organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,4R)-4-(2-Eth­­oxy-2-oxoeth­yl)-2,6,6-trimeth­yl–2-oxo-1,3,6,2λ5-dioxaza­phospho­can-6-ium iodide

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 20 April 2012; accepted 25 April 2012; online 2 May 2012)

The title compound, C11H23NO5P+·I, consists of an eight-membered cationic heterocyclic ring in a boat–chair conformation. The ring features a tetra­alkyl­ammonium N and a methyl­phospho­nate P atom. A –CH2(CO)OC2H5 ester side chain at the C adjacent to oxygen produces two chiral centers at that substituted C atom and the P atom, both of which were determined to have absolute R,R configurations. A previously determined racemic bromide analog has exactly the same ring but with a –C15H31 side chain. In that structure, both chiral centers show the same relative R/S,R/S configurations, but the ring in the bromide analog is in a boat conformation.

Related literature

For MM2 energy minimization, see Cambridgesoft (2010[Cambridgesoft (2010). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA, USA.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the absolute configuration from Bijvoet pair analysis, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For the synthesis, see: Kumaravel et al. (1994[Kumaravel, G., Nic a' Bháird, N., Fronczek, F. R., Ramsay, R. R., Ashendel, C. L. & Gandour, R. D. (1994). Bioorg. Med. Chem. Lett. 4, 883-886.]); Hubieki et al. (1996[Hubieki, M. P., Gandour, R. D. & Ashendel, C. L. (1996). J. Org. Chem. 61, 9379-9384.]). For a related structure, see: Kumaravel et al. (1995[Kumaravel, G., Gandour, R. D. & Fronczek, F. R. (1995). Acta Cryst. C51, 1919-1921.]).

[Scheme 1]

Experimental

Crystal data
  • C11H23NO5P+·I

  • Mr = 407.17

  • Orthorhombic, P 21 21 21

  • a = 7.4882 (2) Å

  • b = 11.7438 (2) Å

  • c = 18.0235 (4) Å

  • V = 1584.99 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 90 K

  • 0.28 × 0.25 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.591, Tmax = 0.740

  • 26155 measured reflections

  • 6304 independent reflections

  • 6235 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.039

  • S = 1.05

  • 6304 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2741 Friedel pairs

  • Flack parameter: 0.006 (7)

Table 1
Selected torsion angles (°)

O2—P1—O1—C3 −68.45 (9)
P1—O1—C3—C4 77.51 (10)
O1—C3—C4—N1 −111.53 (11)
C3—C4—N1—C1 52.59 (13)
C4—N1—C1—C2 57.38 (13)
N1—C1—C2—O2 −64.93 (14)
C1—C2—O2—P1 −49.45 (14)
C2—O2—P1—O1 103.91 (10)

Data collection: COLLECT (Bruker 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.], 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) is an analog of 2,6,6-trimethyl-2-oxo-1,3-dioxa- 6-azonia-2-phosphocyclooctane bromide (compound II, CSD code YEVZUU, Allen, 2002), originally targeted for use as a reaction-intermediate inhibitor of carnitine acyltransferase (Kumaravel et al., 1994; Kumaravel et al., 1995). Both compounds contain the same 8-membered cationic heterocyclic ring (C7H16NO3P) with two chiral centers at C3 and P1, but with different side chains at C3.

Compound I crystallizes as the R,R enantiomer, whereas II crystallizes as a racemate with R/S,R/S relative configurations. In I, the ring is in the boat-chair conformation, the lowest energy conformer of paradigmatic cyclooctane (Chem3DPro, Cambridgesoft, 2010), but surprisingly the ring in II is in the boat conformation, which in cyclooctane is a higher energy conformer.

Related literature top

For MM2 energy minimization, see Cambridgesoft (2010). For a description of the Cambridge Structural Database, see: Allen (2002). For the absolute configuration from Bijvoet pair analysis, see: Hooft et al. (2008). For the synthesis, see: Kumaravel et al. (1994); Hubieki et al. (1996). For a related structure, see: Kumaravel et al. (1995).

Experimental top

Synthesis of this class of compounds has been described (Kumaravel et al., 1994; Hubieki et al., 1996). A suitable single-crystal was kindly supplied by Dr. J. H. Rouden.

Refinement top

All H atoms were placed in calculated positions guided by difference maps. The C—H bond distances were constrained to the range from 0.98 to 1.00 Å, and Uiso= 1.2Ueq (1.5 for methyl groups), thereafter refined as riding. A torsional parameter was refined for each methyl group.

The absolute configuration was determined by analysis of Bijvoet pairs: the Flack (Flack, 1983) parameter = 0.006 (7), the Hooft (Hooft et al., 2008) parameter = 0.006 (6) and P2(true) = 1.000.

Computing details top

Data collection: COLLECT (Bruker 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1987, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
(2R,4R)-4-(2-Ethoxy-2-oxoethyl)-2,6,6-trimethyl–2-oxo- 1,3,6,2λ5-dioxazaphosphocan-6-ium iodide top
Crystal data top
C11H23NO5P+·IF(000) = 816
Mr = 407.17Dx = 1.706 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3522 reflections
a = 7.4882 (2) Åθ = 2.5–33.7°
b = 11.7438 (2) ŵ = 2.14 mm1
c = 18.0235 (4) ÅT = 90 K
V = 1584.99 (6) Å3Prism, colourless
Z = 40.28 × 0.25 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
6304 independent reflections
Radiation source: sealed tube6235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 33.7°, θmin = 2.9°
CCD rotation images, thick slices scansh = 1111
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1818
Tmin = 0.591, Tmax = 0.740l = 2728
26155 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0158P)2 + 0.6491P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.39 e Å3
6304 reflectionsΔρmin = 0.66 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0037 (2)
0 constraintsAbsolute structure: Flack (1983), 2741 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (7)
Secondary atom site location: difference Fourier map
Crystal data top
C11H23NO5P+·IV = 1584.99 (6) Å3
Mr = 407.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4882 (2) ŵ = 2.14 mm1
b = 11.7438 (2) ÅT = 90 K
c = 18.0235 (4) Å0.28 × 0.25 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
6304 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
6235 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.740Rint = 0.042
26155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.039Δρmax = 0.39 e Å3
S = 1.05Δρmin = 0.66 e Å3
6304 reflectionsAbsolute structure: Flack (1983), 2741 Friedel pairs
177 parametersAbsolute structure parameter: 0.006 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.043921 (11)0.959574 (7)0.228805 (4)0.01449 (2)
C10.36047 (17)0.73826 (11)0.14505 (7)0.0118 (2)
H1A0.41840.7620.09820.014*
H1B0.33990.8080.17470.014*
C20.17996 (17)0.68738 (12)0.12605 (7)0.0127 (2)
H2A0.1220.6620.17260.015*
H2B0.10420.74780.10420.015*
C30.59764 (16)0.56554 (10)0.06758 (7)0.0098 (2)
H30.61290.64860.05730.012*
C40.53465 (16)0.55152 (10)0.14844 (6)0.01054 (18)
H4A0.42720.50240.1490.013*
H4B0.62930.51210.17690.013*
C50.66050 (17)0.73081 (11)0.19789 (7)0.0135 (2)
H5A0.63460.79970.22660.02*
H5B0.70920.75220.14940.02*
H5C0.74790.68420.22460.02*
C60.41775 (17)0.63424 (12)0.26270 (7)0.0157 (2)
H6A0.50670.590.29030.024*
H6B0.30840.58920.25720.024*
H6C0.39080.70450.28980.024*
C70.17486 (17)0.50423 (12)0.06268 (7)0.0133 (2)
H7A0.06110.540.07610.02*
H7B0.15180.4310.03850.02*
H7C0.24620.49190.10750.02*
C80.77289 (16)0.50631 (11)0.05177 (7)0.0119 (2)
H8A0.79420.50880.00240.014*
H8B0.86960.55040.07580.014*
C90.78769 (17)0.38388 (11)0.07689 (7)0.0118 (2)
C101.00454 (18)0.23653 (11)0.09371 (9)0.0171 (2)
H10A0.9640.17620.05920.021*
H10B0.94950.2230.14290.021*
C111.2050 (2)0.23625 (13)0.09977 (8)0.0180 (2)
H11A1.25730.25070.05080.027*
H11B1.24530.1620.1180.027*
H11C1.24290.29590.13440.027*
N10.49050 (13)0.66341 (9)0.18714 (6)0.01052 (17)
O10.46590 (12)0.52051 (7)0.01612 (4)0.01006 (14)
O20.18599 (12)0.59216 (8)0.07507 (5)0.01138 (16)
O30.32941 (13)0.71123 (8)0.02761 (5)0.01296 (17)
O40.66875 (13)0.32687 (9)0.10299 (6)0.01603 (18)
O50.95505 (14)0.34845 (8)0.06562 (5)0.01394 (16)
P10.29315 (4)0.59443 (3)0.001033 (16)0.00900 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01306 (3)0.01533 (4)0.01509 (4)0.00285 (3)0.00355 (3)0.00370 (3)
C10.0108 (5)0.0117 (5)0.0129 (5)0.0012 (4)0.0012 (4)0.0008 (4)
C20.0098 (5)0.0163 (6)0.0121 (5)0.0020 (4)0.0004 (4)0.0031 (4)
C30.0081 (4)0.0108 (5)0.0105 (4)0.0001 (3)0.0001 (3)0.0006 (4)
C40.0108 (4)0.0110 (5)0.0098 (4)0.0004 (4)0.0003 (4)0.0010 (3)
C50.0111 (5)0.0154 (5)0.0141 (5)0.0038 (4)0.0010 (4)0.0012 (4)
C60.0158 (5)0.0223 (6)0.0090 (5)0.0027 (4)0.0016 (4)0.0004 (4)
C70.0119 (5)0.0172 (5)0.0109 (5)0.0009 (4)0.0015 (4)0.0015 (4)
C80.0077 (4)0.0122 (5)0.0159 (5)0.0005 (4)0.0013 (4)0.0026 (4)
C90.0107 (5)0.0121 (5)0.0125 (5)0.0016 (4)0.0011 (4)0.0001 (4)
C100.0149 (6)0.0109 (5)0.0256 (6)0.0038 (4)0.0005 (5)0.0033 (4)
C110.0147 (6)0.0216 (6)0.0179 (6)0.0048 (5)0.0014 (5)0.0021 (5)
N10.0093 (4)0.0133 (4)0.0089 (4)0.0003 (3)0.0002 (3)0.0006 (3)
O10.0089 (3)0.0120 (4)0.0093 (3)0.0011 (3)0.0009 (3)0.0004 (3)
O20.0102 (4)0.0143 (4)0.0096 (4)0.0010 (3)0.0013 (3)0.0013 (3)
O30.0144 (4)0.0123 (4)0.0121 (4)0.0011 (3)0.0003 (3)0.0031 (3)
O40.0118 (4)0.0152 (4)0.0211 (4)0.0009 (3)0.0010 (3)0.0039 (4)
O50.0107 (4)0.0121 (4)0.0191 (4)0.0023 (3)0.0016 (4)0.0026 (3)
P10.00772 (12)0.01135 (13)0.00792 (11)0.00067 (10)0.00033 (10)0.00100 (10)
Geometric parameters (Å, º) top
C1—N11.5153 (16)C6—H6C0.98
C1—C21.5170 (18)C7—P11.7723 (13)
C1—H1A0.99C7—H7A0.98
C1—H1B0.99C7—H7B0.98
C2—O21.4481 (16)C7—H7C0.98
C2—H2A0.99C8—C91.5115 (18)
C2—H2B0.99C8—H8A0.99
C3—O11.4536 (15)C8—H8B0.99
C3—C81.5123 (17)C9—O41.2095 (16)
C3—C41.5407 (16)C9—O51.3361 (16)
C3—H31C10—O51.4565 (16)
C4—N11.5239 (15)C10—C111.505 (2)
C4—H4A0.99C10—H10A0.99
C4—H4B0.99C10—H10B0.99
C5—N11.5115 (16)C11—H11A0.98
C5—H5A0.98C11—H11B0.98
C5—H5B0.98C11—H11C0.98
C5—H5C0.98O1—P11.5883 (9)
C6—N11.5063 (16)O2—P11.5893 (9)
C6—H6A0.98O3—P11.4780 (10)
C6—H6B0.98
N1—C1—C2117.20 (10)P1—C7—H7C109.5
N1—C1—H1A108H7A—C7—H7C109.5
C2—C1—H1A108H7B—C7—H7C109.5
N1—C1—H1B108C9—C8—C3116.40 (10)
C2—C1—H1B108C9—C8—H8A108.2
H1A—C1—H1B107.2C3—C8—H8A108.2
O2—C2—C1114.81 (10)C9—C8—H8B108.2
O2—C2—H2A108.6C3—C8—H8B108.2
C1—C2—H2A108.6H8A—C8—H8B107.3
O2—C2—H2B108.6O4—C9—O5125.27 (12)
C1—C2—H2B108.6O4—C9—C8126.10 (12)
H2A—C2—H2B107.5O5—C9—C8108.63 (11)
O1—C3—C8107.54 (10)O5—C10—C11106.31 (11)
O1—C3—C4110.91 (9)O5—C10—H10A110.5
C8—C3—C4113.25 (10)C11—C10—H10A110.5
O1—C3—H3108.3O5—C10—H10B110.5
C8—C3—H3108.3C11—C10—H10B110.5
C4—C3—H3108.3H10A—C10—H10B108.7
N1—C4—C3114.03 (9)C10—C11—H11A109.5
N1—C4—H4A108.7C10—C11—H11B109.5
C3—C4—H4A108.7H11A—C11—H11B109.5
N1—C4—H4B108.7C10—C11—H11C109.5
C3—C4—H4B108.7H11A—C11—H11C109.5
H4A—C4—H4B107.6H11B—C11—H11C109.5
N1—C5—H5A109.5C6—N1—C5107.93 (9)
N1—C5—H5B109.5C6—N1—C1110.62 (10)
H5A—C5—H5B109.5C5—N1—C1107.55 (10)
N1—C5—H5C109.5C6—N1—C4107.23 (9)
H5A—C5—H5C109.5C5—N1—C4109.11 (9)
H5B—C5—H5C109.5C1—N1—C4114.23 (9)
N1—C6—H6A109.5C3—O1—P1118.56 (7)
N1—C6—H6B109.5C2—O2—P1123.39 (8)
H6A—C6—H6B109.5C9—O5—C10117.83 (11)
N1—C6—H6C109.5O3—P1—O1114.88 (5)
H6A—C6—H6C109.5O3—P1—O2112.83 (5)
H6B—C6—H6C109.5O1—P1—O2103.53 (5)
P1—C7—H7A109.5O3—P1—C7116.32 (6)
P1—C7—H7B109.5O1—P1—C7101.68 (6)
H7A—C7—H7B109.5O2—P1—C7106.18 (6)
O2—P1—O1—C368.45 (9)C2—C1—N1—C663.71 (13)
P1—O1—C3—C477.51 (10)C2—C1—N1—C5178.65 (10)
O1—C3—C4—N1111.53 (11)C3—C4—N1—C6175.54 (10)
C3—C4—N1—C152.59 (13)C3—C4—N1—C567.81 (12)
C4—N1—C1—C257.38 (13)C8—C3—O1—P1158.16 (8)
N1—C1—C2—O264.93 (14)O4—C9—O5—C106.70 (19)
C1—C2—O2—P149.45 (14)C8—C9—O5—C10173.21 (11)
C2—O2—P1—O1103.91 (10)C11—C10—O5—C9159.32 (12)
C8—C3—C4—N1127.45 (11)C3—O1—P1—O355.03 (9)
O1—C3—C8—C973.74 (13)C3—O1—P1—C7178.47 (9)
C4—C3—C8—C949.16 (14)C2—O2—P1—O320.90 (11)
C3—C8—C9—O46.12 (19)C2—O2—P1—C7149.44 (10)
C3—C8—C9—O5173.79 (11)

Experimental details

Crystal data
Chemical formulaC11H23NO5P+·I
Mr407.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)7.4882 (2), 11.7438 (2), 18.0235 (4)
V3)1584.99 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.28 × 0.25 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.591, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
26155, 6304, 6235
Rint0.042
(sin θ/λ)max1)0.781
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.039, 1.05
No. of reflections6304
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.66
Absolute structureFlack (1983), 2741 Friedel pairs
Absolute structure parameter0.006 (7)

Computer programs: COLLECT (Bruker 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1987, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected torsion angles (º) top
O2—P1—O1—C368.45 (9)C4—N1—C1—C257.38 (13)
P1—O1—C3—C477.51 (10)N1—C1—C2—O264.93 (14)
O1—C3—C4—N1111.53 (11)C1—C2—O2—P149.45 (14)
C3—C4—N1—C152.59 (13)C2—O2—P1—O1103.91 (10)
 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We are grateful to Dr J. H. Rouden for providing the sample.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridgesoft (2010). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHubieki, M. P., Gandour, R. D. & Ashendel, C. L. (1996). J. Org. Chem. 61, 9379–9384.  CrossRef CAS Web of Science Google Scholar
First citationKumaravel, G., Gandour, R. D. & Fronczek, F. R. (1995). Acta Cryst. C51, 1919–1921.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKumaravel, G., Nic a' Bháird, N., Fronczek, F. R., Ramsay, R. R., Ashendel, C. L. & Gandour, R. D. (1994). Bioorg. Med. Chem. Lett. 4, 883–886.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds