organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano­anilinium hydrogen oxalate hemihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 26 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title hydrated mol­ecular salt, C7H7N2+·C2HO4·0.5H2O, contains a 3-cyano­anilinium cation, a hydrogen oxalate anion and half a water mol­ecule in an asymmetric unit. The dihedral angle between the CO2(H) and CO2 planes of the hydrogen oxalate ion is 7.96 (1)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a layer lying parallel to the ac plane.

Related literature

For the properties of related compounds, see: Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.]); Liu et al. (1999[Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31-34.]); Zhao et al. (2003[Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z.-G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166.]). For the structures of related compounds, see: Dai & Chen (2011[Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.]); Xu et al. (2011[Xu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093-1096.]); Zheng (2011[Zheng, W.-N. (2011). Acta Cryst. E67, m344.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·C2HO4·0.5H2O

  • Mr = 217.18

  • Monoclinic, P 2/c

  • a = 15.1221 (7) Å

  • b = 5.6518 (1) Å

  • c = 13.6926 (6) Å

  • β = 113.22 (4)°

  • V = 1075.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 7209 measured reflections

  • 2446 independent reflections

  • 1906 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.156

  • S = 1.07

  • 2446 reflections

  • 142 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.82 1.96 2.767 (2) 166
N1—H1A⋯O1ii 0.89 1.91 2.797 (2) 172
N1—H1C⋯O2iii 0.89 1.96 2.778 (2) 152
O3—H3⋯O2iii 0.82 1.74 2.559 (2) 178
N1—H1B⋯O1W 0.89 1.91 2.788 (2) 167
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salts of amide attracted more attention as phase transition dielectric materials for its application in micro-electronics, memory storage (Chen et al., 2000; Liu, et al. 1999; Zhao, et al. 2003). With the purpose of obtaining phase transition crystals of 3-aminobenzonitrile salts, its interaction with various acids has been studied and we have elaborated a serie of new materials with this organic molecule (Dai & Chen 2011; Xu, et al. 2011; Zheng 2011). In this paper, we describe the crystal structure of the title compound.

The asymmetric unit is composed of a 3-cyanoanilinium cation, a carboxyformate anion, and a half molecule of water (Fig. 1). The geometric parameters of the title compound agree well with reported similar structure (Dai & Chen 2011). The cation is almost planar (r.m.s. deviation 0.0062 Å, benzene ring as the best plane).

The cations are surrounded by the anions and water molecules via hydrogen bonds which play an important role in stabilizing the crystal structure. In the crystal structure, all the amino H atoms are involved in N—H···O hydrogen bonds with carboxyformate anion and water molecule with the distances of 2.797 (2) Å, 2.778 (2) Å and 2.788 (2) Å, respectively. In addition, the H atoms of water molecule and carboxyformate anion are involved in the O—H···O H-bonding interactions. In the crystal structure, those H-bonds link the ionic units into a two-dimensional sheets parallel to the ac plane (Table 1 and Fig. 2).

Related literature top

For applications of amide salts in micro-electronics and memory storage, see: Chen et al. (2000); Liu et al. (1999); Zhao et al. (2003). For the structures of related compounds, see: Dai & Chen (2011); Xu et al. (2011); Zheng (2011).

Experimental top

The commercial 3-aminobenzonitrile (3 mmol, 324 mg) and oxalic acid (3 mmol, 270 mg) were dissolved in 50 ml water/MeOH solution (1:1 v/v). The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

The H atoms were included in the refinement at geometrically idealized positions and treated in riding mode with O—H = 0.82 Å, N—H = 0.89 Å and C–H = 0.93 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O/N); a rotating-group model was used for the –NH3 group.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewing along the b-axis, showing the two-dimensional hydrogen-bonded network.
3-Cyanoanilinium hydrogen oxalate hemihydrate top
Crystal data top
C7H7N2+·C2HO4·0.5H2OF(000) = 452
Mr = 217.18Dx = 1.341 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2446 reflections
a = 15.1221 (7) Åθ = 2.9–27.5°
b = 5.6518 (1) ŵ = 0.11 mm1
c = 13.6926 (6) ÅT = 173 K
β = 113.22 (4)°Block, colorless
V = 1075.5 (3) Å30.10 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2446 independent reflections
Radiation source: fine-focus sealed tube1906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD profile fitting scansh = 1819
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.910, Tmax = 1.000l = 1717
7209 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.1364P]
where P = (Fo2 + 2Fc2)/3
2446 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.28 e Å3
5 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H7N2+·C2HO4·0.5H2OV = 1075.5 (3) Å3
Mr = 217.18Z = 4
Monoclinic, P2/cMo Kα radiation
a = 15.1221 (7) ŵ = 0.11 mm1
b = 5.6518 (1) ÅT = 173 K
c = 13.6926 (6) Å0.10 × 0.05 × 0.05 mm
β = 113.22 (4)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2446 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1906 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.034
7209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0545 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
2446 reflectionsΔρmin = 0.24 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.50000.3943 (3)0.75000.0237 (4)
H1WA0.47080.30630.69990.036*
N10.63809 (11)0.7280 (2)0.75668 (11)0.0247 (4)
H1A0.63280.83050.80340.037*
H1B0.59620.61060.74690.037*
H1C0.62580.80120.69520.037*
C10.73556 (13)0.6324 (3)0.79701 (14)0.0278 (4)
C60.75806 (14)0.4443 (3)0.86683 (15)0.0312 (4)
H6A0.71200.38180.88880.037*
C50.85041 (16)0.3490 (4)0.90408 (18)0.0449 (6)
C70.87338 (18)0.1547 (5)0.9797 (2)0.0579 (7)
C30.8941 (2)0.6365 (8)0.8017 (3)0.0843 (11)
H3A0.94000.70240.78050.101*
C20.80292 (17)0.7312 (5)0.7645 (2)0.0547 (7)
H2A0.78700.85960.71830.066*
N20.89001 (19)0.0051 (5)1.0408 (2)0.0826 (9)
C40.9188 (2)0.4440 (7)0.8704 (2)0.0730 (9)
H4A0.98020.37930.89370.088*
O10.60131 (9)0.0466 (2)0.39238 (9)0.0266 (3)
O20.60400 (10)0.1979 (2)0.54425 (9)0.0294 (3)
O30.60355 (10)0.3895 (2)0.46709 (9)0.0302 (3)
H30.60340.52060.49270.045*
O40.62804 (10)0.2420 (2)0.62874 (9)0.0298 (3)
C90.61454 (12)0.2186 (3)0.53599 (13)0.0216 (4)
C80.60611 (12)0.0294 (3)0.48550 (13)0.0210 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0349 (10)0.0193 (8)0.0149 (8)0.0000.0076 (7)0.000
N10.0353 (9)0.0215 (7)0.0201 (7)0.0007 (6)0.0140 (6)0.0001 (6)
C10.0285 (10)0.0333 (10)0.0223 (8)0.0041 (7)0.0107 (7)0.0045 (7)
C60.0315 (10)0.0308 (10)0.0305 (10)0.0006 (7)0.0115 (8)0.0024 (8)
C50.0347 (12)0.0507 (14)0.0439 (13)0.0079 (10)0.0097 (9)0.0010 (10)
C70.0420 (14)0.0564 (16)0.0646 (17)0.0147 (11)0.0097 (12)0.0095 (14)
C30.0396 (16)0.146 (3)0.076 (2)0.0062 (17)0.0328 (15)0.039 (2)
C20.0386 (13)0.0800 (19)0.0483 (14)0.0052 (11)0.0200 (11)0.0215 (13)
N20.0643 (16)0.0727 (18)0.092 (2)0.0214 (13)0.0107 (14)0.0307 (15)
C40.0335 (14)0.118 (3)0.0714 (19)0.0210 (15)0.0244 (13)0.0192 (19)
O10.0457 (8)0.0193 (6)0.0186 (6)0.0043 (5)0.0168 (5)0.0029 (5)
O20.0541 (9)0.0158 (6)0.0209 (6)0.0013 (5)0.0177 (6)0.0005 (5)
O30.0592 (9)0.0138 (6)0.0219 (6)0.0003 (5)0.0205 (6)0.0005 (5)
O40.0505 (9)0.0228 (7)0.0177 (6)0.0020 (5)0.0154 (5)0.0032 (5)
C90.0320 (9)0.0166 (8)0.0170 (8)0.0012 (6)0.0105 (7)0.0001 (6)
C80.0304 (9)0.0158 (8)0.0176 (8)0.0006 (6)0.0104 (6)0.0000 (6)
Geometric parameters (Å, º) top
O1W—H1WA0.8207C3—C21.376 (4)
N1—C11.459 (2)C3—C41.389 (5)
N1—H1A0.8900C3—H3A0.9300
N1—H1B0.8900C2—H2A0.9300
N1—H1C0.8900C4—H4A0.9300
C1—C61.380 (3)O1—C81.2521 (19)
C1—C21.380 (3)O2—C81.255 (2)
C6—C51.392 (3)O3—C91.314 (2)
C6—H6A0.9300O3—H30.8205
C5—C41.395 (4)O4—C91.211 (2)
C5—C71.454 (4)C9—C81.546 (2)
C7—N21.146 (4)
C1—N1—H1A109.5C2—C3—C4121.2 (3)
C1—N1—H1B109.5C2—C3—H3A119.4
H1A—N1—H1B109.5C4—C3—H3A119.4
C1—N1—H1C109.5C3—C2—C1118.8 (2)
H1A—N1—H1C109.5C3—C2—H2A120.6
H1B—N1—H1C109.5C1—C2—H2A120.6
C6—C1—C2121.57 (19)C3—C4—C5119.3 (2)
C6—C1—N1118.97 (16)C3—C4—H4A120.3
C2—C1—N1119.46 (18)C5—C4—H4A120.3
C1—C6—C5119.32 (19)C9—O3—H3112.2
C1—C6—H6A120.3O4—C9—O3126.41 (15)
C5—C6—H6A120.3O4—C9—C8121.21 (15)
C6—C5—C4119.8 (2)O3—C9—C8112.36 (13)
C6—C5—C7118.5 (2)O1—C8—O2125.99 (15)
C4—C5—C7121.7 (2)O1—C8—C9119.18 (14)
N2—C7—C5177.9 (3)O2—C8—C9114.83 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.821.962.767 (2)166
N1—H1A···O1ii0.891.912.797 (2)172
N1—H1C···O2iii0.891.962.778 (2)152
O3—H3···O2iii0.821.742.559 (2)178
N1—H1B···O1W0.891.912.788 (2)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H7N2+·C2HO4·0.5H2O
Mr217.18
Crystal system, space groupMonoclinic, P2/c
Temperature (K)173
a, b, c (Å)15.1221 (7), 5.6518 (1), 13.6926 (6)
β (°) 113.22 (4)
V3)1075.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7209, 2446, 1906
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.07
No. of reflections2446
No. of parameters142
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.821.962.767 (2)166
N1—H1A···O1ii0.891.912.797 (2)172
N1—H1C···O2iii0.891.962.778 (2)152
O3—H3···O2iii0.821.742.559 (2)178
N1—H1B···O1W0.891.912.788 (2)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by a start-up Grant from Southeast University, People's Republic of China.

References

First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.  Web of Science CrossRef Google Scholar
First citationDai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093–1096.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z.-G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166.  Web of Science CSD CrossRef Google Scholar
First citationZheng, W.-N. (2011). Acta Cryst. E67, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds