organic compounds
Bis(N,N′,N′′-triisopropylguanidinium) fumarate–fumaric acid (1/1)
aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bDepartment of Chemistry and Biochemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
*Correspondence e-mail: fjuqqa@aabu.edu.jo, bfali@aabu.edu.jo
The 10H24N3+·0.5C4H2O42−·0.5C4H4O4, comprises a triisopropylguanidinium cation, half of a fumarate dianion and half of a fumaric acid molecule; both the fumarate dianion and the fumaric acid molecule are located on inversion centres. In the crystal, intermolecular O—H⋯O hydrogen bonds between the carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions lead to the formation of a hydrogen-bonded supramolecular twisted chain along the b axis. The triisopropylguanidinium cations interact with the fumarate–fumaric acid chains via extensive N—H⋯O and C—H⋯O hydrogen bonds, leading to a ladder arrangement, with the cation being the rungs that bridge three curled chains of fumarate–fumaric acid. The crystal packing is stabilized by N—H⋯O and C—H⋯O (cation⋯fumarate/fumaric) and O—H⋯O (fumarate⋯fumaric) hydrogen bonds, consolidating a three-dimensional network.
of the title compound, CRelated literature
For background information and N,N′,N"-trisubstituted guanidinium salts, see: Said et al. (2011). For related structures, see: Said et al. (2005); Hemamalini & Fun (2010); Büyükgüngör et al. (2004). For the preparation of the triisopropyl guanidine compound, see: Ong et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812023094/pv2540sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023094/pv2540Isup2.hkl
N,N',N"-Triisopropylguanidine was prepared according to literature methods (Ong et al., 2003). In a round bottom flask, a mixture fumaric acid (0.395 mmol) and N,N',N"-triisopropylguanidine (0.395 mmol was dissolved in THF (10 ml). The reaction mixture was stirred, and a colorless precipitate formed over the next few minutes. The solid was removed by filtration and the product was crystallized from a mixture of THF:methanol (1:2) to give colorless crystals of the title compound (92% yield).
Hydrogen atoms were included in calculated positions and refined as riding on their parent atoms with N—H = 0.88 Å, O—H = 0.84 Å and C—H = 0.95–1.0 Å and Uiso(H) = 1.2Ueq(non-methyl C/N) or 1.5Ueq(methyl C/O). Due to the quality of crystal we did not observe significant diffraction data past 0.95 Å resolution, therefore the data set was trimmed to that value to reduce data to noise ratio and improve the quality of the final refinement.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry operations: (i) 2 -x,-y, 1 -z; (ii) -x, 1 -y, 1 -z. | |
Fig. 2. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. |
C10H24N3+·0.5C4H2O42−·0.5C4H4O4 | F(000) = 656 |
Mr = 301.39 | Dx = 1.117 Mg m−3 Dm = n/a Mg m−3 Dm measured by not measured |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 309 reflections |
a = 9.714 (3) Å | θ = 2.2–23.3° |
b = 11.633 (3) Å | µ = 0.08 mm−1 |
c = 16.226 (4) Å | T = 200 K |
β = 102.291 (4)° | Block, colourless |
V = 1791.6 (8) Å3 | 0.50 × 0.45 × 0.45 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2514 independent reflections |
Radiation source: fine-focus sealed tube | 2121 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
phi and ω scans | θmax = 23.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −10→10 |
Tmin = 0.960, Tmax = 0.964 | k = −12→12 |
11184 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0727P)2 + 0.7515P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2514 reflections | Δρmax = 0.22 e Å−3 |
191 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.013 (2) |
C10H24N3+·0.5C4H2O42−·0.5C4H4O4 | V = 1791.6 (8) Å3 |
Mr = 301.39 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.714 (3) Å | µ = 0.08 mm−1 |
b = 11.633 (3) Å | T = 200 K |
c = 16.226 (4) Å | 0.50 × 0.45 × 0.45 mm |
β = 102.291 (4)° |
Bruker APEXII CCD area-detector diffractometer | 2514 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2121 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.964 | Rint = 0.027 |
11184 measured reflections | θmax = 23.3° |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.22 e Å−3 |
2514 reflections | Δρmin = −0.18 e Å−3 |
191 parameters |
Experimental. Data collection is performed with three batch runs at phi = 0.00 ° (650 frames), at phi = 120.00 ° (650 frames), and at phi = 240.00 ° (650 frames). Frame width = 0.30 ° in omega. Data is merged, corrected for decay (if any), and treated with multi-scan absorption corrections (if required). All symmetry-equivalent reflections are merged for centrosymmetric data. Friedel pairs are not merged for noncentrosymmetric data. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3813 (2) | 0.7589 (2) | 0.65518 (12) | 0.0606 (6) | |
H1A | 0.3496 | 0.7206 | 0.6082 | 0.073* | |
N2 | 0.55340 (17) | 0.87868 (16) | 0.72883 (10) | 0.0407 (5) | |
H2A | 0.5134 | 0.8698 | 0.7722 | 0.049* | |
N3 | 0.55035 (18) | 0.83370 (15) | 0.58961 (10) | 0.0400 (5) | |
H3A | 0.6221 | 0.8809 | 0.5930 | 0.048* | |
C1 | 0.4961 (2) | 0.82257 (18) | 0.65809 (12) | 0.0372 (5) | |
C2 | 0.3022 (3) | 0.7462 (3) | 0.72241 (15) | 0.0618 (8) | |
H2B | 0.3531 | 0.7879 | 0.7738 | 0.074* | |
C3 | 0.1559 (4) | 0.7963 (3) | 0.6947 (2) | 0.0908 (10) | |
H3B | 0.1630 | 0.8780 | 0.6813 | 0.136* | |
H3C | 0.1047 | 0.7880 | 0.7402 | 0.136* | |
H3D | 0.1053 | 0.7554 | 0.6445 | 0.136* | |
C4 | 0.2946 (4) | 0.6209 (3) | 0.7427 (2) | 0.0980 (12) | |
H4A | 0.3902 | 0.5903 | 0.7614 | 0.147* | |
H4B | 0.2463 | 0.5794 | 0.6922 | 0.147* | |
H4C | 0.2424 | 0.6111 | 0.7876 | 0.147* | |
C5 | 0.6772 (2) | 0.95385 (17) | 0.74056 (13) | 0.0377 (5) | |
H5A | 0.6841 | 0.9853 | 0.6842 | 0.045* | |
C6 | 0.6565 (3) | 1.0533 (2) | 0.79649 (16) | 0.0575 (7) | |
H6A | 0.5696 | 1.0942 | 0.7712 | 0.086* | |
H6B | 0.7367 | 1.1061 | 0.8023 | 0.086* | |
H6C | 0.6500 | 1.0243 | 0.8522 | 0.086* | |
C7 | 0.8100 (3) | 0.8884 (2) | 0.77559 (19) | 0.0652 (7) | |
H7A | 0.8199 | 0.8251 | 0.7374 | 0.098* | |
H7B | 0.8056 | 0.8574 | 0.8311 | 0.098* | |
H7C | 0.8911 | 0.9401 | 0.7811 | 0.098* | |
C8 | 0.5007 (2) | 0.77405 (19) | 0.50895 (13) | 0.0438 (6) | |
H8A | 0.3956 | 0.7697 | 0.4980 | 0.053* | |
C9 | 0.5406 (3) | 0.8431 (2) | 0.43942 (14) | 0.0555 (6) | |
H9A | 0.5003 | 0.9204 | 0.4387 | 0.083* | |
H9B | 0.5041 | 0.8054 | 0.3852 | 0.083* | |
H9C | 0.6434 | 0.8486 | 0.4490 | 0.083* | |
C10 | 0.5571 (4) | 0.6538 (2) | 0.51258 (18) | 0.0841 (10) | |
H10A | 0.5288 | 0.6120 | 0.5587 | 0.126* | |
H10B | 0.6602 | 0.6561 | 0.5223 | 0.126* | |
H10C | 0.5193 | 0.6147 | 0.4591 | 0.126* | |
C11 | 0.8673 (2) | 0.02478 (18) | 0.57016 (13) | 0.0372 (5) | |
C12 | 0.9785 (2) | 0.04210 (18) | 0.52111 (13) | 0.0366 (5) | |
H12A | 1.0196 | 0.1161 | 0.5202 | 0.044* | |
C13 | 0.0836 (2) | 0.63781 (18) | 0.46512 (12) | 0.0373 (5) | |
C14 | −0.0139 (2) | 0.54111 (18) | 0.47181 (12) | 0.0388 (5) | |
H14A | −0.1018 | 0.5388 | 0.4327 | 0.047* | |
O1 | 0.81517 (17) | −0.06979 (13) | 0.57428 (11) | 0.0534 (5) | |
O2 | 0.82763 (15) | 0.11397 (12) | 0.60762 (10) | 0.0468 (4) | |
H2 | 0.8741 | 0.1718 | 0.5986 | 0.070* | |
O3 | 0.19305 (19) | 0.64871 (16) | 0.51791 (11) | 0.0672 (6) | |
O4 | 0.04379 (15) | 0.70345 (12) | 0.40121 (9) | 0.0425 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0536 (12) | 0.0929 (16) | 0.0369 (10) | −0.0418 (11) | 0.0131 (9) | −0.0110 (10) |
N2 | 0.0404 (10) | 0.0532 (11) | 0.0306 (9) | −0.0154 (8) | 0.0123 (7) | −0.0032 (8) |
N3 | 0.0414 (10) | 0.0462 (10) | 0.0337 (9) | −0.0158 (8) | 0.0111 (7) | −0.0042 (8) |
C1 | 0.0352 (11) | 0.0435 (12) | 0.0321 (11) | −0.0100 (9) | 0.0058 (9) | 0.0015 (9) |
C2 | 0.0527 (14) | 0.094 (2) | 0.0402 (13) | −0.0384 (14) | 0.0138 (11) | −0.0032 (13) |
C3 | 0.093 (2) | 0.087 (2) | 0.106 (3) | 0.0130 (18) | 0.051 (2) | 0.0107 (19) |
C4 | 0.091 (2) | 0.116 (3) | 0.098 (2) | 0.018 (2) | 0.0448 (19) | 0.059 (2) |
C5 | 0.0373 (11) | 0.0419 (12) | 0.0344 (11) | −0.0107 (9) | 0.0085 (9) | −0.0029 (9) |
C6 | 0.0753 (17) | 0.0488 (15) | 0.0524 (14) | −0.0164 (12) | 0.0227 (13) | −0.0100 (11) |
C7 | 0.0413 (13) | 0.0687 (17) | 0.0832 (19) | −0.0008 (12) | 0.0076 (13) | 0.0107 (14) |
C8 | 0.0505 (13) | 0.0483 (13) | 0.0303 (11) | −0.0115 (10) | 0.0035 (9) | −0.0018 (9) |
C9 | 0.0729 (16) | 0.0591 (15) | 0.0346 (12) | −0.0105 (12) | 0.0115 (11) | −0.0006 (11) |
C10 | 0.143 (3) | 0.0518 (17) | 0.0493 (16) | 0.0038 (17) | 0.0019 (17) | −0.0053 (12) |
C11 | 0.0385 (11) | 0.0384 (12) | 0.0380 (11) | −0.0092 (9) | 0.0154 (9) | −0.0038 (9) |
C12 | 0.0381 (11) | 0.0344 (11) | 0.0404 (11) | −0.0115 (8) | 0.0152 (9) | −0.0012 (8) |
C13 | 0.0428 (12) | 0.0405 (12) | 0.0291 (11) | −0.0111 (9) | 0.0089 (9) | −0.0064 (9) |
C14 | 0.0378 (11) | 0.0453 (12) | 0.0313 (10) | −0.0120 (9) | 0.0028 (9) | −0.0033 (8) |
O1 | 0.0598 (10) | 0.0442 (9) | 0.0669 (11) | −0.0215 (8) | 0.0376 (8) | −0.0112 (8) |
O2 | 0.0534 (9) | 0.0382 (8) | 0.0578 (9) | −0.0073 (7) | 0.0316 (8) | −0.0029 (7) |
O3 | 0.0652 (11) | 0.0750 (12) | 0.0514 (10) | −0.0411 (9) | −0.0100 (9) | 0.0121 (9) |
O4 | 0.0539 (9) | 0.0377 (8) | 0.0366 (8) | −0.0069 (7) | 0.0111 (7) | 0.0000 (6) |
N1—C1 | 1.331 (3) | C7—H7A | 0.9800 |
N1—C2 | 1.469 (3) | C7—H7B | 0.9800 |
N1—H1A | 0.8800 | C7—H7C | 0.9800 |
N2—C1 | 1.335 (3) | C8—C10 | 1.499 (4) |
N2—C5 | 1.466 (3) | C8—C9 | 1.502 (3) |
N2—H2A | 0.8800 | C8—H8A | 1.0000 |
N3—C1 | 1.334 (3) | C9—H9A | 0.9800 |
N3—C8 | 1.469 (3) | C9—H9B | 0.9800 |
N3—H3A | 0.8800 | C9—H9C | 0.9800 |
C2—C4 | 1.500 (5) | C10—H10A | 0.9800 |
C2—C3 | 1.513 (4) | C10—H10B | 0.9800 |
C2—H2B | 1.0000 | C10—H10C | 0.9800 |
C3—H3B | 0.9800 | C11—O1 | 1.219 (2) |
C3—H3C | 0.9800 | C11—O2 | 1.302 (3) |
C3—H3D | 0.9800 | C11—C12 | 1.485 (3) |
C4—H4A | 0.9800 | C12—C12i | 1.314 (4) |
C4—H4B | 0.9800 | C12—H12A | 0.9500 |
C4—H4C | 0.9800 | C13—O3 | 1.222 (3) |
C5—C7 | 1.501 (3) | C13—O4 | 1.279 (3) |
C5—C6 | 1.510 (3) | C13—C14 | 1.489 (3) |
C5—H5A | 1.0000 | C14—C14ii | 1.311 (4) |
C6—H6A | 0.9800 | C14—H14A | 0.9500 |
C6—H6B | 0.9800 | O2—H2 | 0.8400 |
C6—H6C | 0.9800 | ||
C1—N1—C2 | 126.59 (19) | H6A—C6—H6C | 109.5 |
C1—N1—H1A | 116.7 | H6B—C6—H6C | 109.5 |
C2—N1—H1A | 116.7 | C5—C7—H7A | 109.5 |
C1—N2—C5 | 125.70 (16) | C5—C7—H7B | 109.5 |
C1—N2—H2A | 117.1 | H7A—C7—H7B | 109.5 |
C5—N2—H2A | 117.1 | C5—C7—H7C | 109.5 |
C1—N3—C8 | 125.69 (17) | H7A—C7—H7C | 109.5 |
C1—N3—H3A | 117.2 | H7B—C7—H7C | 109.5 |
C8—N3—H3A | 117.2 | N3—C8—C10 | 110.97 (19) |
N1—C1—N2 | 119.70 (18) | N3—C8—C9 | 109.17 (18) |
N1—C1—N3 | 120.07 (18) | C10—C8—C9 | 112.2 (2) |
N2—C1—N3 | 120.18 (17) | N3—C8—H8A | 108.1 |
N1—C2—C4 | 108.6 (2) | C10—C8—H8A | 108.1 |
N1—C2—C3 | 110.3 (2) | C9—C8—H8A | 108.1 |
C4—C2—C3 | 110.6 (2) | C8—C9—H9A | 109.5 |
N1—C2—H2B | 109.1 | C8—C9—H9B | 109.5 |
C4—C2—H2B | 109.1 | H9A—C9—H9B | 109.5 |
C3—C2—H2B | 109.1 | C8—C9—H9C | 109.5 |
C2—C3—H3B | 109.5 | H9A—C9—H9C | 109.5 |
C2—C3—H3C | 109.5 | H9B—C9—H9C | 109.5 |
H3B—C3—H3C | 109.5 | C8—C10—H10A | 109.5 |
C2—C3—H3D | 109.5 | C8—C10—H10B | 109.5 |
H3B—C3—H3D | 109.5 | H10A—C10—H10B | 109.5 |
H3C—C3—H3D | 109.5 | C8—C10—H10C | 109.5 |
C2—C4—H4A | 109.5 | H10A—C10—H10C | 109.5 |
C2—C4—H4B | 109.5 | H10B—C10—H10C | 109.5 |
H4A—C4—H4B | 109.5 | O1—C11—O2 | 121.74 (18) |
C2—C4—H4C | 109.5 | O1—C11—C12 | 120.65 (18) |
H4A—C4—H4C | 109.5 | O2—C11—C12 | 117.61 (17) |
H4B—C4—H4C | 109.5 | C12i—C12—C11 | 121.8 (2) |
N2—C5—C7 | 111.20 (19) | C12i—C12—H12A | 119.1 |
N2—C5—C6 | 108.94 (17) | C11—C12—H12A | 119.1 |
C7—C5—C6 | 112.0 (2) | O3—C13—O4 | 125.02 (19) |
N2—C5—H5A | 108.2 | O3—C13—C14 | 119.94 (19) |
C7—C5—H5A | 108.2 | O4—C13—C14 | 115.03 (18) |
C6—C5—H5A | 108.2 | C14ii—C14—C13 | 124.2 (2) |
C5—C6—H6A | 109.5 | C14ii—C14—H14A | 117.9 |
C5—C6—H6B | 109.5 | C13—C14—H14A | 117.9 |
H6A—C6—H6B | 109.5 | C11—O2—H2 | 109.5 |
C5—C6—H6C | 109.5 | ||
C2—N1—C1—N2 | 3.1 (4) | C1—N2—C5—C7 | −92.6 (3) |
C2—N1—C1—N3 | −174.4 (2) | C1—N2—C5—C6 | 143.5 (2) |
C5—N2—C1—N1 | −178.4 (2) | C1—N3—C8—C10 | −80.4 (3) |
C5—N2—C1—N3 | −1.0 (3) | C1—N3—C8—C9 | 155.4 (2) |
C8—N3—C1—N1 | −4.8 (3) | O1—C11—C12—C12i | 1.9 (4) |
C8—N3—C1—N2 | 177.8 (2) | O2—C11—C12—C12i | −177.6 (3) |
C1—N1—C2—C4 | −123.8 (3) | O3—C13—C14—C14ii | −5.4 (4) |
C1—N1—C2—C3 | 114.8 (3) | O4—C13—C14—C14ii | 173.6 (3) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.88 | 2.05 | 2.866 (2) | 154 |
N2—H2A···O4iii | 0.88 | 2.22 | 2.976 (2) | 144 |
N3—H3A···O1iv | 0.88 | 2.04 | 2.866 (2) | 155 |
O2—H2···O4v | 0.84 | 1.66 | 2.484 (2) | 168 |
C8—H8A···O3 | 1.00 | 2.49 | 3.356 (2) | 144 |
C2—H2B···O4iii | 1.00 | 2.46 | 3.372 (2) | 150 |
C5—H5A···O1iv | 1.00 | 2.48 | 3.270 (2) | 135 |
Symmetry codes: (iii) x+1/2, −y+3/2, z+1/2; (iv) x, y+1, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H24N3+·0.5C4H2O42−·0.5C4H4O4 |
Mr | 301.39 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 9.714 (3), 11.633 (3), 16.226 (4) |
β (°) | 102.291 (4) |
V (Å3) | 1791.6 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.45 × 0.45 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.960, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11184, 2514, 2121 |
Rint | 0.027 |
θmax (°) | 23.3 |
(sin θ/λ)max (Å−1) | 0.556 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.130, 1.04 |
No. of reflections | 2514 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.18 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.88 | 2.05 | 2.866 (2) | 153.5 |
N2—H2A···O4i | 0.88 | 2.22 | 2.976 (2) | 143.8 |
N3—H3A···O1ii | 0.88 | 2.04 | 2.866 (2) | 154.9 |
O2—H2···O4iii | 0.84 | 1.66 | 2.484 (2) | 167.9 |
C8—H8A···O3 | 1.00 | 2.49 | 3.356 (2) | 144.0 |
C2—H2B···O4i | 1.00 | 2.46 | 3.372 (2) | 150.3 |
C5—H5A···O1ii | 1.00 | 2.48 | 3.270 (2) | 134.9 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and Al al-Bayt University (Jordan) for funding.
References
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470–o472. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093–o2094. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ong, T. G., Yap, G. P. A. & Richeson, D. S. (2003). J. Am. Chem. Soc. 125, 8100–8101. Web of Science CSD CrossRef PubMed CAS Google Scholar
Said, F. F., Ali, B. F. & Richeson, D. (2011). Acta Cryst. E67, o3467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Said, F. F., Ong, T. G., Yap, G. P. A. & Richeson, D. (2005). Cryst. Growth Des. 5, 1881–1888. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In connection with ongoing studies of the structural aspects of N,N',N"-trisubstituted guanidinium salts (Said et al., 2011), we herein report the crystal structure of the title compound (Fig. 1). The bond distances and bond angles in the title compound agree very well with the corresponding bond distances and bond angles reported in a similar compound earlier (Said et al., 2005). The central guanidinium fragment of the cation is planar (sum of NCN angles is 360°). Both the fumarate and the fumaric acid units are planar and centrosymmetric with the inversion center at the midpoint of the C═C double bond. The C13—O3/O4 bonds in the fumarate dianion [1.222 (2) and 1.280 (2) Å] indicate a delocalized π-bonding arrangement as a consequence of deprotonation of the carboxylic acid group. On the other hand, the fumaric acid moiety displays a shorter C11—O1 bond [1.219 (3) Å] and a longer C11—O2 bond [1.302 (3) Å] as expected for a protonated carboxyl group. The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O2—H2···O4 leading to the formation of a one-dimensional hydrogen-bonded supramolecular twisting chain along the b -axis (Fig. 2, Table 1). This type of carboxyl-carboxylate interaction has been reported in the several crystal structures containing fumarate-fumaric acid species with different cations (Hemamalini & Fun, 2010, Büyükgüngör et al., 2004) indicating the stability of such a supramolecular motif. The triisopropyl guanidinium cations are bridging three fumarate-fumaric curled chains via extensive N—H···O hydrogen bonds (Table 1), forming triply bridged twisted chains, leading to a ladder type arrangement with guanidinium cation forming rungs (Fig. 2). The extensive hydrogen bonding interactions between the fumarate-fumaric acid chains and the ladder of guanidinium rungs along the b-axis consolidate the three-dimensional network.