, A. S. (2005). Acc. Chem. Res. 38, 765–774.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, F., Ni, J., Wang, Q., Ding, Y., Ng, S. W., Zhu, W. & Xie, Y. (2010). Cryst. Growth Des. 10, 1611–1622.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds