organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1970-o1971

2-(3,4-Di­methyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)acetic acid

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@hotmail.com

(Received 18 May 2012; accepted 24 May 2012; online 31 May 2012)

In the title mol­ecule, C13H13N3O4S, the heterocyclic thia­zine ring adopts a half-chair conformation in which the S and an adjacent C atom are displaced by 0.919 (3) and 0.300 (4) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean planes of the benzene and pyrazole rings are inclined at a dihedral angle of 18.32 (12)° with respect to each other. The acetate group is oriented at 80.75 (8)° with respect to the pyrazole ring. The crystal structure is stabilized by O—H⋯N and C—H⋯O hydrogen bonds, resulting in fused eight- and seven-membered rings with R22(8) and R22(7) graph-set motifs, respectively.

Related literature

For the biological activity of benzothia­zine derivatives, see: Turck et al. (1996[Turck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13-16.]); Silverstein et al. (2000[Silverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247-1255.]); Lombardino et al. (1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]); Zinnes et al. (1973[Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44-48.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.], 2009[Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279-o2280.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3O4S

  • Mr = 307.32

  • Monoclinic, P 21 /n

  • a = 10.495 (4) Å

  • b = 8.415 (2) Å

  • c = 15.136 (6) Å

  • β = 91.034 (19)°

  • V = 1336.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.964, Tmax = 0.974

  • 5770 measured reflections

  • 3048 independent reflections

  • 2196 reflections with I > σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.03

  • 3048 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯N2i 0.84 1.90 2.724 (2) 165
C9—H9A⋯O2ii 0.98 2.59 3.297 (3) 129
C5—H5⋯O4iii 0.95 2.59 3.476 (3) 155
C12—H12B⋯O3iii 0.99 2.35 3.303 (3) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Meloxicam and Celecoxib are well known for their selective inhibition of the cox-2 enzyme that is responsible for inflammation (Turck et al., 1996; Silverstein et al., 2000). Though a number of benzothiazine based compounds have shown anti-inflammatory and analgesic character, yet there is a huge scope for selective cox-2 inhibitors in this family of heterocyclic compounds (Lombardino et al., 1973; Zinnes et al., 1973). In continuing the pursuit of potential drugs in this category, we have fused benzothiazine and pyrazole heterocycles that are core nuclei of meoxicam and celecoxib, respectively (Ahmad et al., 2010), we have synthesized and determined the crystal structure of the title compound which is presented in this paper.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a twist chair conformation with atoms S1 and C1 displaced by 0.919 (3) and 0.300 (4) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms (r.m.s. deviation 0.012 for N1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 18.32 (12)° with the mean-plane of the pyrazolyl ring (N2/N3/C7/C8/C10). The mean-plane of the acetate group (O3/O4/C12/C13) lies at 80.75 (8)° with respect to the pyrazolyl ring. The crystal structure is stabilized by intermolecular hydrogen bonding interactions (Fig. 2 and Table 1). The hydrogen bonds O4—H4O···N2 and C12—H12B···O3 result in eight membered rings with a R22(8) motif while C5—H5···O4 hydrogen bonding results in a seven membered ring with a R22(7) motif (Bernstein et al., 1995); both rings are fused together and result in chains of molecules along the b-axis in a zigzag fashion. Moreover, C9—H9A···O2 interactions link the title molecules into chains along the b-axis further consolidating the crystal packing.

Related literature top

For the biological activity of benzothiazine derivatives, see: Turck et al. (1996); Silverstein et al. (2000); Lombardino et al. (1973); Zinnes et al. (1973); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008, 2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3,4-Dimethyl-2,4-dihydropyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide (5.0 g, 0.020 mole) and bromoacetic acid (3.31 g, 0.024 mole) were dissolved in anhydrous dimethyl formamide (15 ml) and anhydrous potassium carbonate (6.62 g, 0.048 mole) was added to it in small portions. The resulting reaction mixture was stirred for 2.5 h under a nitrogen atmosphere. The contents of the flask were poured over ice cold 10% HCl. Transparent crystals were grown from an aqueous solution, and were used for X-ray crystallographic studies.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were included at 1.5Ueq(O) or 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity.
2-(3,4-Dimethyl-5,5-dioxo-2H,4H- pyrazolo[4,3-c][1,2]benzothiazin-2-yl)acetic acid top
Crystal data top
C13H13N3O4SF(000) = 640
Mr = 307.32Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1947 reflections
a = 10.495 (4) Åθ = 1.0–27.5°
b = 8.415 (2) ŵ = 0.26 mm1
c = 15.136 (6) ÅT = 173 K
β = 91.034 (19)°Block, colorless
V = 1336.5 (8) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.964, Tmax = 0.974k = 1010
5770 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.650P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H13N3O4SV = 1336.5 (8) Å3
Mr = 307.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.495 (4) ŵ = 0.26 mm1
b = 8.415 (2) ÅT = 173 K
c = 15.136 (6) Å0.14 × 0.12 × 0.10 mm
β = 91.034 (19)°
Data collection top
Nonius KappaCCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2196 reflections with I > σ(I)
Tmin = 0.964, Tmax = 0.974Rint = 0.033
5770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3048 reflectionsΔρmin = 0.35 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20345 (5)0.30572 (6)0.10421 (3)0.03013 (16)
O10.07080 (15)0.28041 (19)0.08552 (10)0.0419 (4)
O20.29133 (16)0.17922 (17)0.08858 (10)0.0392 (4)
O30.65265 (14)0.19936 (17)0.27745 (10)0.0328 (4)
O40.82589 (14)0.30151 (18)0.34514 (10)0.0344 (4)
H4O0.85790.21280.33300.052*
N10.21936 (16)0.35819 (19)0.20921 (10)0.0258 (4)
N20.52959 (16)0.54568 (18)0.19902 (10)0.0246 (4)
N30.52853 (15)0.48638 (19)0.28304 (10)0.0234 (4)
C10.25731 (19)0.4733 (2)0.04545 (12)0.0261 (4)
C20.1949 (2)0.5191 (2)0.03202 (13)0.0306 (5)
H20.11920.46650.05120.037*
C30.2448 (2)0.6428 (3)0.08089 (13)0.0344 (5)
H30.20350.67470.13440.041*
C40.3543 (2)0.7200 (3)0.05234 (13)0.0332 (5)
H40.38890.80270.08730.040*
C50.4142 (2)0.6782 (2)0.02673 (13)0.0284 (5)
H50.48830.73380.04640.034*
C60.36539 (19)0.5540 (2)0.07754 (12)0.0250 (4)
C70.41474 (19)0.5083 (2)0.16483 (12)0.0238 (4)
C80.34399 (18)0.4208 (2)0.22614 (12)0.0225 (4)
C90.1114 (2)0.4429 (3)0.25009 (15)0.0353 (5)
H9A0.12490.44730.31430.042*
H9B0.03180.38620.23660.042*
H9C0.10610.55120.22640.042*
C100.41904 (18)0.4087 (2)0.30145 (12)0.0228 (4)
C110.3945 (2)0.3369 (2)0.38914 (13)0.0302 (5)
H11A0.31080.28510.38790.036*
H11B0.39580.42020.43440.036*
H11C0.46050.25800.40300.036*
C120.64872 (19)0.4694 (2)0.33106 (13)0.0262 (4)
H12A0.63440.48290.39510.031*
H12B0.70840.55330.31210.031*
C130.70744 (18)0.3072 (2)0.31454 (12)0.0226 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (3)0.0236 (3)0.0343 (3)0.0031 (2)0.0082 (2)0.0006 (2)
O10.0357 (9)0.0422 (9)0.0471 (9)0.0137 (7)0.0147 (7)0.0061 (7)
O20.0499 (11)0.0234 (8)0.0441 (9)0.0048 (7)0.0049 (7)0.0029 (6)
O30.0285 (8)0.0275 (7)0.0423 (8)0.0018 (6)0.0052 (7)0.0026 (7)
O40.0251 (8)0.0325 (8)0.0454 (9)0.0070 (6)0.0072 (7)0.0052 (7)
N10.0196 (9)0.0262 (8)0.0315 (9)0.0028 (7)0.0037 (7)0.0022 (7)
N20.0240 (9)0.0232 (8)0.0268 (8)0.0009 (7)0.0010 (7)0.0018 (7)
N30.0199 (9)0.0239 (8)0.0264 (8)0.0003 (7)0.0019 (6)0.0023 (7)
C10.0269 (12)0.0238 (10)0.0275 (10)0.0046 (8)0.0004 (8)0.0016 (8)
C20.0326 (13)0.0298 (11)0.0292 (10)0.0041 (9)0.0047 (9)0.0052 (9)
C30.0406 (14)0.0390 (12)0.0234 (9)0.0077 (10)0.0018 (9)0.0026 (9)
C40.0337 (13)0.0371 (12)0.0291 (10)0.0030 (10)0.0057 (9)0.0067 (9)
C50.0238 (11)0.0310 (11)0.0304 (10)0.0012 (9)0.0030 (8)0.0019 (9)
C60.0226 (11)0.0247 (10)0.0277 (9)0.0055 (8)0.0010 (8)0.0005 (8)
C70.0215 (11)0.0203 (9)0.0296 (10)0.0013 (8)0.0011 (8)0.0005 (8)
C80.0203 (10)0.0195 (9)0.0277 (9)0.0005 (8)0.0004 (8)0.0009 (8)
C90.0210 (11)0.0393 (12)0.0456 (12)0.0035 (9)0.0026 (9)0.0003 (10)
C100.0204 (10)0.0198 (9)0.0284 (9)0.0013 (8)0.0006 (8)0.0006 (8)
C110.0279 (12)0.0313 (11)0.0313 (10)0.0019 (9)0.0008 (9)0.0052 (9)
C120.0224 (11)0.0262 (10)0.0297 (10)0.0013 (8)0.0042 (8)0.0009 (8)
C130.0181 (10)0.0266 (10)0.0231 (9)0.0000 (8)0.0001 (7)0.0033 (8)
Geometric parameters (Å, º) top
S1—O21.4309 (16)C3—H30.9500
S1—O11.4315 (17)C4—C51.387 (3)
S1—N11.6550 (18)C4—H40.9500
S1—C11.765 (2)C5—C61.401 (3)
O3—C131.207 (2)C5—H50.9500
O4—C131.320 (2)C6—C71.462 (3)
O4—H4O0.8400C7—C81.407 (3)
N1—C81.429 (2)C8—C101.378 (3)
N1—C91.483 (3)C9—H9A0.9800
N2—C71.341 (2)C9—H9B0.9800
N2—N31.366 (2)C9—H9C0.9800
N3—C101.355 (2)C10—C111.485 (3)
N3—C121.452 (2)C11—H11A0.9800
C1—C21.388 (3)C11—H11B0.9800
C1—C61.401 (3)C11—H11C0.9800
C2—C31.385 (3)C12—C131.520 (3)
C2—H20.9500C12—H12A0.9900
C3—C41.383 (3)C12—H12B0.9900
O2—S1—O1118.95 (10)C1—C6—C7117.20 (18)
O2—S1—N1107.64 (9)N2—C7—C8110.47 (17)
O1—S1—N1108.08 (10)N2—C7—C6126.05 (17)
O2—S1—C1107.32 (10)C8—C7—C6123.45 (18)
O1—S1—C1109.78 (9)C10—C8—C7106.48 (17)
N1—S1—C1104.07 (9)C10—C8—N1128.98 (17)
C13—O4—H4O109.5C7—C8—N1124.53 (17)
C8—N1—C9116.85 (16)N1—C9—H9A109.5
C8—N1—S1110.29 (13)N1—C9—H9B109.5
C9—N1—S1117.66 (13)H9A—C9—H9B109.5
C7—N2—N3104.55 (15)N1—C9—H9C109.5
C10—N3—N2112.87 (15)H9A—C9—H9C109.5
C10—N3—C12125.58 (16)H9B—C9—H9C109.5
N2—N3—C12118.72 (15)N3—C10—C8105.57 (16)
C2—C1—C6121.69 (19)N3—C10—C11122.79 (17)
C2—C1—S1119.80 (16)C8—C10—C11131.57 (18)
C6—C1—S1118.48 (15)C10—C11—H11A109.5
C3—C2—C1118.9 (2)C10—C11—H11B109.5
C3—C2—H2120.6H11A—C11—H11B109.5
C1—C2—H2120.6C10—C11—H11C109.5
C4—C3—C2120.44 (19)H11A—C11—H11C109.5
C4—C3—H3119.8H11B—C11—H11C109.5
C2—C3—H3119.8N3—C12—C13110.94 (15)
C3—C4—C5120.8 (2)N3—C12—H12A109.5
C3—C4—H4119.6C13—C12—H12A109.5
C5—C4—H4119.6N3—C12—H12B109.5
C4—C5—C6119.9 (2)C13—C12—H12B109.5
C4—C5—H5120.1H12A—C12—H12B108.0
C6—C5—H5120.1O3—C13—O4125.03 (18)
C5—C6—C1118.26 (18)O3—C13—C12124.07 (17)
C5—C6—C7124.43 (18)O4—C13—C12110.90 (16)
O2—S1—N1—C864.00 (15)N3—N2—C7—C6176.09 (18)
O1—S1—N1—C8166.34 (12)C5—C6—C7—N218.7 (3)
C1—S1—N1—C849.68 (15)C1—C6—C7—N2165.16 (18)
O2—S1—N1—C9158.49 (15)C5—C6—C7—C8159.33 (19)
O1—S1—N1—C928.84 (17)C1—C6—C7—C816.8 (3)
C1—S1—N1—C987.83 (16)N2—C7—C8—C101.5 (2)
C7—N2—N3—C102.1 (2)C6—C7—C8—C10176.80 (17)
C7—N2—N3—C12164.15 (16)N2—C7—C8—N1177.84 (17)
O2—S1—C1—C2105.04 (18)C6—C7—C8—N13.8 (3)
O1—S1—C1—C225.6 (2)C9—N1—C8—C1076.3 (3)
N1—S1—C1—C2141.05 (16)S1—N1—C8—C10145.81 (18)
O2—S1—C1—C673.08 (18)C9—N1—C8—C7104.5 (2)
O1—S1—C1—C6156.31 (16)S1—N1—C8—C733.4 (2)
N1—S1—C1—C640.84 (18)N2—N3—C10—C81.2 (2)
C6—C1—C2—C33.3 (3)C12—N3—C10—C8161.78 (17)
S1—C1—C2—C3174.78 (15)N2—N3—C10—C11178.68 (17)
C1—C2—C3—C40.6 (3)C12—N3—C10—C1120.8 (3)
C2—C3—C4—C51.8 (3)C7—C8—C10—N30.2 (2)
C3—C4—C5—C61.5 (3)N1—C8—C10—N3179.14 (18)
C4—C5—C6—C11.1 (3)C7—C8—C10—C11177.0 (2)
C4—C5—C6—C7175.00 (19)N1—C8—C10—C113.7 (4)
C2—C1—C6—C53.5 (3)C10—N3—C12—C1370.0 (2)
S1—C1—C6—C5174.58 (15)N2—N3—C12—C1389.5 (2)
C2—C1—C6—C7172.87 (18)N3—C12—C13—O310.2 (3)
S1—C1—C6—C79.0 (2)N3—C12—C13—O4168.99 (16)
N3—N2—C7—C82.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···N2i0.841.902.724 (2)165
C9—H9A···O2ii0.982.593.297 (3)129
C5—H5···O4iii0.952.593.476 (3)155
C12—H12B···O3iii0.992.353.303 (3)160
C9—H9B···O10.982.492.867 (3)102
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13N3O4S
Mr307.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.495 (4), 8.415 (2), 15.136 (6)
β (°) 91.034 (19)
V3)1336.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.964, 0.974
No. of measured, independent and
observed [I > σ(I)] reflections
5770, 3048, 2196
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.03
No. of reflections3048
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.35

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···N2i0.841.902.724 (2)164.5
C9—H9A···O2ii0.982.593.297 (3)129.3
C5—H5···O4iii0.952.593.476 (3)155.4
C12—H12B···O3iii0.992.353.303 (3)160.2
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279–o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSilverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247–1255.  Web of Science CrossRef CAS Google Scholar
First citationTurck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13–16.  CrossRef PubMed Google Scholar
First citationZinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44–48.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1970-o1971
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds