organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1766-o1767

3-(Adamantan-1-yl)-1-[(4-benzyl­piperazin-1-yl)meth­yl]-4-[(E)-(2-hy­dr­oxy­benzyl­­idene)amino]-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 May 2012; accepted 10 May 2012; online 19 May 2012)

In the title compound, C31H38N6OS, the conformation about the N=C [1.285 (2) Å] imine bond is E. The piperazine ring has a chair conformation and occupies a position almost perpendicular to the plane through the triazole ring; the benzene ring forms a dihedral angle of 31.95 (10)° with the triazole ring. Overall, the mol­ecule has the shape of a flattened bowl. The hy­droxy group is disordered over two positions. The major component has a site-occupancy factor of 0.762 (3) and forms an intra­molecular O—H⋯N(imine) bond to close an S(6) loop. The minor component of the disordered hy­droxy group forms an O—H⋯N(piperazine) hydrogen bond. These, along with C—H⋯S and C—H⋯N inter­actions, link mol­ecules into a three-dimensional architecture.

Related literature

For the diverse biological activities of adamantane derivatives, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For related structural studies, see: Kadi et al. (2011[Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.]); El-Emam et al. (2012[El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657-o658.]). For the synthesis of the precursor to the title compound, see: Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.])

[Scheme 1]

Experimental

Crystal data
  • C31H38N6OS

  • Mr = 542.73

  • Monoclinic, P 21 /n

  • a = 10.6015 (5) Å

  • b = 12.0283 (7) Å

  • c = 22.7865 (12) Å

  • β = 101.222 (4)°

  • V = 2850.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.570, Tmax = 1.000

  • 11447 measured reflections

  • 6530 independent reflections

  • 4526 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.125

  • S = 1.02

  • 6530 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 1.89 2.632 (2) 147
O1′—H1o′⋯N5i 0.84 1.92 2.714 (6) 158
C13—H13A⋯S1ii 0.99 2.68 3.650 (2) 166
C30—H30⋯N6iii 0.95 2.54 3.484 (3) 172
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were reported to exhibit marked anti-bacterial and anti-inflammatory activities (Kadi et al., 2007; Kadi et al., 2010). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of on-going structural studies (Kadi et al., 2011; El-Emam et al., 2012), we synthesized the title compound (I) as a potential chemotherapeutic agent. Herein, we describe the crystal and molecular structure of (I).

In (I), Fig. 1, the conformation about the N1C25 [1.285 (2) Å] imine bond is E. The piperazinyl ring, having a chair conformation, projects almost normal to the plane through the triazole ring (r.m.s. deviation = 0.014 Å) as seen in the value of the N3—N4—C13—N5 torsion angle = -67.3 (2)°. By contrast, the benzene ring is splayed with respect to the triazole ring with the C25—N1—N2—C11 torsion angle being -153.92 (17)°; the dihedral angle between the rings is 31.95 (10)°. Overall, the molecule has the shape of a flattened bowl. As noted below, the hydroxy group is disordered over two positions. The major component is aligned to allow the formation of an intramolecular OH···N(imine) bond to close an S(6) loop, Table 1.

In the crystal packing, the minor component of the disordered hydroxy group forms an O—H···N(piperazinyl) hydrogen bond; Table 1. Additional links between molecules are of the type C—H···S and C—H···N, Table 1, to consolidate the crystal packing, Fig. 2.

Related literature top

For the diverse biological activities of adamantane derivatives, see: Vernier et al. (1969); El-Emam et al. (2004); Kadi et al. (2007, 2010). For related structural studies, see: Kadi et al. (2011); El-Emam et al. (2012). For the synthesis of the precursor to the title compound, see: Al-Omar et al. (2010)

Experimental top

A mixture of 3-(1-adamantyl)-4-(2-hydroxybenzylideneamino)-4H-1,2,4-triazole-5-thiol (709 mg, 2 mmol), prepared following literature methods (Al-Omar et al., 2010), 1-benzylpiperazine (353 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min. when a clear solution was obtained. Stirring was continued for 12 h. at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added and the mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 413 mg (38%) of the title compound as colourless crystals. M.pt: 437–439 K. Crystals were obtained by slow evaporation of its CHCl3:EtOH (1:1; 5 ml) solution at room temperature. 1H NMR (DMSO-d6, 500.13 MHz): δ 1.71 (br. s, 6H, adamantane-H), 2.04 (s, 3H, adamantane-H), 2.09 (s, 6H, adamantane-H), 2.37 (br. s, 4H, piperazine-H), 2.72 (s, 4H, piperazine-H), 3.49 (s, 2H, PhCH2), 5.16 (s, 2H, CH2), 6.98–7.03 (m, 2H, Ar—H), 7.23–7.32 (m, 5H, Ar—H), 7.44–7.47 (m, 2H, Ar—H), 9.85 (s, 1H, CH N), 10.50 (br. s, 1H, OH) p.p.m. 13C NMR (DMSO-d6, 125.76 MHz): δ 27.18, 34.73, 35.92, 38.10 (adamantane-C), 49.93, 52.47 (piperazine-C), 62.08 (PhCH2), 68.69 (CH2), 116.77, 118.28, 119.80, 126.68, 126.85, 128.09, 128.82, 134.44, 138.01, 158.56 (Ar—C), 154.20 (triazole C-5), 162.01 p.p.m.

Refinement top

The H-atoms were placed in calculated positions [O—H = 0.84 Å and C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(O,C)] and were included in the refinement in the riding model approximation. The hydroxy group was disordered over two positions. Each component was refined independently and the major component has a site occupancy factor = 0.762 (3). A reflection, i.e. (12 2 8), was omitted from the final cycles of refinement owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The O—H···S, C—H···S and C—H···N are shown as blue, orange, and purple dashed lines, respectively.
3-(Adamantan-1-yl)-1-[(4-benzylpiperazin-1-yl)methyl]-4-[(E)-(2- hydroxybenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C31H38N6OSF(000) = 1160
Mr = 542.73Dx = 1.265 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3530 reflections
a = 10.6015 (5) Åθ = 2.3–27.5°
b = 12.0283 (7) ŵ = 0.15 mm1
c = 22.7865 (12) ÅT = 100 K
β = 101.222 (4)°Prism, colourless
V = 2850.1 (3) Å30.40 × 0.40 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6530 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4526 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.3°
ω scanh = 139
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1015
Tmin = 0.570, Tmax = 1.000l = 2029
11447 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.042P)2 + 0.843P]
where P = (Fo2 + 2Fc2)/3
6530 reflections(Δ/σ)max = 0.001
364 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C31H38N6OSV = 2850.1 (3) Å3
Mr = 542.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6015 (5) ŵ = 0.15 mm1
b = 12.0283 (7) ÅT = 100 K
c = 22.7865 (12) Å0.40 × 0.40 × 0.10 mm
β = 101.222 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6530 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4526 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 1.000Rint = 0.032
11447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
6530 reflectionsΔρmin = 0.29 e Å3
364 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.26003 (5)0.62548 (5)0.73271 (3)0.03659 (16)
O10.67165 (14)0.49724 (17)0.61888 (8)0.0329 (6)0.762 (3)
H1o0.64980.54660.64100.049*0.762 (3)
O1'0.2282 (5)0.4574 (5)0.5670 (3)0.0324 (18)0.238 (3)
H1o'0.18590.40490.57800.049*0.238 (3)
N10.51345 (13)0.62441 (13)0.66474 (7)0.0240 (4)
N20.48195 (13)0.70959 (13)0.70132 (7)0.0222 (3)
N30.51922 (14)0.86006 (14)0.75723 (7)0.0261 (4)
N40.40900 (13)0.80618 (14)0.76589 (7)0.0265 (4)
N50.41461 (14)0.82682 (15)0.87387 (7)0.0280 (4)
N60.61744 (15)0.77152 (15)0.97143 (7)0.0307 (4)
C10.68951 (16)0.82020 (17)0.69971 (8)0.0229 (4)
C20.74105 (17)0.93454 (18)0.72398 (9)0.0290 (4)
H2A0.68060.99360.70610.035*
H2B0.74790.93660.76790.035*
C30.87413 (18)0.95560 (19)0.70855 (9)0.0351 (5)
H30.90701.02980.72450.042*
C40.8622 (2)0.9539 (2)0.64047 (9)0.0386 (5)
H4A0.80291.01330.62210.046*
H4B0.94740.96770.63020.046*
C50.81110 (19)0.84063 (19)0.61607 (9)0.0348 (5)
H50.80380.83950.57160.042*
C60.67807 (17)0.82016 (18)0.63125 (8)0.0278 (4)
H6A0.64390.74770.61460.033*
H6B0.61770.87920.61320.033*
C70.78629 (16)0.73016 (18)0.72866 (9)0.0281 (4)
H7A0.79460.73210.77270.034*
H7B0.75430.65570.71440.034*
C80.91771 (17)0.7508 (2)0.71237 (10)0.0364 (5)
H80.97930.69150.73040.044*
C90.90309 (18)0.7490 (2)0.64414 (10)0.0380 (5)
H9A0.98810.76020.63320.046*
H9B0.86950.67580.62850.046*
C100.96774 (19)0.8648 (2)0.73648 (10)0.0388 (6)
H10A0.97680.86610.78050.047*
H10B1.05340.87850.72670.047*
C110.56314 (16)0.79885 (16)0.71860 (8)0.0231 (4)
C120.38254 (16)0.71301 (17)0.73315 (8)0.0261 (4)
C130.34350 (17)0.84426 (19)0.81387 (9)0.0301 (5)
H13A0.32500.92470.80830.036*
H13B0.26010.80510.80950.036*
C140.52571 (18)0.90045 (18)0.89159 (9)0.0335 (5)
H14A0.49960.97860.88270.040*
H14B0.59320.88150.86870.040*
C150.5775 (2)0.88674 (19)0.95780 (10)0.0386 (5)
H15A0.65200.93690.97030.046*
H15B0.51030.90750.98050.046*
C160.50592 (17)0.6981 (2)0.95405 (9)0.0339 (5)
H16A0.43950.71700.97750.041*
H16B0.53230.61990.96280.041*
C170.45078 (17)0.71111 (18)0.88788 (9)0.0298 (5)
H17A0.51540.68750.86440.036*
H17B0.37420.66280.87660.036*
C180.6755 (2)0.7621 (2)1.03506 (9)0.0417 (6)
H18A0.60780.77401.05880.050*
H18B0.73990.82201.04550.050*
C190.74004 (17)0.65195 (19)1.05285 (9)0.0310 (5)
C200.75362 (17)0.6155 (2)1.11188 (9)0.0344 (5)
H200.71750.65781.13970.041*
C210.81892 (19)0.5186 (2)1.13025 (9)0.0405 (6)
H210.82860.49561.17080.049*
C220.87039 (19)0.4547 (2)1.09039 (10)0.0410 (6)
H220.91450.38751.10310.049*
C230.85679 (18)0.4899 (2)1.03140 (10)0.0382 (5)
H230.89140.44651.00350.046*
C240.79293 (18)0.5884 (2)1.01311 (9)0.0347 (5)
H240.78540.61250.97290.042*
C250.41941 (16)0.57102 (17)0.63287 (8)0.0248 (4)
H250.33350.59140.63430.030*
C260.44301 (16)0.48029 (17)0.59477 (8)0.0240 (4)
C270.33739 (17)0.42259 (18)0.56174 (8)0.0283 (5)
H270.25290.44350.56540.034*0.762 (3)
C280.35374 (19)0.3367 (2)0.52428 (9)0.0359 (5)
H280.28110.30010.50130.043*
C290.47679 (19)0.3037 (2)0.52021 (9)0.0370 (5)
H290.48830.24410.49440.044*
C300.58288 (19)0.35642 (19)0.55309 (9)0.0341 (5)
H300.66690.33170.55080.041*
C310.56677 (17)0.44516 (18)0.58934 (8)0.0276 (4)
H310.64010.48290.61090.033*0.238 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (3)0.0351 (3)0.0467 (3)0.0086 (2)0.0159 (2)0.0070 (3)
O10.0223 (9)0.0354 (13)0.0382 (11)0.0003 (8)0.0007 (7)0.0151 (10)
O1'0.022 (3)0.035 (4)0.039 (4)0.011 (3)0.001 (2)0.004 (3)
N10.0281 (8)0.0193 (9)0.0243 (8)0.0006 (7)0.0045 (6)0.0031 (7)
N20.0220 (7)0.0188 (9)0.0253 (8)0.0006 (6)0.0035 (6)0.0023 (7)
N30.0268 (8)0.0241 (10)0.0272 (8)0.0007 (7)0.0049 (6)0.0011 (8)
N40.0265 (8)0.0235 (10)0.0303 (9)0.0012 (7)0.0077 (6)0.0013 (8)
N50.0276 (8)0.0261 (10)0.0319 (9)0.0049 (7)0.0098 (6)0.0022 (8)
N60.0379 (9)0.0291 (11)0.0245 (8)0.0028 (8)0.0045 (6)0.0043 (8)
C10.0238 (9)0.0221 (11)0.0226 (9)0.0035 (8)0.0043 (7)0.0013 (8)
C20.0367 (10)0.0246 (11)0.0257 (10)0.0061 (9)0.0060 (8)0.0048 (9)
C30.0399 (11)0.0299 (13)0.0362 (12)0.0135 (9)0.0090 (8)0.0107 (10)
C40.0456 (12)0.0371 (14)0.0355 (12)0.0161 (10)0.0141 (9)0.0040 (11)
C50.0422 (11)0.0376 (14)0.0274 (11)0.0156 (10)0.0133 (8)0.0103 (10)
C60.0323 (10)0.0268 (12)0.0236 (10)0.0056 (8)0.0038 (7)0.0013 (9)
C70.0250 (9)0.0281 (12)0.0294 (10)0.0006 (8)0.0006 (7)0.0009 (9)
C80.0239 (10)0.0380 (14)0.0457 (13)0.0016 (9)0.0028 (8)0.0058 (11)
C90.0290 (10)0.0391 (14)0.0495 (13)0.0104 (9)0.0166 (9)0.0165 (12)
C100.0299 (10)0.0471 (16)0.0383 (12)0.0105 (10)0.0041 (8)0.0063 (12)
C110.0257 (9)0.0207 (11)0.0214 (9)0.0021 (8)0.0008 (7)0.0022 (8)
C120.0242 (9)0.0266 (12)0.0274 (10)0.0033 (8)0.0052 (7)0.0021 (9)
C130.0282 (10)0.0295 (12)0.0340 (11)0.0085 (9)0.0094 (8)0.0026 (10)
C140.0407 (11)0.0219 (12)0.0376 (12)0.0025 (9)0.0068 (8)0.0055 (10)
C150.0472 (12)0.0302 (13)0.0372 (12)0.0036 (10)0.0055 (9)0.0079 (11)
C160.0319 (10)0.0371 (14)0.0354 (11)0.0039 (9)0.0134 (8)0.0050 (11)
C170.0265 (9)0.0278 (12)0.0356 (11)0.0005 (8)0.0074 (8)0.0021 (10)
C180.0562 (13)0.0440 (16)0.0245 (11)0.0063 (11)0.0072 (9)0.0062 (11)
C190.0303 (10)0.0360 (13)0.0270 (10)0.0021 (9)0.0061 (7)0.0032 (10)
C200.0299 (10)0.0482 (15)0.0255 (10)0.0077 (10)0.0064 (8)0.0057 (11)
C210.0436 (12)0.0486 (16)0.0270 (11)0.0115 (11)0.0015 (9)0.0031 (11)
C220.0397 (12)0.0388 (15)0.0405 (13)0.0021 (10)0.0019 (9)0.0027 (12)
C230.0368 (11)0.0407 (15)0.0376 (12)0.0005 (10)0.0088 (9)0.0040 (11)
C240.0377 (11)0.0416 (14)0.0262 (10)0.0008 (10)0.0097 (8)0.0006 (10)
C250.0248 (9)0.0248 (11)0.0235 (9)0.0002 (8)0.0020 (7)0.0033 (9)
C260.0292 (9)0.0205 (11)0.0217 (9)0.0020 (8)0.0037 (7)0.0014 (8)
C270.0283 (10)0.0304 (12)0.0254 (10)0.0076 (8)0.0035 (7)0.0021 (9)
C280.0397 (11)0.0362 (13)0.0307 (11)0.0144 (10)0.0041 (8)0.0065 (11)
C290.0477 (12)0.0324 (13)0.0322 (11)0.0070 (10)0.0107 (9)0.0106 (11)
C300.0372 (11)0.0314 (13)0.0344 (11)0.0005 (9)0.0090 (8)0.0060 (10)
C310.0300 (10)0.0258 (11)0.0259 (10)0.0032 (8)0.0026 (7)0.0008 (9)
Geometric parameters (Å, º) top
S1—C121.670 (2)C9—H9A0.9900
O1—C311.338 (2)C9—H9B0.9900
O1—H1o0.8400C10—H10A0.9900
O1'—C271.259 (6)C10—H10B0.9900
O1'—H1o'0.8400C13—H13A0.9900
N1—C251.285 (2)C13—H13B0.9900
N1—N21.402 (2)C14—C151.511 (3)
N2—C111.384 (2)C14—H14A0.9900
N2—C121.391 (2)C14—H14B0.9900
N3—C111.301 (2)C15—H15A0.9900
N3—N41.384 (2)C15—H15B0.9900
N4—C121.345 (3)C16—C171.515 (3)
N4—C131.477 (2)C16—H16A0.9900
N5—C131.442 (2)C16—H16B0.9900
N5—C171.462 (3)C17—H17A0.9900
N5—C141.466 (3)C17—H17B0.9900
N6—C181.465 (3)C18—C191.509 (3)
N6—C151.465 (3)C18—H18A0.9900
N6—C161.467 (3)C18—H18B0.9900
C1—C111.507 (2)C19—C241.384 (3)
C1—C61.541 (3)C19—C201.395 (3)
C1—C21.542 (3)C20—C211.378 (3)
C1—C71.548 (3)C20—H200.9500
C2—C31.540 (3)C21—C221.381 (3)
C2—H2A0.9900C21—H210.9500
C2—H2B0.9900C22—C231.390 (3)
C3—C101.529 (3)C22—H220.9500
C3—C41.532 (3)C23—C241.387 (3)
C3—H31.0000C23—H230.9500
C4—C51.530 (3)C24—H240.9500
C4—H4A0.9900C25—C261.446 (3)
C4—H4B0.9900C25—H250.9500
C5—C91.527 (3)C26—C271.405 (3)
C5—C61.536 (2)C26—C311.407 (2)
C5—H51.0000C27—C281.373 (3)
C6—H6A0.9900C27—H270.9500
C6—H6B0.9900C28—C291.384 (3)
C7—C81.530 (3)C28—H280.9500
C7—H7A0.9900C29—C301.378 (3)
C7—H7B0.9900C29—H290.9500
C8—C101.533 (3)C30—C311.381 (3)
C8—C91.532 (3)C30—H300.9500
C8—H81.0000C31—H310.9500
C31—O1—H1o109.5N2—C12—S1130.17 (15)
C27—O1'—H1o'109.5N5—C13—N4114.97 (15)
C25—N1—N2116.93 (15)N5—C13—H13A108.5
C11—N2—C12108.71 (15)N4—C13—H13A108.5
C11—N2—N1121.94 (14)N5—C13—H13B108.5
C12—N2—N1128.61 (15)N4—C13—H13B108.5
C11—N3—N4104.76 (15)H13A—C13—H13B107.5
C12—N4—N3113.70 (14)N5—C14—C15109.01 (18)
C12—N4—C13126.25 (16)N5—C14—H14A109.9
N3—N4—C13119.47 (16)C15—C14—H14A109.9
C13—N5—C17114.32 (17)N5—C14—H14B109.9
C13—N5—C14114.64 (17)C15—C14—H14B109.9
C17—N5—C14110.63 (15)H14A—C14—H14B108.3
C18—N6—C15109.38 (17)N6—C15—C14110.42 (18)
C18—N6—C16112.46 (17)N6—C15—H15A109.6
C15—N6—C16109.15 (16)C14—C15—H15A109.6
C11—C1—C6112.95 (14)N6—C15—H15B109.6
C11—C1—C2108.80 (15)C14—C15—H15B109.6
C6—C1—C2108.42 (16)H15A—C15—H15B108.1
C11—C1—C7108.15 (15)N6—C16—C17109.94 (17)
C6—C1—C7110.25 (16)N6—C16—H16A109.7
C2—C1—C7108.17 (15)C17—C16—H16A109.7
C3—C2—C1109.95 (16)N6—C16—H16B109.7
C3—C2—H2A109.7C17—C16—H16B109.7
C1—C2—H2A109.7H16A—C16—H16B108.2
C3—C2—H2B109.7N5—C17—C16110.46 (18)
C1—C2—H2B109.7N5—C17—H17A109.6
H2A—C2—H2B108.2C16—C17—H17A109.6
C10—C3—C4109.31 (18)N5—C17—H17B109.6
C10—C3—C2109.67 (18)C16—C17—H17B109.6
C4—C3—C2109.30 (16)H17A—C17—H17B108.1
C10—C3—H3109.5N6—C18—C19114.52 (18)
C4—C3—H3109.5N6—C18—H18A108.6
C2—C3—H3109.5C19—C18—H18A108.6
C5—C4—C3109.49 (18)N6—C18—H18B108.6
C5—C4—H4A109.8C19—C18—H18B108.6
C3—C4—H4A109.8H18A—C18—H18B107.6
C5—C4—H4B109.8C24—C19—C20118.6 (2)
C3—C4—H4B109.8C24—C19—C18121.94 (19)
H4A—C4—H4B108.2C20—C19—C18119.41 (19)
C9—C5—C4109.74 (17)C21—C20—C19120.7 (2)
C9—C5—C6109.24 (17)C21—C20—H20119.7
C4—C5—C6109.68 (17)C19—C20—H20119.7
C9—C5—H5109.4C20—C21—C22120.7 (2)
C4—C5—H5109.4C20—C21—H21119.6
C6—C5—H5109.4C22—C21—H21119.6
C5—C6—C1109.46 (15)C21—C22—C23119.1 (2)
C5—C6—H6A109.8C21—C22—H22120.5
C1—C6—H6A109.8C23—C22—H22120.5
C5—C6—H6B109.8C24—C23—C22120.2 (2)
C1—C6—H6B109.8C24—C23—H23119.9
H6A—C6—H6B108.2C22—C23—H23119.9
C8—C7—C1110.02 (17)C19—C24—C23120.7 (2)
C8—C7—H7A109.7C19—C24—H24119.6
C1—C7—H7A109.7C23—C24—H24119.6
C8—C7—H7B109.7N1—C25—C26120.69 (16)
C1—C7—H7B109.7N1—C25—H25119.7
H7A—C7—H7B108.2C26—C25—H25119.7
C7—C8—C10109.03 (17)C27—C26—C31117.66 (18)
C7—C8—C9109.07 (15)C27—C26—C25118.77 (16)
C10—C8—C9109.61 (19)C31—C26—C25123.56 (16)
C7—C8—H8109.7O1'—C27—C28122.6 (3)
C10—C8—H8109.7O1'—C27—C26115.9 (3)
C9—C8—H8109.7C28—C27—C26121.40 (18)
C5—C9—C8110.21 (18)C28—C27—H27119.3
C5—C9—H9A109.6C26—C27—H27119.3
C8—C9—H9A109.6C27—C28—C29119.47 (18)
C5—C9—H9B109.6C27—C28—H28120.3
C8—C9—H9B109.6C29—C28—H28120.3
H9A—C9—H9B108.1C30—C29—C28120.8 (2)
C3—C10—C8109.80 (16)C30—C29—H29119.6
C3—C10—H10A109.7C28—C29—H29119.6
C8—C10—H10A109.7C31—C30—C29119.85 (19)
C3—C10—H10B109.7C31—C30—H30120.1
C8—C10—H10B109.7C29—C30—H30120.1
H10A—C10—H10B108.2O1—C31—C30118.39 (18)
N3—C11—N2110.28 (16)O1—C31—C26120.87 (19)
N3—C11—C1123.49 (17)C30—C31—C26120.74 (17)
N2—C11—C1126.09 (17)C30—C31—H31119.6
N4—C12—N2102.50 (15)C26—C31—H31119.6
N4—C12—S1127.33 (14)
C25—N1—N2—C11153.92 (17)C11—N2—C12—N41.88 (19)
C25—N1—N2—C1237.0 (3)N1—N2—C12—N4172.08 (16)
C11—N3—N4—C120.5 (2)C11—N2—C12—S1177.78 (15)
C11—N3—N4—C13171.33 (16)N1—N2—C12—S17.6 (3)
C11—C1—C2—C3176.65 (15)C17—N5—C13—N457.1 (2)
C6—C1—C2—C360.2 (2)C14—N5—C13—N472.1 (2)
C7—C1—C2—C359.4 (2)C12—N4—C13—N5103.4 (2)
C1—C2—C3—C1059.7 (2)N3—N4—C13—N567.3 (2)
C1—C2—C3—C460.1 (2)C13—N5—C14—C15170.69 (16)
C10—C3—C4—C560.4 (2)C17—N5—C14—C1558.3 (2)
C2—C3—C4—C559.7 (2)C18—N6—C15—C14176.07 (17)
C3—C4—C5—C959.7 (2)C16—N6—C15—C1460.5 (2)
C3—C4—C5—C660.3 (2)N5—C14—C15—N660.0 (2)
C9—C5—C6—C159.5 (2)C18—N6—C16—C17179.65 (17)
C4—C5—C6—C160.8 (2)C15—N6—C16—C1758.8 (2)
C11—C1—C6—C5179.12 (17)C13—N5—C17—C16171.07 (15)
C2—C1—C6—C560.2 (2)C14—N5—C17—C1657.7 (2)
C7—C1—C6—C558.0 (2)N6—C16—C17—N557.8 (2)
C11—C1—C7—C8178.13 (16)C15—N6—C18—C19170.56 (18)
C6—C1—C7—C857.9 (2)C16—N6—C18—C1968.0 (2)
C2—C1—C7—C860.5 (2)N6—C18—C19—C2428.6 (3)
C1—C7—C8—C1061.0 (2)N6—C18—C19—C20155.13 (18)
C1—C7—C8—C958.6 (2)C24—C19—C20—C210.4 (3)
C4—C5—C9—C858.9 (2)C18—C19—C20—C21176.06 (19)
C6—C5—C9—C861.4 (2)C19—C20—C21—C221.1 (3)
C7—C8—C9—C560.9 (2)C20—C21—C22—C230.7 (3)
C10—C8—C9—C558.4 (2)C21—C22—C23—C240.3 (3)
C4—C3—C10—C860.2 (2)C20—C19—C24—C230.7 (3)
C2—C3—C10—C859.6 (2)C18—C19—C24—C23177.0 (2)
C7—C8—C10—C360.3 (2)C22—C23—C24—C191.1 (3)
C9—C8—C10—C359.1 (2)N2—N1—C25—C26178.69 (16)
N4—N3—C11—N21.70 (19)N1—C25—C26—C27178.57 (18)
N4—N3—C11—C1174.38 (16)N1—C25—C26—C310.6 (3)
C12—N2—C11—N32.4 (2)C31—C26—C27—O1'179.0 (3)
N1—N2—C11—N3173.33 (15)C25—C26—C27—O1'1.8 (4)
C12—N2—C11—C1173.59 (17)C31—C26—C27—C281.6 (3)
N1—N2—C11—C12.6 (3)C25—C26—C27—C28179.19 (19)
C6—C1—C11—N3130.8 (2)O1'—C27—C28—C29179.2 (4)
C2—C1—C11—N310.4 (2)C26—C27—C28—C292.0 (3)
C7—C1—C11—N3106.9 (2)C27—C28—C29—C300.3 (3)
C6—C1—C11—N253.8 (3)C28—C29—C30—C311.8 (3)
C2—C1—C11—N2174.19 (17)C29—C30—C31—O1177.4 (2)
C7—C1—C11—N268.5 (2)C29—C30—C31—C262.2 (3)
N3—N4—C12—N20.9 (2)C27—C26—C31—O1179.11 (19)
C13—N4—C12—N2172.05 (16)C25—C26—C31—O11.7 (3)
N3—N4—C12—S1178.77 (14)C27—C26—C31—C300.5 (3)
C13—N4—C12—S17.6 (3)C25—C26—C31—C30178.67 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.841.892.632 (2)147
O1—H1o···N5i0.841.922.714 (6)158
C13—H13A···S1ii0.992.683.650 (2)166
C30—H30···N6iii0.952.543.484 (3)172
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC31H38N6OS
Mr542.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.6015 (5), 12.0283 (7), 22.7865 (12)
β (°) 101.222 (4)
V3)2850.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.570, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11447, 6530, 4526
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.125, 1.02
No. of reflections6530
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.841.892.632 (2)147
O1'—H1o'···N5i0.841.922.714 (6)158
C13—H13A···S1ii0.992.683.650 (2)166
C30—H30···N6iii0.952.543.484 (3)172
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1766-o1767
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds