organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Caffeine–N-phthaloyl-β-alanine (1/1)

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bAnorganische und Analytische Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: moazzamhussain_b@yahoo.com

(Received 7 May 2012; accepted 18 May 2012; online 26 May 2012)

The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2-yl)propanoic acid–1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (1/1)], C8H10N4O2·C11H9NO4, is the combination of 1:1 adduct of N-phthaloyl-β-alanine with caffeine. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine mol­ecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two mol­ecules are linked via an O—H⋯N hydrogen bond involving the intact carb­oxy­lic acid (COOH) group. The crystal structure is consolidated by C—H⋯O inter­actions. The H atoms of a methyl group of the caffeine mol­ecule are disordered over two sets of sites of equal occupancy.

Related literature

For related structures, see: Bhatti et al. (2011[Bhatti, M. H., Yunus, U., Saeed, S., Shah, S. R. & Wong, W.-T. (2011). Acta Cryst. E67, o2240.]); Feeder & Jones (1996[Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 913-919.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N4O2·C11H9NO4

  • Mr = 413.39

  • Triclinic, [P \overline 1]

  • a = 8.3411 (17) Å

  • b = 9.0638 (18) Å

  • c = 13.162 (3) Å

  • α = 77.105 (4)°

  • β = 82.394 (4)°

  • γ = 72.865 (4)°

  • V = 924.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 130 K

  • 0.42 × 0.40 × 0.35 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.962

  • 8826 measured reflections

  • 4378 independent reflections

  • 3752 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.03

  • 4378 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3i 0.84 1.83 2.6672 (13) 175
C3—H3A⋯O5ii 0.95 2.26 3.1447 (16) 155
C6—H6A⋯O3iii 0.95 2.31 3.2283 (16) 162
C20—H20B⋯O6iv 0.98 2.35 3.2559 (16) 154
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Previously we have reported the synthesis and crystal structure of a 1:1 adduct of N-phthaloylglycine with caffeine (Bhatti et al., 2011). Now we have synthesized a 1:1 adduct of N-phthaloyl-β-alanine with caffeine and determined its crystal structure which is reported in this article.

The asymmetric unit of the title adduct is presented in Figure 1. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine molecules are essentailly planar with rms deviations of fitted atoms 0.0078 and 0.0118 Å, respectively; the dihedral angle between the mean-planes of these rings is 5.59 (5)°. The dihedral angle between phthlimide and propanoic acid is 6.5 (1)° slightly less than reported value of N-phthaloyl-β-alanine (Feeder & Jones, 1996). The carbon oxygen distance in the carboxylic acid group (COOH) show typical double and single bond values [C11—O3 = 1.2066 (15) Å and C11—O4 = 1.3312 (14) Å, respectively)], indicating intact protonation of carboxylic acid group. This is further strengthened by intermolecular O4—H4···N3 hydrogen bonding which link the two molecules (Fig. 2). The crystal structure is further consolidated by C—H···O type intermolecular interactions (Table 1).

Related literature top

For related structures, see: Bhatti et al. (2011); Feeder & Jones (1996).

Experimental top

A mixture of N-phthaloyl-β-alanine (0.01 mol) and caffeine (0.01 mol) was heated in water (100 ml) for 2 h. The hot solution was filtered and the filtrate was set aside for one week. Colourless needle like crystals were obtained suitable for X-ray analysis.

Refinement top

Although all hydrogen atoms were clearly identified in difference syntheses, they were positioned geometrically and refined using a riding model, with O—H = 0.84 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(O/C methyl) or 1.2Ueq(C non-methyl). The hydrogen atoms of the C25 methyl group of caffeine molecule are disordered over two positions with site occupation of 0.5 each.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title adduct with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
3-(1,3-dioxoisoindolin-2-yl)propanoic acid– 1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (1/1) top
Crystal data top
C8H10N4O2·C11H9NO4Z = 2
Mr = 413.39F(000) = 432
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3411 (17) ÅCell parameters from 3614 reflections
b = 9.0638 (18) Åθ = 2.6–28.2°
c = 13.162 (3) ŵ = 0.11 mm1
α = 77.105 (4)°T = 130 K
β = 82.394 (4)°Block, colourless
γ = 72.865 (4)°0.42 × 0.40 × 0.35 mm
V = 924.6 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
4378 independent reflections
Radiation source: sealed tube3752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.954, Tmax = 0.962k = 1111
8826 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1919P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4378 reflectionsΔρmax = 0.26 e Å3
277 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (15)
Crystal data top
C8H10N4O2·C11H9NO4γ = 72.865 (4)°
Mr = 413.39V = 924.6 (3) Å3
Triclinic, P1Z = 2
a = 8.3411 (17) ÅMo Kα radiation
b = 9.0638 (18) ŵ = 0.11 mm1
c = 13.162 (3) ÅT = 130 K
α = 77.105 (4)°0.42 × 0.40 × 0.35 mm
β = 82.394 (4)°
Data collection top
Bruker SMART APEX
diffractometer
4378 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3752 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.962Rint = 0.022
8826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
4378 reflectionsΔρmin = 0.26 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.27140 (12)0.71481 (11)0.44923 (7)0.0325 (2)
O20.44166 (11)0.89747 (10)0.70215 (7)0.0269 (2)
O30.39875 (12)0.24964 (10)0.74716 (7)0.0289 (2)
O40.49142 (12)0.38406 (10)0.83878 (7)0.0289 (2)
H40.54510.29350.86730.043*
N10.37128 (13)0.76999 (12)0.58804 (8)0.0228 (2)
C10.28998 (15)0.80945 (15)0.49543 (9)0.0236 (2)
C20.23764 (14)0.98470 (14)0.46992 (9)0.0223 (2)
C30.15355 (15)1.08616 (16)0.38653 (10)0.0273 (3)
H3A0.11711.04800.33460.033*
C40.12468 (15)1.24709 (16)0.38213 (10)0.0290 (3)
H4A0.06701.32010.32610.035*
C50.17853 (15)1.30301 (15)0.45800 (10)0.0279 (3)
H5A0.15731.41330.45260.034*
C60.26336 (15)1.19969 (15)0.54206 (10)0.0247 (3)
H6A0.30061.23720.59410.030*
C70.29048 (14)1.04076 (14)0.54603 (9)0.0215 (2)
C80.37667 (14)0.90240 (14)0.62382 (9)0.0214 (2)
C90.44832 (15)0.61010 (14)0.63967 (10)0.0236 (2)
H9A0.53060.61120.68700.028*
H9B0.50990.54790.58660.028*
C100.31773 (15)0.53188 (14)0.70237 (10)0.0239 (3)
H10A0.24770.59930.75050.029*
H10B0.24310.51890.65440.029*
C110.40448 (14)0.37333 (14)0.76419 (9)0.0219 (2)
O50.05201 (12)0.05872 (12)0.78890 (7)0.0323 (2)
O60.06764 (11)0.39207 (10)0.88703 (7)0.0292 (2)
N20.28028 (12)0.17054 (11)1.06458 (8)0.0210 (2)
N30.34827 (12)0.08987 (12)1.07618 (8)0.0211 (2)
N40.19842 (12)0.08902 (12)0.92895 (8)0.0225 (2)
N50.05480 (12)0.16501 (12)0.84150 (8)0.0246 (2)
C200.27113 (17)0.32244 (15)1.08893 (11)0.0292 (3)
H20A0.32950.30561.15220.044*
H20B0.15300.38041.10040.044*
H20C0.32470.38331.03050.044*
C210.36256 (14)0.02847 (13)1.11659 (9)0.0214 (2)
H21A0.42410.01361.17560.026*
C220.25050 (14)0.01704 (14)0.99472 (9)0.0196 (2)
C230.25004 (16)0.26028 (15)0.93844 (10)0.0273 (3)
H23A0.34690.29030.88900.041*
H23B0.15670.29480.92290.041*
H23C0.28110.31051.00980.041*
C240.09971 (14)0.00176 (15)0.84884 (9)0.0239 (3)
C250.04962 (17)0.26056 (18)0.75566 (10)0.0330 (3)
H25A0.08900.37020.76470.050*0.50
H25B0.14660.22020.75620.050*0.50
H25C0.01720.25490.68880.050*0.50
H25D0.05670.19330.70850.050*0.50
H25E0.00100.34340.71700.050*0.50
H25F0.16280.30860.78440.050*0.50
C260.10740 (14)0.24778 (14)0.90378 (9)0.0226 (2)
C270.20625 (14)0.14314 (14)0.98483 (9)0.0206 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (5)0.0297 (5)0.0309 (5)0.0097 (4)0.0096 (4)0.0099 (4)
O20.0321 (5)0.0264 (5)0.0230 (4)0.0075 (4)0.0101 (4)0.0023 (4)
O30.0373 (5)0.0201 (4)0.0304 (5)0.0067 (4)0.0098 (4)0.0040 (4)
O40.0360 (5)0.0177 (4)0.0330 (5)0.0036 (4)0.0161 (4)0.0018 (4)
N10.0269 (5)0.0189 (5)0.0222 (5)0.0059 (4)0.0063 (4)0.0012 (4)
C10.0247 (6)0.0257 (6)0.0212 (6)0.0077 (5)0.0033 (4)0.0044 (5)
C20.0211 (5)0.0241 (6)0.0208 (6)0.0060 (4)0.0021 (4)0.0022 (5)
C30.0243 (6)0.0344 (7)0.0223 (6)0.0072 (5)0.0055 (5)0.0027 (5)
C40.0223 (6)0.0315 (7)0.0254 (6)0.0010 (5)0.0048 (5)0.0036 (5)
C50.0253 (6)0.0218 (6)0.0309 (7)0.0016 (5)0.0005 (5)0.0009 (5)
C60.0256 (6)0.0234 (6)0.0247 (6)0.0059 (5)0.0026 (5)0.0047 (5)
C70.0208 (5)0.0229 (6)0.0189 (5)0.0050 (4)0.0022 (4)0.0011 (4)
C80.0208 (5)0.0220 (6)0.0210 (6)0.0063 (4)0.0023 (4)0.0024 (4)
C90.0241 (6)0.0187 (6)0.0259 (6)0.0033 (4)0.0048 (5)0.0020 (5)
C100.0243 (6)0.0193 (6)0.0270 (6)0.0047 (4)0.0064 (5)0.0015 (5)
C110.0222 (5)0.0199 (6)0.0230 (6)0.0051 (4)0.0032 (4)0.0028 (4)
O50.0318 (5)0.0408 (6)0.0277 (5)0.0105 (4)0.0103 (4)0.0083 (4)
O60.0284 (4)0.0223 (4)0.0298 (5)0.0016 (3)0.0047 (4)0.0002 (4)
N20.0210 (5)0.0192 (5)0.0217 (5)0.0028 (4)0.0030 (4)0.0042 (4)
N30.0215 (5)0.0206 (5)0.0202 (5)0.0040 (4)0.0048 (4)0.0022 (4)
N40.0241 (5)0.0229 (5)0.0210 (5)0.0062 (4)0.0053 (4)0.0034 (4)
N50.0220 (5)0.0288 (6)0.0200 (5)0.0049 (4)0.0064 (4)0.0009 (4)
C200.0344 (7)0.0211 (6)0.0321 (7)0.0029 (5)0.0060 (5)0.0094 (5)
C210.0206 (5)0.0211 (6)0.0208 (6)0.0031 (4)0.0040 (4)0.0028 (4)
C220.0179 (5)0.0216 (6)0.0185 (5)0.0052 (4)0.0016 (4)0.0024 (4)
C230.0314 (6)0.0225 (6)0.0302 (6)0.0069 (5)0.0068 (5)0.0075 (5)
C240.0202 (5)0.0306 (6)0.0205 (6)0.0067 (5)0.0032 (4)0.0036 (5)
C250.0287 (6)0.0403 (8)0.0237 (6)0.0041 (6)0.0105 (5)0.0046 (6)
C260.0180 (5)0.0243 (6)0.0213 (6)0.0021 (4)0.0004 (4)0.0013 (5)
C270.0190 (5)0.0208 (6)0.0208 (6)0.0036 (4)0.0025 (4)0.0032 (4)
Geometric parameters (Å, º) top
O1—C11.2106 (15)O6—C261.2265 (15)
O2—C81.2132 (14)N2—C211.3446 (15)
O3—C111.2066 (15)N2—C271.3867 (15)
O4—C111.3312 (14)N2—C201.4604 (16)
O4—H40.8400N3—C211.3395 (15)
N1—C81.3979 (16)N3—C221.3597 (14)
N1—C11.3982 (15)N4—C221.3719 (15)
N1—C91.4499 (15)N4—C241.3820 (15)
C1—C21.4895 (17)N4—C231.4644 (16)
C2—C31.3841 (16)N5—C241.3994 (17)
C2—C71.3899 (17)N5—C261.4110 (16)
C3—C41.3957 (19)N5—C251.4712 (15)
C3—H3A0.9500C20—H20A0.9800
C4—C51.3910 (19)C20—H20B0.9800
C4—H4A0.9500C20—H20C0.9800
C5—C61.3986 (17)C21—H21A0.9500
C5—H5A0.9500C22—C271.3689 (16)
C6—C71.3807 (17)C23—H23A0.9800
C6—H6A0.9500C23—H23B0.9800
C7—C81.4927 (16)C23—H23C0.9800
C9—C101.5252 (17)C25—H25A0.9800
C9—H9A0.9900C25—H25B0.9800
C9—H9B0.9900C25—H25C0.9800
C10—C111.5073 (16)C25—H25D0.9800
C10—H10A0.9900C25—H25E0.9800
C10—H10B0.9900C25—H25F0.9800
O5—C241.2190 (15)C26—C271.4275 (16)
C11—O4—H4109.5C21—N3—C22104.19 (10)
C8—N1—C1112.53 (10)C22—N4—C24119.59 (10)
C8—N1—C9123.16 (10)C22—N4—C23121.80 (10)
C1—N1—C9124.26 (10)C24—N4—C23118.57 (10)
O1—C1—N1124.51 (12)C24—N5—C26126.81 (10)
O1—C1—C2130.13 (11)C24—N5—C25116.45 (10)
N1—C1—C2105.36 (10)C26—N5—C25116.62 (11)
C3—C2—C7121.42 (12)N2—C20—H20A109.5
C3—C2—C1130.01 (11)N2—C20—H20B109.5
C7—C2—C1108.56 (10)H20A—C20—H20B109.5
C2—C3—C4117.05 (12)N2—C20—H20C109.5
C2—C3—H3A121.5H20A—C20—H20C109.5
C4—C3—H3A121.5H20B—C20—H20C109.5
C5—C4—C3121.47 (11)N3—C21—N2112.65 (10)
C5—C4—H4A119.3N3—C21—H21A123.7
C3—C4—H4A119.3N2—C21—H21A123.7
C4—C5—C6121.12 (12)N3—C22—C27111.37 (10)
C4—C5—H5A119.4N3—C22—N4126.43 (11)
C6—C5—H5A119.4C27—C22—N4122.20 (10)
C7—C6—C5116.97 (11)N4—C23—H23A109.5
C7—C6—H6A121.5N4—C23—H23B109.5
C5—C6—H6A121.5H23A—C23—H23B109.5
C6—C7—C2121.96 (11)N4—C23—H23C109.5
C6—C7—C8130.04 (11)H23A—C23—H23C109.5
C2—C7—C8107.99 (10)H23B—C23—H23C109.5
O2—C8—N1124.43 (11)O5—C24—N4121.12 (12)
O2—C8—C7130.01 (11)O5—C24—N5121.97 (11)
N1—C8—C7105.56 (10)N4—C24—N5116.90 (10)
N1—C9—C10111.68 (10)N5—C25—H25A109.5
N1—C9—H9A109.3N5—C25—H25B109.5
C10—C9—H9A109.3H25A—C25—H25B109.5
N1—C9—H9B109.3N5—C25—H25C109.5
C10—C9—H9B109.3H25A—C25—H25C109.5
H9A—C9—H9B107.9H25B—C25—H25C109.5
C11—C10—C9109.85 (10)N5—C25—H25D109.5
C11—C10—H10A109.7N5—C25—H25E109.5
C9—C10—H10A109.7H25D—C25—H25E109.5
C11—C10—H10B109.7N5—C25—H25F109.5
C9—C10—H10B109.7H25D—C25—H25F109.5
H10A—C10—H10B108.2H25E—C25—H25F109.5
O3—C11—O4123.34 (11)O6—C26—N5121.50 (11)
O3—C11—C10124.00 (11)O6—C26—C27126.91 (12)
O4—C11—C10112.64 (10)N5—C26—C27111.59 (10)
C21—N2—C27106.39 (10)C22—C27—N2105.40 (10)
C21—N2—C20126.14 (10)C22—C27—C26122.76 (11)
C27—N2—C20127.47 (10)N2—C27—C26131.82 (11)
C8—N1—C1—O1179.26 (12)C27—N2—C21—N30.32 (13)
C9—N1—C1—O11.75 (19)C20—N2—C21—N3179.91 (11)
C8—N1—C1—C20.27 (13)C21—N3—C22—C270.33 (13)
C9—N1—C1—C2177.79 (10)C21—N3—C22—N4179.28 (11)
O1—C1—C2—C30.1 (2)C24—N4—C22—N3179.58 (11)
N1—C1—C2—C3179.57 (12)C23—N4—C22—N32.06 (18)
O1—C1—C2—C7178.84 (13)C24—N4—C22—C270.86 (17)
N1—C1—C2—C70.66 (13)C23—N4—C22—C27178.37 (11)
C7—C2—C3—C40.19 (18)C22—N4—C24—O5179.72 (11)
C1—C2—C3—C4178.61 (12)C23—N4—C24—O52.12 (18)
C2—C3—C4—C50.21 (19)C22—N4—C24—N51.58 (16)
C3—C4—C5—C60.25 (19)C23—N4—C24—N5179.18 (10)
C4—C5—C6—C70.11 (18)C26—N5—C24—O5177.48 (11)
C5—C6—C7—C20.51 (18)C25—N5—C24—O51.59 (17)
C5—C6—C7—C8179.56 (12)C26—N5—C24—N43.83 (18)
C3—C2—C7—C60.57 (18)C25—N5—C24—N4179.72 (10)
C1—C2—C7—C6178.46 (11)C24—N5—C26—O6175.97 (11)
C3—C2—C7—C8179.80 (11)C25—N5—C26—O60.09 (17)
C1—C2—C7—C80.77 (13)C24—N5—C26—C274.66 (16)
C1—N1—C8—O2179.50 (11)C25—N5—C26—C27179.45 (10)
C9—N1—C8—O21.95 (18)N3—C22—C27—N20.15 (13)
C1—N1—C8—C70.18 (13)N4—C22—C27—N2179.47 (10)
C9—N1—C8—C7177.36 (10)N3—C22—C27—C26178.33 (10)
C6—C7—C8—O20.7 (2)N4—C22—C27—C262.04 (18)
C2—C7—C8—O2179.86 (12)C21—N2—C27—C220.09 (12)
C6—C7—C8—N1178.55 (12)C20—N2—C27—C22179.68 (11)
C2—C7—C8—N10.60 (13)C21—N2—C27—C26178.38 (12)
C8—N1—C9—C10103.65 (13)C20—N2—C27—C262.0 (2)
C1—N1—C9—C1079.09 (14)O6—C26—C27—C22177.07 (11)
N1—C9—C10—C11173.66 (10)N5—C26—C27—C223.61 (16)
C9—C10—C11—O3112.03 (13)O6—C26—C27—N21.0 (2)
C9—C10—C11—O466.73 (13)N5—C26—C27—N2178.35 (11)
C22—N3—C21—N20.40 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.841.832.6672 (13)175
C3—H3A···O5ii0.952.263.1447 (16)155
C6—H6A···O3iii0.952.313.2283 (16)162
C20—H20B···O6iv0.982.353.2559 (16)154
C25—H25A···O60.982.282.7244 (18)107
C25—H25D···O50.982.262.7152 (19)107
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H10N4O2·C11H9NO4
Mr413.39
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)8.3411 (17), 9.0638 (18), 13.162 (3)
α, β, γ (°)77.105 (4), 82.394 (4), 72.865 (4)
V3)924.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.42 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.954, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
8826, 4378, 3752
Rint0.022
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.03
No. of reflections4378
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.841.832.6672 (13)175.3
C3—H3A···O5ii0.952.263.1447 (16)155.1
C6—H6A···O3iii0.952.313.2283 (16)162.3
C20—H20B···O6iv0.982.353.2559 (16)154.2
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

References

First citationBhatti, M. H., Yunus, U., Saeed, S., Shah, S. R. & Wong, W.-T. (2011). Acta Cryst. E67, o2240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeeder, N. & Jones, W. (1996). Acta Cryst. C52, 913–919.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds