organic compounds
3-Cyanoanilinium hydrogen oxalate hemihydrate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn
In the title hydrated molecular salt, C7H7N2+·C2HO4−·0.5H2O, contains a 3-cyanoanilinium cation, a hydrogen oxalate anion and half a water molecule in an The dihedral angle between the CO2(H) and CO2 planes of the hydrogen oxalate ion is 7.96 (1)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a layer lying parallel to the ac plane.
Related literature
For the properties of related compounds, see: Chen et al. (2000); Liu et al. (1999); Zhao et al. (2003). For the structures of related compounds, see: Dai & Chen (2011); Xu et al. (2011); Zheng (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812019824/pv2542sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812019824/pv2542Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812019824/pv2542Isup3.cml
The commercial 3-aminobenzonitrile (3 mmol, 324 mg) and oxalic acid (3 mmol, 270 mg) were dissolved in 50 ml water/MeOH solution (1:1 v/v). The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.
The H atoms were included in the
at geometrically idealized positions and treated in riding mode with O—H = 0.82 Å, N—H = 0.89 Å and C–H = 0.93 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O/N); a rotating-group model was used for the –NH3 group.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C7H7N2+·C2HO4−·0.5H2O | F(000) = 452 |
Mr = 217.18 | Dx = 1.341 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 2446 reflections |
a = 15.1221 (7) Å | θ = 2.9–27.5° |
b = 5.6518 (1) Å | µ = 0.11 mm−1 |
c = 13.6926 (6) Å | T = 173 K |
β = 113.22 (4)° | Block, colorless |
V = 1075.5 (3) Å3 | 0.10 × 0.05 × 0.05 mm |
Z = 4 |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 2446 independent reflections |
Radiation source: fine-focus sealed tube | 1906 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
CCD profile fitting scans | h = −18→19 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −7→7 |
Tmin = 0.910, Tmax = 1.000 | l = −17→17 |
7209 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0872P)2 + 0.1364P] where P = (Fo2 + 2Fc2)/3 |
2446 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.28 e Å−3 |
5 restraints | Δρmin = −0.24 e Å−3 |
C7H7N2+·C2HO4−·0.5H2O | V = 1075.5 (3) Å3 |
Mr = 217.18 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 15.1221 (7) Å | µ = 0.11 mm−1 |
b = 5.6518 (1) Å | T = 173 K |
c = 13.6926 (6) Å | 0.10 × 0.05 × 0.05 mm |
β = 113.22 (4)° |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 2446 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1906 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 1.000 | Rint = 0.034 |
7209 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 5 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.28 e Å−3 |
2446 reflections | Δρmin = −0.24 e Å−3 |
142 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.5000 | 0.3943 (3) | 0.7500 | 0.0237 (4) | |
H1WA | 0.4708 | 0.3063 | 0.6999 | 0.036* | |
N1 | 0.63809 (11) | 0.7280 (2) | 0.75668 (11) | 0.0247 (4) | |
H1A | 0.6328 | 0.8305 | 0.8034 | 0.037* | |
H1B | 0.5962 | 0.6106 | 0.7469 | 0.037* | |
H1C | 0.6258 | 0.8012 | 0.6952 | 0.037* | |
C1 | 0.73556 (13) | 0.6324 (3) | 0.79701 (14) | 0.0278 (4) | |
C6 | 0.75806 (14) | 0.4443 (3) | 0.86683 (15) | 0.0312 (4) | |
H6A | 0.7120 | 0.3818 | 0.8888 | 0.037* | |
C5 | 0.85041 (16) | 0.3490 (4) | 0.90408 (18) | 0.0449 (6) | |
C7 | 0.87338 (18) | 0.1547 (5) | 0.9797 (2) | 0.0579 (7) | |
C3 | 0.8941 (2) | 0.6365 (8) | 0.8017 (3) | 0.0843 (11) | |
H3A | 0.9400 | 0.7024 | 0.7805 | 0.101* | |
C2 | 0.80292 (17) | 0.7312 (5) | 0.7645 (2) | 0.0547 (7) | |
H2A | 0.7870 | 0.8596 | 0.7183 | 0.066* | |
N2 | 0.89001 (19) | 0.0051 (5) | 1.0408 (2) | 0.0826 (9) | |
C4 | 0.9188 (2) | 0.4440 (7) | 0.8704 (2) | 0.0730 (9) | |
H4A | 0.9802 | 0.3793 | 0.8937 | 0.088* | |
O1 | 0.60131 (9) | −0.0466 (2) | 0.39238 (9) | 0.0266 (3) | |
O2 | 0.60400 (10) | −0.1979 (2) | 0.54425 (9) | 0.0294 (3) | |
O3 | 0.60355 (10) | 0.3895 (2) | 0.46709 (9) | 0.0302 (3) | |
H3 | 0.6034 | 0.5206 | 0.4927 | 0.045* | |
O4 | 0.62804 (10) | 0.2420 (2) | 0.62874 (9) | 0.0298 (3) | |
C9 | 0.61454 (12) | 0.2186 (3) | 0.53599 (13) | 0.0216 (4) | |
C8 | 0.60611 (12) | −0.0294 (3) | 0.48550 (13) | 0.0210 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.0349 (10) | 0.0193 (8) | 0.0149 (8) | 0.000 | 0.0076 (7) | 0.000 |
N1 | 0.0353 (9) | 0.0215 (7) | 0.0201 (7) | −0.0007 (6) | 0.0140 (6) | −0.0001 (6) |
C1 | 0.0285 (10) | 0.0333 (10) | 0.0223 (8) | −0.0041 (7) | 0.0107 (7) | −0.0045 (7) |
C6 | 0.0315 (10) | 0.0308 (10) | 0.0305 (10) | −0.0006 (7) | 0.0115 (8) | −0.0024 (8) |
C5 | 0.0347 (12) | 0.0507 (14) | 0.0439 (13) | 0.0079 (10) | 0.0097 (9) | 0.0010 (10) |
C7 | 0.0420 (14) | 0.0564 (16) | 0.0646 (17) | 0.0147 (11) | 0.0097 (12) | 0.0095 (14) |
C3 | 0.0396 (16) | 0.146 (3) | 0.076 (2) | 0.0062 (17) | 0.0328 (15) | 0.039 (2) |
C2 | 0.0386 (13) | 0.0800 (19) | 0.0483 (14) | −0.0052 (11) | 0.0200 (11) | 0.0215 (13) |
N2 | 0.0643 (16) | 0.0727 (18) | 0.092 (2) | 0.0214 (13) | 0.0107 (14) | 0.0307 (15) |
C4 | 0.0335 (14) | 0.118 (3) | 0.0714 (19) | 0.0210 (15) | 0.0244 (13) | 0.0192 (19) |
O1 | 0.0457 (8) | 0.0193 (6) | 0.0186 (6) | −0.0043 (5) | 0.0168 (5) | −0.0029 (5) |
O2 | 0.0541 (9) | 0.0158 (6) | 0.0209 (6) | −0.0013 (5) | 0.0177 (6) | 0.0005 (5) |
O3 | 0.0592 (9) | 0.0138 (6) | 0.0219 (6) | −0.0003 (5) | 0.0205 (6) | 0.0005 (5) |
O4 | 0.0505 (9) | 0.0228 (7) | 0.0177 (6) | −0.0020 (5) | 0.0154 (5) | −0.0032 (5) |
C9 | 0.0320 (9) | 0.0166 (8) | 0.0170 (8) | −0.0012 (6) | 0.0105 (7) | 0.0001 (6) |
C8 | 0.0304 (9) | 0.0158 (8) | 0.0176 (8) | −0.0006 (6) | 0.0104 (6) | 0.0000 (6) |
O1W—H1WA | 0.8207 | C3—C2 | 1.376 (4) |
N1—C1 | 1.459 (2) | C3—C4 | 1.389 (5) |
N1—H1A | 0.8900 | C3—H3A | 0.9300 |
N1—H1B | 0.8900 | C2—H2A | 0.9300 |
N1—H1C | 0.8900 | C4—H4A | 0.9300 |
C1—C6 | 1.380 (3) | O1—C8 | 1.2521 (19) |
C1—C2 | 1.380 (3) | O2—C8 | 1.255 (2) |
C6—C5 | 1.392 (3) | O3—C9 | 1.314 (2) |
C6—H6A | 0.9300 | O3—H3 | 0.8205 |
C5—C4 | 1.395 (4) | O4—C9 | 1.211 (2) |
C5—C7 | 1.454 (4) | C9—C8 | 1.546 (2) |
C7—N2 | 1.146 (4) | ||
C1—N1—H1A | 109.5 | C2—C3—C4 | 121.2 (3) |
C1—N1—H1B | 109.5 | C2—C3—H3A | 119.4 |
H1A—N1—H1B | 109.5 | C4—C3—H3A | 119.4 |
C1—N1—H1C | 109.5 | C3—C2—C1 | 118.8 (2) |
H1A—N1—H1C | 109.5 | C3—C2—H2A | 120.6 |
H1B—N1—H1C | 109.5 | C1—C2—H2A | 120.6 |
C6—C1—C2 | 121.57 (19) | C3—C4—C5 | 119.3 (2) |
C6—C1—N1 | 118.97 (16) | C3—C4—H4A | 120.3 |
C2—C1—N1 | 119.46 (18) | C5—C4—H4A | 120.3 |
C1—C6—C5 | 119.32 (19) | C9—O3—H3 | 112.2 |
C1—C6—H6A | 120.3 | O4—C9—O3 | 126.41 (15) |
C5—C6—H6A | 120.3 | O4—C9—C8 | 121.21 (15) |
C6—C5—C4 | 119.8 (2) | O3—C9—C8 | 112.36 (13) |
C6—C5—C7 | 118.5 (2) | O1—C8—O2 | 125.99 (15) |
C4—C5—C7 | 121.7 (2) | O1—C8—C9 | 119.18 (14) |
N2—C7—C5 | 177.9 (3) | O2—C8—C9 | 114.83 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1i | 0.82 | 1.96 | 2.767 (2) | 166 |
N1—H1A···O1ii | 0.89 | 1.91 | 2.797 (2) | 172 |
N1—H1C···O2iii | 0.89 | 1.96 | 2.778 (2) | 152 |
O3—H3···O2iii | 0.82 | 1.74 | 2.559 (2) | 178 |
N1—H1B···O1W | 0.89 | 1.91 | 2.788 (2) | 167 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1, z+1/2; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C7H7N2+·C2HO4−·0.5H2O |
Mr | 217.18 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 173 |
a, b, c (Å) | 15.1221 (7), 5.6518 (1), 13.6926 (6) |
β (°) | 113.22 (4) |
V (Å3) | 1075.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.10 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Mercury2 (2x2 bin mode) diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.910, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7209, 2446, 1906 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.156, 1.07 |
No. of reflections | 2446 |
No. of parameters | 142 |
No. of restraints | 5 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.24 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1i | 0.82 | 1.96 | 2.767 (2) | 166 |
N1—H1A···O1ii | 0.89 | 1.91 | 2.797 (2) | 172 |
N1—H1C···O2iii | 0.89 | 1.96 | 2.778 (2) | 152 |
O3—H3···O2iii | 0.82 | 1.74 | 2.559 (2) | 178 |
N1—H1B···O1W | 0.89 | 1.91 | 2.788 (2) | 167 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1, z+1/2; (iii) x, y+1, z. |
Acknowledgements
This work was supported by a start-up Grant from Southeast University, People's Republic of China.
References
Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012. Web of Science CrossRef Google Scholar
Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, C.-M., Yu, Z., Xiong, R.-G., Liu, K. & You, X.-Z. (1999). Inorg. Chem. Commun. 2, 31–34. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093–1096. Web of Science CSD CrossRef CAS Google Scholar
Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z.-G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166. Web of Science CSD CrossRef Google Scholar
Zheng, W.-N. (2011). Acta Cryst. E67, m344. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Salts of amide attracted more attention as phase transition dielectric materials for its application in micro-electronics, memory storage (Chen et al., 2000; Liu, et al. 1999; Zhao, et al. 2003). With the purpose of obtaining phase transition crystals of 3-aminobenzonitrile salts, its interaction with various acids has been studied and we have elaborated a serie of new materials with this organic molecule (Dai & Chen 2011; Xu, et al. 2011; Zheng 2011). In this paper, we describe the crystal structure of the title compound.
The asymmetric unit is composed of a 3-cyanoanilinium cation, a carboxyformate anion, and a half molecule of water (Fig. 1). The geometric parameters of the title compound agree well with reported similar structure (Dai & Chen 2011). The cation is almost planar (r.m.s. deviation 0.0062 Å, benzene ring as the best plane).
The cations are surrounded by the anions and water molecules via hydrogen bonds which play an important role in stabilizing the crystal structure. In the crystal structure, all the amino H atoms are involved in N—H···O hydrogen bonds with carboxyformate anion and water molecule with the distances of 2.797 (2) Å, 2.778 (2) Å and 2.788 (2) Å, respectively. In addition, the H atoms of water molecule and carboxyformate anion are involved in the O—H···O H-bonding interactions. In the crystal structure, those H-bonds link the ionic units into a two-dimensional sheets parallel to the ac plane (Table 1 and Fig. 2).