organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phen­yl)formamide

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 21 May 2012; accepted 28 May 2012; online 31 May 2012)

In the title compound, C8H9NO, the amide group makes a dihedral of 32.35 (1)° with the benzene ring. In the crystal, pairs of strong N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. Weak C—H⋯O inter­actions further connect the mol­ecules into chains along the a axis.

Related literature

For the structures and properties of related compounds, see: Tam et al. (2003[Tam, C. N., Cowan, J. A., Schultz, A. J., Young, V. G., Trouw, F. R. & Sykes, A. G. (2003). J. Phys. Chem. B, 107, 7601-7606.]); Omondi et al. (2005[Omondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm, 7, 690-700.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO

  • Mr = 135.16

  • Triclinic, [P \overline 1]

  • a = 6.5511 (11) Å

  • b = 6.9192 (12) Å

  • c = 8.0265 (17) Å

  • α = 93.730 (1)°

  • β = 102.780 (1)°

  • γ = 91.769 (1)°

  • V = 353.68 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 2597 measured reflections

  • 1570 independent reflections

  • 943 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 0.90

  • 1570 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.86 1.99 2.849 (2) 172
C7—H7A⋯O1ii 0.93 2.63 3.546 (2) 171
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-(4-Chlorophenyl)formamide and N-(2,6-dichlorophenyl)formamide exhibit phase transitions under different thermal conditions from disordered model to ordered model (Tam et al., 2003; Omondi et al., 2005). Therefore, with the purpose of obtaining phase transition crystals of organic compounds, various similar organic molecules have been studied. The title compound has been synthesized to determine its crystal structure and dielectric properties. In this article, the synthesis and crystal structure of the title compound are reported.

In the title compound (Fig. 1), the amide group (O1/N1/C1) makes a dihedral of 32.35 (1)° with the benzene ring (C2–C7). In the crystal structure, the H atom bonded to the N atom is involved in a strong intermolecular N1—H1B···O1 hydrogen bond. In addition, weak C7—H7A···O1 further stabilize the crystal structure. These H-bonding interactions connect the molecules into a 1D chain along the a-axis (Fig. 2 and Table 1). The bond lengths and bond angles in the title molecule agree very well with the corresponding bond distances and bond angles reported in closely related compounds (Tam et al., 2003; Omondi et al., 2005)

Related literature top

For the structures and properties of related compounds, see: Tam et al. (2003); Omondi et al. (2005).

Experimental top

A mixture of formic acid (30 mmol), 4-toluidine (10 mmol), H2SO4 (0.5 ml, molar concentration 98%) and ethanol (50 mL) in a 100 ml flask was stirred at 333 K for 10 h. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with distances N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(N/C non-methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O and C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
N-(4-Methylphenyl)formamide top
Crystal data top
C8H9NOZ = 2
Mr = 135.16F(000) = 144
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5511 (11) ÅCell parameters from 1570 reflections
b = 6.9192 (12) Åθ = 3.6–27.5°
c = 8.0265 (17) ŵ = 0.09 mm1
α = 93.730 (1)°T = 153 K
β = 102.780 (1)°Block, colorless
γ = 91.769 (1)°0.10 × 0.05 × 0.05 mm
V = 353.68 (11) Å3
Data collection top
Rigaku Mercury2
diffractometer
1570 independent reflections
Radiation source: fine-focus sealed tube943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
CCD profile fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 78
Tmin = 0.910, Tmax = 1.000l = 1010
2597 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
1570 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H9NOγ = 91.769 (1)°
Mr = 135.16V = 353.68 (11) Å3
Triclinic, P1Z = 2
a = 6.5511 (11) ÅMo Kα radiation
b = 6.9192 (12) ŵ = 0.09 mm1
c = 8.0265 (17) ÅT = 153 K
α = 93.730 (1)°0.10 × 0.05 × 0.05 mm
β = 102.780 (1)°
Data collection top
Rigaku Mercury2
diffractometer
1570 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
943 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.030
2597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.90Δρmax = 0.24 e Å3
1570 reflectionsΔρmin = 0.21 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23436 (18)1.02875 (15)0.39355 (14)0.0308 (3)
N10.3558 (2)0.80633 (18)0.58427 (17)0.0232 (3)
H1B0.48140.85580.60140.028*
C70.1344 (3)0.6126 (2)0.7268 (2)0.0247 (4)
H7A0.02950.70110.70490.030*
C30.4782 (2)0.5127 (2)0.7131 (2)0.0238 (4)
H3A0.60440.53330.68050.029*
C20.3215 (2)0.6435 (2)0.67500 (19)0.0210 (4)
C40.4474 (3)0.3510 (2)0.7997 (2)0.0249 (4)
H4A0.55420.26480.82510.030*
C10.2053 (3)0.8876 (2)0.4739 (2)0.0251 (4)
H1A0.06950.83440.45620.030*
C60.1060 (3)0.4493 (2)0.8112 (2)0.0261 (4)
H6A0.02040.42850.84340.031*
C50.2602 (3)0.3151 (2)0.8494 (2)0.0251 (4)
C80.2248 (3)0.1390 (2)0.9420 (2)0.0359 (5)
H8A0.08500.08540.89730.054*
H8B0.24340.17531.06200.054*
H8C0.32360.04390.92550.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (7)0.0289 (7)0.0364 (7)0.0013 (5)0.0065 (5)0.0132 (6)
N10.0220 (7)0.0227 (7)0.0251 (7)0.0013 (5)0.0053 (6)0.0054 (6)
C70.0244 (9)0.0237 (8)0.0267 (9)0.0018 (7)0.0075 (7)0.0018 (7)
C30.0231 (8)0.0263 (9)0.0226 (8)0.0012 (7)0.0066 (7)0.0017 (7)
C20.0258 (9)0.0177 (8)0.0189 (8)0.0014 (6)0.0043 (6)0.0011 (6)
C40.0268 (9)0.0234 (9)0.0238 (9)0.0030 (7)0.0039 (7)0.0027 (7)
C10.0226 (9)0.0255 (9)0.0279 (9)0.0018 (7)0.0066 (7)0.0029 (7)
C60.0251 (9)0.0295 (9)0.0248 (9)0.0042 (7)0.0087 (7)0.0013 (7)
C50.0322 (10)0.0215 (8)0.0202 (8)0.0045 (7)0.0041 (7)0.0015 (7)
C80.0412 (12)0.0317 (10)0.0355 (11)0.0041 (8)0.0087 (9)0.0111 (8)
Geometric parameters (Å, º) top
O1—C11.2369 (18)C4—C51.391 (2)
N1—C11.3364 (19)C4—H4A0.9300
N1—C21.4189 (19)C1—H1A0.9300
N1—H1B0.8600C6—C51.391 (2)
C7—C61.383 (2)C6—H6A0.9300
C7—C21.393 (2)C5—C81.506 (2)
C7—H7A0.9300C8—H8A0.9600
C3—C21.387 (2)C8—H8B0.9600
C3—C41.387 (2)C8—H8C0.9600
C3—H3A0.9300
C1—N1—C2124.15 (14)O1—C1—N1124.50 (15)
C1—N1—H1B117.9O1—C1—H1A117.8
C2—N1—H1B117.9N1—C1—H1A117.8
C6—C7—C2119.50 (15)C7—C6—C5122.15 (15)
C6—C7—H7A120.3C7—C6—H6A118.9
C2—C7—H7A120.3C5—C6—H6A118.9
C2—C3—C4120.16 (15)C6—C5—C4117.38 (14)
C2—C3—H3A119.9C6—C5—C8120.91 (15)
C4—C3—H3A119.9C4—C5—C8121.71 (15)
C3—C2—C7119.37 (14)C5—C8—H8A109.5
C3—C2—N1119.07 (14)C5—C8—H8B109.5
C7—C2—N1121.56 (14)H8A—C8—H8B109.5
C3—C4—C5121.42 (15)C5—C8—H8C109.5
C3—C4—H4A119.3H8A—C8—H8C109.5
C5—C4—H4A119.3H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.861.992.849 (2)172
C7—H7A···O1ii0.932.633.546 (2)171
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H9NO
Mr135.16
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)6.5511 (11), 6.9192 (12), 8.0265 (17)
α, β, γ (°)93.730 (1), 102.780 (1), 91.769 (1)
V3)353.68 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2597, 1570, 943
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 0.90
No. of reflections1570
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.861.992.849 (2)172.2
C7—H7A···O1ii0.932.6263.546 (2)170.7
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationOmondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm, 7, 690–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, C. N., Cowan, J. A., Schultz, A. J., Young, V. G., Trouw, F. R. & Sykes, A. G. (2003). J. Phys. Chem. B, 107, 7601–7606.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds