organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N′,N′′-triiso­propyl­guanidinium) fumarate–fumaric acid (1/1)

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bDepartment of Chemistry and Biochemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
*Correspondence e-mail: fjuqqa@aabu.edu.jo, bfali@aabu.edu.jo

(Received 24 April 2012; accepted 20 May 2012; online 26 May 2012)

The asymmetric unit of the title compound, C10H24N3+·0.5C4H2O42−·0.5C4H4O4, comprises a triisopropyl­guanidinium cation, half of a fumarate dianion and half of a fumaric acid mol­ecule; both the fumarate dianion and the fumaric acid mol­ecule are located on inversion centres. In the crystal, inter­molecular O—H⋯O hydrogen bonds between the carboxyl groups of the fumaric acid mol­ecules and the carboxyl­ate groups of the fumarate anions lead to the formation of a hydrogen-bonded supra­molecular twisted chain along the b axis. The triisopropyl­guanidinium cations inter­act with the fumarate–fumaric acid chains via extensive N—H⋯O and C—H⋯O hydrogen bonds, leading to a ladder arrangement, with the cation being the rungs that bridge three curled chains of fumarate–fumaric acid. The crystal packing is stabilized by N—H⋯O and C—H⋯O (cation⋯fumarate/fumaric) and O—H⋯O (fumarate⋯fumaric) hydrogen bonds, consolidating a three-dimensional network.

Related literature

For background information and N,N′,N"-tris­ubstituted guanidinium salts, see: Said et al. (2011[Said, F. F., Ali, B. F. & Richeson, D. (2011). Acta Cryst. E67, o3467.]). For related structures, see: Said et al. (2005[Said, F. F., Ong, T. G., Yap, G. P. A. & Richeson, D. (2005). Cryst. Growth Des. 5, 1881-1888.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093-o2094.]); Büyükgüngör et al. (2004[Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470-o472.]). For the preparation of the triisopropyl guanidine compound, see: Ong et al. (2003[Ong, T. G., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 8100-8101.]).

[Scheme 1]

Experimental

Crystal data
  • C10H24N3+·0.5C4H2O42−·0.5C4H4O4

  • Mr = 301.39

  • Monoclinic, P 21 /n

  • a = 9.714 (3) Å

  • b = 11.633 (3) Å

  • c = 16.226 (4) Å

  • β = 102.291 (4)°

  • V = 1791.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.50 × 0.45 × 0.45 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.964

  • 11184 measured reflections

  • 2514 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.04

  • 2514 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.88 2.05 2.866 (2) 154
N2—H2A⋯O4i 0.88 2.22 2.976 (2) 144
N3—H3A⋯O1ii 0.88 2.04 2.866 (2) 155
O2—H2⋯O4iii 0.84 1.66 2.484 (2) 168
C8—H8A⋯O3 1.00 2.49 3.356 (2) 144
C2—H2B⋯O4i 1.00 2.46 3.372 (2) 150
C5—H5A⋯O1ii 1.00 2.48 3.270 (2) 135
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In connection with ongoing studies of the structural aspects of N,N',N"-trisubstituted guanidinium salts (Said et al., 2011), we herein report the crystal structure of the title compound (Fig. 1). The bond distances and bond angles in the title compound agree very well with the corresponding bond distances and bond angles reported in a similar compound earlier (Said et al., 2005). The central guanidinium fragment of the cation is planar (sum of NCN angles is 360°). Both the fumarate and the fumaric acid units are planar and centrosymmetric with the inversion center at the midpoint of the CC double bond. The C13—O3/O4 bonds in the fumarate dianion [1.222 (2) and 1.280 (2) Å] indicate a delocalized π-bonding arrangement as a consequence of deprotonation of the carboxylic acid group. On the other hand, the fumaric acid moiety displays a shorter C11—O1 bond [1.219 (3) Å] and a longer C11—O2 bond [1.302 (3) Å] as expected for a protonated carboxyl group. The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O2—H2···O4 leading to the formation of a one-dimensional hydrogen-bonded supramolecular twisting chain along the b -axis (Fig. 2, Table 1). This type of carboxyl-carboxylate interaction has been reported in the several crystal structures containing fumarate-fumaric acid species with different cations (Hemamalini & Fun, 2010, Büyükgüngör et al., 2004) indicating the stability of such a supramolecular motif. The triisopropyl guanidinium cations are bridging three fumarate-fumaric curled chains via extensive N—H···O hydrogen bonds (Table 1), forming triply bridged twisted chains, leading to a ladder type arrangement with guanidinium cation forming rungs (Fig. 2). The extensive hydrogen bonding interactions between the fumarate-fumaric acid chains and the ladder of guanidinium rungs along the b-axis consolidate the three-dimensional network.

Related literature top

For background information and N,N',N"-trisubstituted guanidinium salts, see: Said et al. (2011). For related structures, see: Said et al. (2005); Hemamalini & Fun (2010); Büyükgüngör et al. (2004). For the preparation of the triisopropyl guanidine compound, see: Ong et al. (2003).

Experimental top

N,N',N"-Triisopropylguanidine was prepared according to literature methods (Ong et al., 2003). In a round bottom flask, a mixture fumaric acid (0.395 mmol) and N,N',N"-triisopropylguanidine (0.395 mmol was dissolved in THF (10 ml). The reaction mixture was stirred, and a colorless precipitate formed over the next few minutes. The solid was removed by filtration and the product was crystallized from a mixture of THF:methanol (1:2) to give colorless crystals of the title compound (92% yield).

Refinement top

Hydrogen atoms were included in calculated positions and refined as riding on their parent atoms with N—H = 0.88 Å, O—H = 0.84 Å and C—H = 0.95–1.0 Å and Uiso(H) = 1.2Ueq(non-methyl C/N) or 1.5Ueq(methyl C/O). Due to the quality of crystal we did not observe significant diffraction data past 0.95 Å resolution, therefore the data set was trimmed to that value to reduce data to noise ratio and improve the quality of the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry operations: (i) 2 -x,-y, 1 -z; (ii) -x, 1 -y, 1 -z.
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Bis(N,N',N''-triisopropylguanidinium) fumarate–fumaric acid (1/1) top
Crystal data top
C10H24N3+·0.5C4H2O42·0.5C4H4O4F(000) = 656
Mr = 301.39Dx = 1.117 Mg m3
Dm = n/a Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 309 reflections
a = 9.714 (3) Åθ = 2.2–23.3°
b = 11.633 (3) ŵ = 0.08 mm1
c = 16.226 (4) ÅT = 200 K
β = 102.291 (4)°Block, colourless
V = 1791.6 (8) Å30.50 × 0.45 × 0.45 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2514 independent reflections
Radiation source: fine-focus sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 23.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.960, Tmax = 0.964k = 1212
11184 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.7515P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2514 reflectionsΔρmax = 0.22 e Å3
191 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C10H24N3+·0.5C4H2O42·0.5C4H4O4V = 1791.6 (8) Å3
Mr = 301.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.714 (3) ŵ = 0.08 mm1
b = 11.633 (3) ÅT = 200 K
c = 16.226 (4) Å0.50 × 0.45 × 0.45 mm
β = 102.291 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2514 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2121 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.964Rint = 0.027
11184 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2514 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Experimental. Data collection is performed with three batch runs at phi = 0.00 ° (650 frames), at phi = 120.00 ° (650 frames), and at phi = 240.00 ° (650 frames). Frame width = 0.30 ° in omega. Data is merged, corrected for decay (if any), and treated with multi-scan absorption corrections (if required). All symmetry-equivalent reflections are merged for centrosymmetric data. Friedel pairs are not merged for noncentrosymmetric data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3813 (2)0.7589 (2)0.65518 (12)0.0606 (6)
H1A0.34960.72060.60820.073*
N20.55340 (17)0.87868 (16)0.72883 (10)0.0407 (5)
H2A0.51340.86980.77220.049*
N30.55035 (18)0.83370 (15)0.58961 (10)0.0400 (5)
H3A0.62210.88090.59300.048*
C10.4961 (2)0.82257 (18)0.65809 (12)0.0372 (5)
C20.3022 (3)0.7462 (3)0.72241 (15)0.0618 (8)
H2B0.35310.78790.77380.074*
C30.1559 (4)0.7963 (3)0.6947 (2)0.0908 (10)
H3B0.16300.87800.68130.136*
H3C0.10470.78800.74020.136*
H3D0.10530.75540.64450.136*
C40.2946 (4)0.6209 (3)0.7427 (2)0.0980 (12)
H4A0.39020.59030.76140.147*
H4B0.24630.57940.69220.147*
H4C0.24240.61110.78760.147*
C50.6772 (2)0.95385 (17)0.74056 (13)0.0377 (5)
H5A0.68410.98530.68420.045*
C60.6565 (3)1.0533 (2)0.79649 (16)0.0575 (7)
H6A0.56961.09420.77120.086*
H6B0.73671.10610.80230.086*
H6C0.65001.02430.85220.086*
C70.8100 (3)0.8884 (2)0.77559 (19)0.0652 (7)
H7A0.81990.82510.73740.098*
H7B0.80560.85740.83110.098*
H7C0.89110.94010.78110.098*
C80.5007 (2)0.77405 (19)0.50895 (13)0.0438 (6)
H8A0.39560.76970.49800.053*
C90.5406 (3)0.8431 (2)0.43942 (14)0.0555 (6)
H9A0.50030.92040.43870.083*
H9B0.50410.80540.38520.083*
H9C0.64340.84860.44900.083*
C100.5571 (4)0.6538 (2)0.51258 (18)0.0841 (10)
H10A0.52880.61200.55870.126*
H10B0.66020.65610.52230.126*
H10C0.51930.61470.45910.126*
C110.8673 (2)0.02478 (18)0.57016 (13)0.0372 (5)
C120.9785 (2)0.04210 (18)0.52111 (13)0.0366 (5)
H12A1.01960.11610.52020.044*
C130.0836 (2)0.63781 (18)0.46512 (12)0.0373 (5)
C140.0139 (2)0.54111 (18)0.47181 (12)0.0388 (5)
H14A0.10180.53880.43270.047*
O10.81517 (17)0.06979 (13)0.57428 (11)0.0534 (5)
O20.82763 (15)0.11397 (12)0.60762 (10)0.0468 (4)
H20.87410.17180.59860.070*
O30.19305 (19)0.64871 (16)0.51791 (11)0.0672 (6)
O40.04379 (15)0.70345 (12)0.40121 (9)0.0425 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0536 (12)0.0929 (16)0.0369 (10)0.0418 (11)0.0131 (9)0.0110 (10)
N20.0404 (10)0.0532 (11)0.0306 (9)0.0154 (8)0.0123 (7)0.0032 (8)
N30.0414 (10)0.0462 (10)0.0337 (9)0.0158 (8)0.0111 (7)0.0042 (8)
C10.0352 (11)0.0435 (12)0.0321 (11)0.0100 (9)0.0058 (9)0.0015 (9)
C20.0527 (14)0.094 (2)0.0402 (13)0.0384 (14)0.0138 (11)0.0032 (13)
C30.093 (2)0.087 (2)0.106 (3)0.0130 (18)0.051 (2)0.0107 (19)
C40.091 (2)0.116 (3)0.098 (2)0.018 (2)0.0448 (19)0.059 (2)
C50.0373 (11)0.0419 (12)0.0344 (11)0.0107 (9)0.0085 (9)0.0029 (9)
C60.0753 (17)0.0488 (15)0.0524 (14)0.0164 (12)0.0227 (13)0.0100 (11)
C70.0413 (13)0.0687 (17)0.0832 (19)0.0008 (12)0.0076 (13)0.0107 (14)
C80.0505 (13)0.0483 (13)0.0303 (11)0.0115 (10)0.0035 (9)0.0018 (9)
C90.0729 (16)0.0591 (15)0.0346 (12)0.0105 (12)0.0115 (11)0.0006 (11)
C100.143 (3)0.0518 (17)0.0493 (16)0.0038 (17)0.0019 (17)0.0053 (12)
C110.0385 (11)0.0384 (12)0.0380 (11)0.0092 (9)0.0154 (9)0.0038 (9)
C120.0381 (11)0.0344 (11)0.0404 (11)0.0115 (8)0.0152 (9)0.0012 (8)
C130.0428 (12)0.0405 (12)0.0291 (11)0.0111 (9)0.0089 (9)0.0064 (9)
C140.0378 (11)0.0453 (12)0.0313 (10)0.0120 (9)0.0028 (9)0.0033 (8)
O10.0598 (10)0.0442 (9)0.0669 (11)0.0215 (8)0.0376 (8)0.0112 (8)
O20.0534 (9)0.0382 (8)0.0578 (9)0.0073 (7)0.0316 (8)0.0029 (7)
O30.0652 (11)0.0750 (12)0.0514 (10)0.0411 (9)0.0100 (9)0.0121 (9)
O40.0539 (9)0.0377 (8)0.0366 (8)0.0069 (7)0.0111 (7)0.0000 (6)
Geometric parameters (Å, º) top
N1—C11.331 (3)C7—H7A0.9800
N1—C21.469 (3)C7—H7B0.9800
N1—H1A0.8800C7—H7C0.9800
N2—C11.335 (3)C8—C101.499 (4)
N2—C51.466 (3)C8—C91.502 (3)
N2—H2A0.8800C8—H8A1.0000
N3—C11.334 (3)C9—H9A0.9800
N3—C81.469 (3)C9—H9B0.9800
N3—H3A0.8800C9—H9C0.9800
C2—C41.500 (5)C10—H10A0.9800
C2—C31.513 (4)C10—H10B0.9800
C2—H2B1.0000C10—H10C0.9800
C3—H3B0.9800C11—O11.219 (2)
C3—H3C0.9800C11—O21.302 (3)
C3—H3D0.9800C11—C121.485 (3)
C4—H4A0.9800C12—C12i1.314 (4)
C4—H4B0.9800C12—H12A0.9500
C4—H4C0.9800C13—O31.222 (3)
C5—C71.501 (3)C13—O41.279 (3)
C5—C61.510 (3)C13—C141.489 (3)
C5—H5A1.0000C14—C14ii1.311 (4)
C6—H6A0.9800C14—H14A0.9500
C6—H6B0.9800O2—H20.8400
C6—H6C0.9800
C1—N1—C2126.59 (19)H6A—C6—H6C109.5
C1—N1—H1A116.7H6B—C6—H6C109.5
C2—N1—H1A116.7C5—C7—H7A109.5
C1—N2—C5125.70 (16)C5—C7—H7B109.5
C1—N2—H2A117.1H7A—C7—H7B109.5
C5—N2—H2A117.1C5—C7—H7C109.5
C1—N3—C8125.69 (17)H7A—C7—H7C109.5
C1—N3—H3A117.2H7B—C7—H7C109.5
C8—N3—H3A117.2N3—C8—C10110.97 (19)
N1—C1—N2119.70 (18)N3—C8—C9109.17 (18)
N1—C1—N3120.07 (18)C10—C8—C9112.2 (2)
N2—C1—N3120.18 (17)N3—C8—H8A108.1
N1—C2—C4108.6 (2)C10—C8—H8A108.1
N1—C2—C3110.3 (2)C9—C8—H8A108.1
C4—C2—C3110.6 (2)C8—C9—H9A109.5
N1—C2—H2B109.1C8—C9—H9B109.5
C4—C2—H2B109.1H9A—C9—H9B109.5
C3—C2—H2B109.1C8—C9—H9C109.5
C2—C3—H3B109.5H9A—C9—H9C109.5
C2—C3—H3C109.5H9B—C9—H9C109.5
H3B—C3—H3C109.5C8—C10—H10A109.5
C2—C3—H3D109.5C8—C10—H10B109.5
H3B—C3—H3D109.5H10A—C10—H10B109.5
H3C—C3—H3D109.5C8—C10—H10C109.5
C2—C4—H4A109.5H10A—C10—H10C109.5
C2—C4—H4B109.5H10B—C10—H10C109.5
H4A—C4—H4B109.5O1—C11—O2121.74 (18)
C2—C4—H4C109.5O1—C11—C12120.65 (18)
H4A—C4—H4C109.5O2—C11—C12117.61 (17)
H4B—C4—H4C109.5C12i—C12—C11121.8 (2)
N2—C5—C7111.20 (19)C12i—C12—H12A119.1
N2—C5—C6108.94 (17)C11—C12—H12A119.1
C7—C5—C6112.0 (2)O3—C13—O4125.02 (19)
N2—C5—H5A108.2O3—C13—C14119.94 (19)
C7—C5—H5A108.2O4—C13—C14115.03 (18)
C6—C5—H5A108.2C14ii—C14—C13124.2 (2)
C5—C6—H6A109.5C14ii—C14—H14A117.9
C5—C6—H6B109.5C13—C14—H14A117.9
H6A—C6—H6B109.5C11—O2—H2109.5
C5—C6—H6C109.5
C2—N1—C1—N23.1 (4)C1—N2—C5—C792.6 (3)
C2—N1—C1—N3174.4 (2)C1—N2—C5—C6143.5 (2)
C5—N2—C1—N1178.4 (2)C1—N3—C8—C1080.4 (3)
C5—N2—C1—N31.0 (3)C1—N3—C8—C9155.4 (2)
C8—N3—C1—N14.8 (3)O1—C11—C12—C12i1.9 (4)
C8—N3—C1—N2177.8 (2)O2—C11—C12—C12i177.6 (3)
C1—N1—C2—C4123.8 (3)O3—C13—C14—C14ii5.4 (4)
C1—N1—C2—C3114.8 (3)O4—C13—C14—C14ii173.6 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.882.052.866 (2)154
N2—H2A···O4iii0.882.222.976 (2)144
N3—H3A···O1iv0.882.042.866 (2)155
O2—H2···O4v0.841.662.484 (2)168
C8—H8A···O31.002.493.356 (2)144
C2—H2B···O4iii1.002.463.372 (2)150
C5—H5A···O1iv1.002.483.270 (2)135
Symmetry codes: (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H24N3+·0.5C4H2O42·0.5C4H4O4
Mr301.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)9.714 (3), 11.633 (3), 16.226 (4)
β (°) 102.291 (4)
V3)1791.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.45 × 0.45
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.960, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
11184, 2514, 2121
Rint0.027
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.04
No. of reflections2514
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.882.052.866 (2)153.5
N2—H2A···O4i0.882.222.976 (2)143.8
N3—H3A···O1ii0.882.042.866 (2)154.9
O2—H2···O4iii0.841.662.484 (2)167.9
C8—H8A···O31.002.493.356 (2)144.0
C2—H2B···O4i1.002.463.372 (2)150.3
C5—H5A···O1ii1.002.483.270 (2)134.9
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Al al-Bayt University (Jordan) for funding.

References

First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470–o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093–o2094.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOng, T. G., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 8100–8101.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaid, F. F., Ali, B. F. & Richeson, D. (2011). Acta Cryst. E67, o3467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaid, F. F., Ong, T. G., Yap, G. P. A. & Richeson, D. (2005). Cryst. Growth Des. 5, 1881–1888.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds