organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-2-[(2-nitro­phen­­oxy)meth­yl]-3-phenyl­acrylate

aPost Graduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 20 April 2012; accepted 9 May 2012; online 16 May 2012)

The title compound, C17H15NO5, adopts an E conformation with respect to the C=C double bond of the phenyl­acrylate unit. The phenyl ring and methyl acrylate group of the phenyl­acrylate unit are disordered over two sets of sites with site-occupancy ratios of 0.705 (5):0.295 (5) and 0.683 (3):0.317 (3), respectively. The mean plane through the benzene ring of the phenyl acrylate makes dihedral angles of 88.4 (8) (major component) and 86.7 (8)° (minor component) with the nitro­phen­oxy ring; the dihedral angle between the two components is 3.64 (6)°. Intra­molecular C—H⋯O interactions stabilise the molecular structure. In the crystal, C—H⋯O inter­actions result in a chain of mol­ecules running along the b axis.

Related literature

For the industrial importance of methyl trans-cinnamates, see: Bhatia et al. (2007[Bhatia, S. P., Wellington, G. A., Cocchiara, J., Lalko, J., Letizia, C. S. & Api, A. M. (2007). J. Food Chem. Toxicol. 45, S113-S119.]); Huang et al. (2009[Huang, Q. S., Zhu, Y. J., Li, Y. L., Zhuang, J. X., Lezhang, C., Zhou, J. J., Li, W. G. & Chen, Q. X. (2009). J. Agric. Food Chem. 57, 2565-2569.]); Sharma (2011[Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403-423.]). For related structures, see: Anuradha et al. (2011[Anuradha, T., Sivakumar, G., Seshadri, P. R. & Bakthadoss, M. (2011). Acta Cryst. E67, o3322.]); Wang et al. (2011[Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to the synthesis, see: Bakthadoss et al. (2009[Bakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466-4469.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO5

  • Mr = 313.30

  • Monoclinic, C 2/c

  • a = 24.0511 (10) Å

  • b = 7.8521 (3) Å

  • c = 19.7403 (9) Å

  • β = 121.661 (3)°

  • V = 3173.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.981

  • 32853 measured reflections

  • 3695 independent reflections

  • 2356 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.12

  • 3695 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3 0.93 2.26 2.683 (5) 107
C11—H11⋯O5 0.93 2.51 3.2734 (17) 140
C2—H2⋯O3i 0.93 2.56 3.140 (4) 121
C3—H3⋯O3i 0.93 2.51 3.114 (5) 123
C4—H4⋯O2ii 0.93 2.56 3.255 (2) 132
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Methyl trans-cinnamate can inhibit both monophenolase activity and diphenolase activity of tyrosinase and thus it can be a potential compound used in antibrowning food additive (Huang et al., 2009). It is a fragrance ingredient used in many fragrances and decorative cosmetics (Bhatia et al., 2007; Sharma, 2011). In view of this industrial importance, we have prepared the title compound which is a nitrophenoxymethyl derivative of methyl trans-cinnamate and determined its crystal structure which is presented in this paper.

The title molecule adopts an E configuration with respect to the C8C9 double bond (Fig. 1). The benzene ring (C10–C15) and methyl acrylate (C16/C17/O3/O4) group of the phenylacrylate unit are disordered over two orientations with site-occupancy ratios of 0.705 (5):0.295 (5) and 0.683 (3):0.317 (3) representing major and minor components, repectively. The mean plane through the benzene ring of the phenyl acrylate makes dihedral angles of 88.4 (8) (major component) and 86.7 (8)° (minor component) with the nitrophenoxy (C1–C6/N1/O1/O2) ring; the dihedral angle between the two components is 3.6 (6)°.

The major and minor components of the methylacrylate (C8/C16/C17/O3/O4) are essentially planar with maximum deviations for atoms O4 and O4', -0.015 (1) and 0.015 (1) Å, respectively. The central unit (C6–C8/O5) is almost equatorial to the major component of methylphenylacrylate group (C8–C17/O1/O2) whereas axial to the nitrobenzene (C1–C6/N1), making dihedral angles of 88.4 (1) and 8.1 (1)°, respectively.

The crystal structure is stabilized by intramolecular bifurcated C—H···O hydrogen bonds involving two hydrogen atoms (H2/H3) of the benzene ring (C1—C6) and O3 of the acrylate resulting in an R22(5) ring motif (Bernstein et al., 1995) and C4—H4···O2 interactions resulting in a chain of molecules running along the b-axis (Table 1 and Fig. 2).

The crystal structures of a few related compounds have been reported recently (Anuradha et al., 2011); Wang et al., 2011).

Related literature top

For the industrial importance of methyl trans-cinnamates, see: Bhatia et al. (2007); Huang et al. (2009); Sharma (2011). For related structures, see: Anuradha et al. (2011); Wang et al. (2011). For graph-set notation, see: Bernstein et al. (1995). For related literature [on what subject?], see: Bakthadoss et al. (2009).

Experimental top

To a stirred solution of 2-nitrophenol (0.14 g, 1 mmol) in acetonitrile (7 ml), potassium carbonate (0.35 g, 2.5 mmol) was added and stirred well for five minutes. To this solution, (Z)- methyl 2-(bromomethyl)-3-phenylacrylate (0.26 g, 1 mmol) in acetonitrile (0.5 ml) was added and allowed to stir well for 6 h. After the completion of the reaction, the reaction mixture was poured into water and extracted using ethyl acetate. The organic layer thus obtained was concentrated under reduced pressure and the residual mass thus obtained was purified by column chromatography on silica gel (Acme 100–200) using EtOAc-hexanes (1:9) to afford the title compound in 90% yield. The crystals suitable for X-ray crystallographic analysis were grown from a solution of ethylacetate by slow evaporation at room temperature.

Refinement top

The benzene ring(C10 - C15) and methyl acrylate(C16/C17/O3/O4) group of the phenylacrylate unit are disordered over two orientations with site-occupancy ratio of 0.705 (5):0.295 (5) and 0.683 (3):0.317 (3) representing major and minor components repectively. The command EADP was used in SHELXL-97 (Sheldrick, 2008) to constrain the Ueq of the disordered atoms. The hydrogen atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å, for acryl, methyl and methylene H-atoms, respectively, and refined in the riding mode; the Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom - numbering scheme with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius. The minor fractions of the disordered benzene ring and methylacrylate have been represented by broken bonds.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound.
Methyl (E)-2-[(2-nitrophenoxy)methyl]-3-phenylacrylate top
Crystal data top
C17H15NO5F(000) = 1312
Mr = 313.30Dx = 1.312 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3695 reflections
a = 24.0511 (10) Åθ = 2.2–27.7°
b = 7.8521 (3) ŵ = 0.10 mm1
c = 19.7403 (9) ÅT = 293 K
β = 121.661 (3)°Block, colourless
V = 3173.1 (2) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3695 independent reflections
Radiation source: fine-focus sealed tube2356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3131
Tmin = 0.971, Tmax = 0.981k = 1010
32853 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0548P)2 + 1.2534P]
where P = (Fo2 + 2Fc2)/3
3695 reflections(Δ/σ)max = 0.008
212 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H15NO5V = 3173.1 (2) Å3
Mr = 313.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.0511 (10) ŵ = 0.10 mm1
b = 7.8521 (3) ÅT = 293 K
c = 19.7403 (9) Å0.30 × 0.20 × 0.20 mm
β = 121.661 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2356 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.981Rint = 0.031
32853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
3695 reflectionsΔρmin = 0.23 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.04775 (8)0.71127 (19)0.03978 (10)0.0530 (4)
C20.00796 (9)0.7393 (2)0.11206 (11)0.0646 (5)
H20.03260.64790.14350.078*
C30.02733 (9)0.9032 (2)0.13791 (12)0.0722 (5)
H30.06520.92390.18680.087*
C40.00989 (9)1.0359 (2)0.09087 (11)0.0684 (5)
H40.00351.14700.10800.082*
C50.06650 (8)1.0086 (2)0.01904 (10)0.0581 (4)
H50.09121.10080.01150.070*
C60.08709 (7)0.84407 (19)0.00821 (9)0.0494 (4)
C70.18319 (8)0.9397 (2)0.12608 (10)0.0561 (4)
H7A0.16170.99590.15010.067*
H7B0.18971.02280.09450.067*
C80.24735 (8)0.8703 (2)0.18938 (11)0.0598 (4)
C90.26255 (9)0.8346 (2)0.26281 (11)0.0698 (5)
H90.30610.80690.29850.084*
O50.14319 (5)0.80287 (13)0.07619 (7)0.0586 (3)
N10.06558 (8)0.53526 (19)0.01355 (12)0.0696 (4)
O10.08558 (8)0.49972 (19)0.05526 (11)0.1018 (6)
O20.05728 (10)0.43151 (19)0.06366 (12)0.1139 (6)
O30.35656 (19)0.8059 (6)0.2290 (2)0.1002 (11)0.683 (3)
O40.28384 (12)0.8651 (4)0.1015 (2)0.0720 (7)0.683 (3)
C170.33209 (17)0.8375 (5)0.0840 (2)0.0942 (9)0.683 (3)
H17A0.36190.93190.10280.141*0.683 (3)
H17B0.31230.82670.02740.141*0.683 (3)
H17C0.35540.73480.10950.141*0.683 (3)
C160.30259 (19)0.8415 (5)0.1786 (2)0.0616 (8)0.683 (3)
O3'0.2676 (4)0.9073 (12)0.0829 (6)0.1002 (11)0.317 (3)
O4'0.3504 (4)0.8074 (11)0.2006 (4)0.0720 (7)0.317 (3)
C17'0.3931 (4)0.8028 (11)0.1689 (5)0.0942 (9)0.317 (3)
H17D0.37850.71560.12910.141*0.317 (3)
H17E0.43690.77860.21120.141*0.317 (3)
H17F0.39190.91110.14570.141*0.317 (3)
C16'0.2889 (5)0.8675 (13)0.1467 (6)0.0616 (8)0.317 (3)
C100.21965 (15)0.8329 (3)0.29588 (16)0.0693 (5)0.705 (5)
C110.15778 (8)0.76028 (14)0.24978 (8)0.0740 (6)0.705 (5)
H110.14410.71890.19920.089*0.705 (5)
C120.11639 (8)0.74947 (14)0.27897 (8)0.0868 (8)0.705 (5)
H120.07500.70200.24780.104*0.705 (5)
C130.13684 (8)0.80956 (14)0.35480 (8)0.0957 (11)0.705 (5)
H130.10910.80230.37430.115*0.705 (5)
C140.19868 (8)0.88046 (14)0.40143 (8)0.1047 (12)0.705 (5)
H140.21240.92070.45220.126*0.705 (5)
C150.24007 (8)0.89128 (14)0.37224 (8)0.0906 (8)0.705 (5)
H150.28160.93770.40380.109*0.705 (5)
C10'0.22131 (8)0.82692 (14)0.29177 (8)0.0693 (5)0.295 (5)
C11'0.15763 (8)0.76783 (14)0.25774 (8)0.0740 (6)0.295 (5)
H11'0.13500.72900.20540.089*0.295 (5)
C12'0.12776 (8)0.76678 (14)0.30186 (8)0.0868 (8)0.295 (5)
H12'0.08510.72720.27910.104*0.295 (5)
C13'0.16156 (8)0.82481 (14)0.38001 (8)0.0957 (11)0.295 (5)
H13'0.14160.82410.40950.115*0.295 (5)
C14'0.22524 (8)0.88390 (14)0.41404 (8)0.1047 (12)0.295 (5)
H14'0.24790.92270.46630.126*0.295 (5)
C15'0.25511 (8)0.88495 (14)0.36992 (8)0.0906 (8)0.295 (5)
H15'0.29770.92450.39270.109*0.295 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (9)0.0474 (8)0.0629 (10)0.0054 (7)0.0317 (8)0.0016 (7)
C20.0574 (10)0.0612 (10)0.0651 (11)0.0131 (8)0.0252 (9)0.0118 (8)
C30.0590 (11)0.0702 (12)0.0622 (11)0.0030 (9)0.0144 (9)0.0014 (9)
C40.0630 (11)0.0555 (9)0.0670 (12)0.0017 (8)0.0206 (10)0.0051 (8)
C50.0567 (10)0.0485 (8)0.0574 (10)0.0040 (7)0.0219 (8)0.0024 (7)
C60.0476 (9)0.0510 (8)0.0501 (9)0.0043 (6)0.0260 (8)0.0011 (7)
C70.0545 (9)0.0500 (8)0.0536 (9)0.0059 (7)0.0213 (8)0.0018 (7)
C80.0514 (9)0.0539 (9)0.0609 (11)0.0018 (7)0.0204 (8)0.0026 (8)
C90.0615 (11)0.0590 (10)0.0628 (12)0.0052 (8)0.0146 (9)0.0041 (8)
O50.0540 (7)0.0487 (6)0.0561 (7)0.0037 (5)0.0172 (6)0.0015 (5)
N10.0605 (9)0.0495 (8)0.0984 (13)0.0112 (7)0.0414 (9)0.0019 (8)
O10.1010 (12)0.0756 (10)0.1010 (12)0.0169 (8)0.0338 (10)0.0265 (9)
O20.1455 (16)0.0531 (8)0.1600 (17)0.0084 (9)0.0919 (14)0.0197 (10)
O30.0626 (15)0.140 (2)0.078 (2)0.0263 (14)0.0233 (18)0.008 (2)
O40.0476 (14)0.0938 (16)0.069 (2)0.0054 (10)0.0265 (15)0.0008 (13)
C170.086 (2)0.120 (3)0.099 (2)0.0060 (19)0.0632 (18)0.003 (2)
C160.049 (2)0.0636 (17)0.051 (3)0.0007 (14)0.012 (2)0.0024 (17)
O3'0.0626 (15)0.140 (2)0.078 (2)0.0263 (14)0.0233 (18)0.008 (2)
O4'0.0476 (14)0.0938 (16)0.069 (2)0.0054 (10)0.0265 (15)0.0008 (13)
C17'0.086 (2)0.120 (3)0.099 (2)0.0060 (19)0.0632 (18)0.003 (2)
C16'0.049 (2)0.0636 (17)0.051 (3)0.0007 (14)0.012 (2)0.0024 (17)
C100.0848 (14)0.0554 (10)0.0554 (11)0.0092 (9)0.0284 (10)0.0094 (8)
C110.0916 (15)0.0683 (12)0.0651 (12)0.0022 (10)0.0432 (12)0.0089 (9)
C120.106 (2)0.0881 (16)0.0731 (18)0.0032 (14)0.0516 (17)0.0131 (14)
C130.127 (3)0.0971 (19)0.079 (2)0.009 (2)0.065 (2)0.0098 (17)
C140.136 (4)0.106 (2)0.084 (2)0.004 (2)0.066 (3)0.0063 (16)
C150.109 (2)0.0903 (17)0.0643 (13)0.0018 (14)0.0402 (15)0.0044 (12)
C10'0.0848 (14)0.0554 (10)0.0554 (11)0.0092 (9)0.0284 (10)0.0094 (8)
C11'0.0916 (15)0.0683 (12)0.0651 (12)0.0022 (10)0.0432 (12)0.0089 (9)
C12'0.106 (2)0.0881 (16)0.0731 (18)0.0032 (14)0.0516 (17)0.0131 (14)
C13'0.127 (3)0.0971 (19)0.079 (2)0.009 (2)0.065 (2)0.0098 (17)
C14'0.136 (4)0.106 (2)0.084 (2)0.004 (2)0.066 (3)0.0063 (16)
C15'0.109 (2)0.0903 (17)0.0643 (13)0.0018 (14)0.0402 (15)0.0044 (12)
Geometric parameters (Å, º) top
C1—C21.369 (2)C17—H17C0.9600
C1—C61.392 (2)O3'—C16'1.126 (14)
C1—N11.459 (2)O4'—C16'1.375 (14)
C2—C31.372 (3)O4'—C17'1.456 (9)
C2—H20.9300C17'—H17D0.9600
C3—C41.370 (2)C17'—H17E0.9600
C3—H30.9300C17'—H17F0.9600
C4—C51.372 (2)C10—C151.395 (3)
C4—H40.9300C10—C111.395 (4)
C5—C61.387 (2)C11—C121.3900
C5—H50.9300C11—H110.9300
C6—O51.3510 (18)C12—C131.3900
C7—O51.4334 (18)C12—H120.9300
C7—C81.489 (2)C13—C141.3900
C7—H7A0.9700C13—H130.9300
C7—H7B0.9700C14—C151.3900
C8—C91.325 (3)C14—H140.9300
C8—C161.469 (5)C15—H150.9300
C8—C16'1.610 (13)C10'—C11'1.3900
C9—C10'1.382 (3)C10'—C15'1.3900
C9—C101.483 (4)C11'—C12'1.3900
C9—H90.9300C11'—H11'0.9300
N1—O11.212 (2)C12'—C13'1.3900
N1—O21.214 (2)C12'—H12'0.9300
O3—C161.182 (5)C13'—C14'1.3900
O4—C161.353 (4)C13'—H13'0.9300
O4—C171.392 (4)C14'—C15'1.3900
C17—H17A0.9600C14'—H14'0.9300
C17—H17B0.9600C15'—H15'0.9300
C2—C1—C6122.17 (15)O4'—C17'—H17E109.5
C2—C1—N1117.84 (15)H17D—C17'—H17E109.5
C6—C1—N1119.98 (15)O4'—C17'—H17F109.5
C1—C2—C3119.61 (16)H17D—C17'—H17F109.5
C1—C2—H2120.2H17E—C17'—H17F109.5
C3—C2—H2120.2O3'—C16'—O4'129.3 (12)
C4—C3—C2119.18 (17)O3'—C16'—C8122.6 (9)
C4—C3—H3120.4O4'—C16'—C8108.1 (7)
C2—C3—H3120.4C15—C10—C11119.3 (3)
C3—C4—C5121.49 (17)C15—C10—C9122.8 (2)
C3—C4—H4119.3C11—C10—C9117.9 (2)
C5—C4—H4119.3C12—C11—C10120.36 (15)
C4—C5—C6120.32 (15)C12—C11—H11119.8
C4—C5—H5119.8C10—C11—H11119.8
C6—C5—H5119.8C11—C12—C13120.0
O5—C6—C5125.12 (14)C11—C12—H12120.0
O5—C6—C1117.65 (14)C13—C12—H12120.0
C5—C6—C1117.19 (14)C12—C13—C14120.0
O5—C7—C8109.18 (13)C12—C13—H13120.0
O5—C7—H7A109.8C14—C13—H13120.0
C8—C7—H7A109.8C13—C14—C15120.0
O5—C7—H7B109.8C13—C14—H14120.0
C8—C7—H7B109.8C15—C14—H14120.0
H7A—C7—H7B108.3C14—C15—C10120.35 (15)
C9—C8—C16112.0 (2)C14—C15—H15119.8
C9—C8—C7124.38 (17)C10—C15—H15119.8
C16—C8—C7123.5 (2)C9—C10'—C11'131.51 (10)
C9—C8—C16'132.8 (4)C9—C10'—C15'108.43 (10)
C7—C8—C16'102.7 (4)C11'—C10'—C15'120.0
C8—C9—C10'128.02 (17)C12'—C11'—C10'120.0
C8—C9—C10128.86 (19)C12'—C11'—H11'120.0
C8—C9—H9115.6C10'—C11'—H11'120.0
C10'—C9—H9116.4C11'—C12'—C13'120.0
C10—C9—H9115.6C11'—C12'—H12'120.0
C6—O5—C7117.59 (12)C13'—C12'—H12'120.0
O1—N1—O2123.87 (18)C14'—C13'—C12'120.0
O1—N1—C1119.05 (16)C14'—C13'—H13'120.0
O2—N1—C1117.03 (18)C12'—C13'—H13'120.0
C16—O4—C17115.4 (3)C13'—C14'—C15'120.0
O3—C16—O4123.3 (4)C13'—C14'—H14'120.0
O3—C16—C8126.3 (3)C15'—C14'—H14'120.0
O4—C16—C8110.4 (3)C10'—C15'—C14'120.0
C16'—O4'—C17'113.0 (8)C10'—C15'—H15'120.0
O4'—C17'—H17D109.5C14'—C15'—H15'120.0
C6—C1—C2—C31.9 (3)C16'—C8—C16—O49.8 (12)
N1—C1—C2—C3178.29 (17)C17'—O4'—C16'—O3'2.5 (17)
C1—C2—C3—C40.4 (3)C17'—O4'—C16'—C8178.7 (6)
C2—C3—C4—C50.9 (3)C9—C8—C16'—O3'177.7 (8)
C3—C4—C5—C60.8 (3)C16—C8—C16'—O3'176 (2)
C4—C5—C6—O5177.10 (16)C7—C8—C16'—O3'2.1 (12)
C4—C5—C6—C10.6 (3)C9—C8—C16'—O4'3.4 (11)
C2—C1—C6—O5175.93 (15)C16—C8—C16'—O4'2.5 (9)
N1—C1—C6—O53.9 (2)C7—C8—C16'—O4'179.0 (6)
C2—C1—C6—C52.0 (2)C8—C9—C10—C15141.3 (2)
N1—C1—C6—C5178.22 (15)C10'—C9—C10—C15148 (3)
O5—C7—C8—C997.96 (19)C8—C9—C10—C1142.5 (3)
O5—C7—C8—C1685.3 (3)C10'—C9—C10—C1128 (3)
O5—C7—C8—C16'85.9 (4)C15—C10—C11—C121.3 (3)
C16—C8—C9—C10'171.5 (2)C9—C10—C11—C12177.64 (13)
C7—C8—C9—C10'11.4 (3)C10—C11—C12—C130.67 (14)
C16'—C8—C9—C10'173.8 (5)C11—C12—C13—C140.0
C16—C8—C9—C10174.4 (2)C12—C13—C14—C150.0
C7—C8—C9—C108.5 (3)C13—C14—C15—C100.66 (14)
C16'—C8—C9—C10176.7 (5)C11—C10—C15—C141.3 (3)
C5—C6—O5—C73.1 (2)C9—C10—C15—C14177.45 (14)
C1—C6—O5—C7179.15 (14)C8—C9—C10'—C11'37.6 (2)
C8—C7—O5—C6169.94 (14)C10—C9—C10'—C11'149 (3)
C2—C1—N1—O1137.99 (18)C8—C9—C10'—C15'145.33 (17)
C6—C1—N1—O142.2 (2)C10—C9—C10'—C15'34 (3)
C2—C1—N1—O239.7 (2)C9—C10'—C11'—C12'176.81 (12)
C6—C1—N1—O2140.11 (18)C15'—C10'—C11'—C12'0.0
C17—O4—C16—O32.7 (6)C10'—C11'—C12'—C13'0.0
C17—O4—C16—C8178.7 (3)C11'—C12'—C13'—C14'0.0
C9—C8—C16—O36.5 (5)C12'—C13'—C14'—C15'0.0
C7—C8—C16—O3170.6 (4)C9—C10'—C15'—C14'177.49 (9)
C16'—C8—C16—O3168.8 (17)C11'—C10'—C15'—C14'0.0
C9—C8—C16—O4174.8 (2)C13'—C14'—C15'—C10'0.0
C7—C8—C16—O48.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O30.932.262.683 (5)107
C11—H11···O50.932.513.2734 (17)140
C2—H2···O3i0.932.563.140 (4)121
C3—H3···O3i0.932.513.114 (5)123
C4—H4···O2ii0.932.563.255 (2)132
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15NO5
Mr313.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.0511 (10), 7.8521 (3), 19.7403 (9)
β (°) 121.661 (3)
V3)3173.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
32853, 3695, 2356
Rint0.031
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.12
No. of reflections3695
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O30.932.262.683 (5)106.9
C11—H11···O50.932.513.2734 (17)140.1
C2—H2···O3i0.932.563.140 (4)121.1
C3—H3···O3i0.932.513.114 (5)123.3
C4—H4···O2ii0.932.563.255 (2)131.9
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT–Madras, India, for the data collection.

References

First citationAnuradha, T., Sivakumar, G., Seshadri, P. R. & Bakthadoss, M. (2011). Acta Cryst. E67, o3322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBakthadoss, M., Sivakumar, G. & Kannan, D. (2009). Org. Lett. 11, 4466–4469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhatia, S. P., Wellington, G. A., Cocchiara, J., Lalko, J., Letizia, C. S. & Api, A. M. (2007). J. Food Chem. Toxicol. 45, S113–S119.  Web of Science CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, Q. S., Zhu, Y. J., Li, Y. L., Zhuang, J. X., Lezhang, C., Zhou, J. J., Li, W. G. & Chen, Q. X. (2009). J. Agric. Food Chem. 57, 2565–2569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds