organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Fluoro­phen­yl)-2,2-di­methyl­propan­amide

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Puzhu South Road No. 30 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road No. 30 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kaiguo@njut.edu.cn

(Received 13 April 2012; accepted 7 May 2012; online 16 May 2012)

The crystal packing in the title compound, C11H14FNO, features N—H⋯O hydrogen bonds, resulting in chains of mol­ecules running parallel to the c axis. The dihedral angle between the ring and the amide group is 39.1 (3)°.

Related literature

The title compound is an inter­mediate in the synthesis of ezetimibe, which inhibits the absorption of cholesterol from the intestine, see: Rosenblum et al. (1998[Rosenblum, S. B., Huynh, T., Afonso, A., Davis, H. R., Yumibe, N., Clader, J. W. & Burnett, D. A. (1998). J. Med. Chem. 41, 973-980.]). For the synthesis, see: Wang et al. (2008[Wang, Y., Zhang, H., Huang, W., Kong, J., Zhou, J. & Zhang, B. (2008). Eur. J. Med. Chem. 44, 1638-1643.]). For a related structure, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2329-o2330.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14FNO

  • Mr = 195.23

  • Monoclinic, P 21 /c

  • a = 9.5750 (19) Å

  • b = 13.027 (3) Å

  • c = 8.8340 (18) Å

  • β = 92.07 (3)°

  • V = 1101.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.991

  • 4219 measured reflections

  • 2025 independent reflections

  • 1091 reflections with I > 2σ(I)

  • Rint = 0.082

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.155

  • S = 1.00

  • 2025 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 2.17 2.990 (3) 159
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ezetimibe is a biologically active molecule and reasearch has shown it to have the useful property of inhibiting the absorption of cholesterol from the intestine (Rosenblum et al., 1998). As a part of our studies on the synthesis of Ezetimibe, the title compound (fIG. 1) which is one of the derivates of an intermediate, has been synthesized and its crystal structure is reported in this paper. The crystal structure of the title compound is stabilized by N—H0A···O hydrogen bonds resulting in chains of molecules running parallel to the c-axis (Fig. 1 and Tab. 1). The bond distances and angles in the title molecule are in excellent agreement with the corresponding bond distances and angles reported for its chloro-analogue (Gowda et al., 2007).

Related literature top

The title compound is an intermediate in the synthesis of ezetimibe, which inhibits the absorption of cholesterol from the intestine, see: Rosenblum et al. (1998). For the synthesis, see: Wang et al. (2008). For a related structure, see: Gowda et al. (2007).

Experimental top

To a solution of 4-fluoroaniline (13.32 g, 0.12 mol) in CH2Cl2(20 ml) were added 4-dimethylaminopyridine (1.2 g, 0.01 mol) and Et3N (42.3 ml, 0.31 mol) and cooled the reaction mixture to 273 K. A solution of pivaloyl chloride (14.4 g, 0.12 mol) in CH2Cl2 (150 ml) was added dropwise over 1 h and the mixture was heated to reflux. After 12 h, H2O and H2SO4 (2 N, 75 ml) were added, separated the layers and washed the organic layer sequentially with NaOH (10%), NaCl (satd.) and water. The organic layer was dried over MgSO4 and concentrated to obtain the title compound as a yellow solid product in pure form following the procedure reported earlier (Wang et al., 2008). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(N/C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
N-(4-Fluorophenyl)-2,2-dimethylpropanamide top
Crystal data top
C11H14FNOF(000) = 416
Mr = 195.23Dx = 1.178 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.5750 (19) Åθ = 10–13°
b = 13.027 (3) ŵ = 0.09 mm1
c = 8.8340 (18) ÅT = 293 K
β = 92.07 (3)°Block, yellow
V = 1101.2 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1091 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.974, Tmax = 0.991l = 010
4219 measured reflections3 standard reflections every 200 reflections
2025 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2025 reflectionsΔρmax = 0.20 e Å3
128 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (5)
Crystal data top
C11H14FNOV = 1101.2 (4) Å3
Mr = 195.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5750 (19) ŵ = 0.09 mm1
b = 13.027 (3) ÅT = 293 K
c = 8.8340 (18) Å0.30 × 0.20 × 0.10 mm
β = 92.07 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1091 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.082
Tmin = 0.974, Tmax = 0.9913 standard reflections every 200 reflections
4219 measured reflections intensity decay: 1%
2025 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2025 reflectionsΔρmin = 0.20 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.55665 (18)0.65320 (14)0.18951 (19)0.0619 (6)
F0.01604 (17)0.92797 (16)0.1759 (2)0.1032 (7)
N0.4924 (2)0.74067 (17)0.0211 (2)0.0588 (7)
H0A0.51360.75470.11260.071*
C10.2795 (3)0.7359 (2)0.1236 (3)0.0638 (8)
H1A0.29820.66830.15140.077*
C20.1603 (3)0.7837 (3)0.1726 (4)0.0728 (9)
H2A0.09950.74930.23490.087*
C30.1340 (3)0.8806 (3)0.1284 (3)0.0693 (9)
C40.2195 (3)0.9346 (2)0.0395 (3)0.0731 (9)
H4A0.19811.00160.01100.088*
C50.3409 (3)0.8869 (2)0.0081 (3)0.0640 (8)
H5A0.40190.92250.06870.077*
C60.3705 (3)0.7878 (2)0.0339 (3)0.0507 (7)
C70.5775 (3)0.6763 (2)0.0568 (3)0.0496 (7)
C80.7023 (3)0.6356 (2)0.0266 (3)0.0560 (7)
C90.8029 (3)0.7255 (3)0.0500 (4)0.0864 (11)
H9A0.83160.75370.04650.130*
H9B0.75650.77750.11020.130*
H9C0.88340.70140.10110.130*
C100.7752 (4)0.5529 (3)0.0688 (4)0.1008 (13)
H10A0.71210.49670.08290.151*
H10B0.80360.58090.16570.151*
H10C0.85600.52890.01810.151*
C110.6568 (3)0.5904 (2)0.1808 (3)0.0759 (10)
H11A0.59450.53380.16620.114*
H11B0.73750.56690.23210.114*
H11C0.60970.64220.24080.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0662 (12)0.0774 (14)0.0430 (11)0.0127 (10)0.0146 (9)0.0049 (10)
F0.0656 (12)0.1364 (17)0.1092 (15)0.0362 (11)0.0246 (11)0.0114 (13)
N0.0603 (14)0.0756 (15)0.0418 (12)0.0164 (13)0.0204 (11)0.0052 (12)
C10.0579 (17)0.071 (2)0.0637 (18)0.0048 (15)0.0160 (15)0.0065 (15)
C20.0509 (17)0.099 (3)0.070 (2)0.0022 (18)0.0194 (15)0.0051 (19)
C30.0507 (17)0.095 (2)0.0631 (18)0.0197 (18)0.0119 (15)0.0072 (18)
C40.073 (2)0.073 (2)0.073 (2)0.0218 (18)0.0069 (17)0.0059 (17)
C50.0660 (19)0.071 (2)0.0564 (17)0.0073 (16)0.0177 (14)0.0078 (15)
C60.0519 (15)0.0640 (18)0.0370 (13)0.0053 (14)0.0113 (12)0.0002 (13)
C70.0537 (16)0.0574 (17)0.0384 (14)0.0016 (13)0.0114 (12)0.0005 (13)
C80.0548 (16)0.0679 (19)0.0461 (15)0.0087 (14)0.0119 (12)0.0050 (14)
C90.0548 (18)0.112 (3)0.093 (3)0.0102 (18)0.0193 (18)0.023 (2)
C100.097 (2)0.125 (3)0.082 (2)0.059 (2)0.022 (2)0.014 (2)
C110.080 (2)0.082 (2)0.067 (2)0.0074 (18)0.0224 (16)0.0181 (17)
Geometric parameters (Å, º) top
O—C71.233 (3)C5—H5A0.9300
F—C31.366 (3)C7—C81.522 (3)
N—C71.342 (3)C8—C101.522 (4)
N—C61.420 (3)C8—C111.533 (4)
N—H0A0.8600C8—C91.535 (4)
C1—C61.376 (4)C9—H9A0.9600
C1—C21.383 (4)C9—H9B0.9600
C1—H1A0.9300C9—H9C0.9600
C2—C31.343 (4)C10—H10A0.9600
C2—H2A0.9300C10—H10B0.9600
C3—C41.352 (4)C10—H10C0.9600
C4—C51.397 (4)C11—H11A0.9600
C4—H4A0.9300C11—H11B0.9600
C5—C61.371 (4)C11—H11C0.9600
C7—N—C6125.9 (2)C7—C8—C10109.3 (2)
C7—N—H0A117.1C7—C8—C11111.2 (2)
C6—N—H0A117.1C10—C8—C11109.3 (2)
C6—C1—C2120.4 (3)C7—C8—C9107.9 (2)
C6—C1—H1A119.8C10—C8—C9109.7 (3)
C2—C1—H1A119.8C11—C8—C9109.4 (2)
C3—C2—C1118.7 (3)C8—C9—H9A109.5
C3—C2—H2A120.6C8—C9—H9B109.5
C1—C2—H2A120.6H9A—C9—H9B109.5
C2—C3—C4123.1 (3)C8—C9—H9C109.5
C2—C3—F118.9 (3)H9A—C9—H9C109.5
C4—C3—F117.9 (3)H9B—C9—H9C109.5
C3—C4—C5118.2 (3)C8—C10—H10A109.5
C3—C4—H4A120.9C8—C10—H10B109.5
C5—C4—H4A120.9H10A—C10—H10B109.5
C6—C5—C4120.2 (3)C8—C10—H10C109.5
C6—C5—H5A119.9H10A—C10—H10C109.5
C4—C5—H5A119.9H10B—C10—H10C109.5
C5—C6—C1119.3 (2)C8—C11—H11A109.5
C5—C6—N118.6 (2)C8—C11—H11B109.5
C1—C6—N122.0 (3)H11A—C11—H11B109.5
O—C7—N121.6 (2)C8—C11—H11C109.5
O—C7—C8122.1 (2)H11A—C11—H11C109.5
N—C7—C8116.3 (2)H11B—C11—H11C109.5
C6—C1—C2—C31.4 (5)C7—N—C6—C5142.3 (3)
C1—C2—C3—C40.9 (5)C7—N—C6—C139.9 (4)
C1—C2—C3—F179.7 (3)C6—N—C7—O1.2 (4)
C2—C3—C4—C50.0 (5)C6—N—C7—C8179.9 (2)
F—C3—C4—C5179.4 (2)O—C7—C8—C109.3 (4)
C3—C4—C5—C60.5 (4)N—C7—C8—C10172.0 (3)
C4—C5—C6—C10.0 (4)O—C7—C8—C11130.1 (3)
C4—C5—C6—N177.8 (2)N—C7—C8—C1151.3 (3)
C2—C1—C6—C50.9 (4)O—C7—C8—C9110.0 (3)
C2—C1—C6—N178.7 (2)N—C7—C8—C968.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.172.990 (3)159
C1—H1A···O0.932.492.904 (3)107
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H14FNO
Mr195.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5750 (19), 13.027 (3), 8.8340 (18)
β (°) 92.07 (3)
V3)1101.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4219, 2025, 1091
Rint0.082
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.155, 1.00
No. of reflections2025
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.172.990 (3)159
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This research was supported financially by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, the 973 project (2012CB725204) and the Key Basic Research Program of China.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2329–o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRosenblum, S. B., Huynh, T., Afonso, A., Davis, H. R., Yumibe, N., Clader, J. W. & Burnett, D. A. (1998). J. Med. Chem. 41, 973–980.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Zhang, H., Huang, W., Kong, J., Zhou, J. & Zhang, B. (2008). Eur. J. Med. Chem. 44, 1638–1643.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds