metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{2-[4-(Di­methyl­amino)­phen­yl]diazen-1-ium-1-yl}pyridinium tetra­chlorido­zincate

aDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: nararak.le@psu.ac.th

(Received 16 May 2012; accepted 24 May 2012; online 31 May 2012)

The title compound, (C13H16N4)[ZnCl4], consists of a tetra­hedral [ZnCl4]2− anion and a 2-{2-[4-(dimethyl­amino)­phen­yl]diazen-1-ium-1-yl}pyridinium dication. The pyridinium-N atom is syn to the azo bond which allows for the formation of an intramolecular N—H⋯N hydrogen bond. In the crystal, the cation and anion are held together by N—H⋯Cl hydrogen-bond inter­actions involving the pyridinium and diazen-1-ium N atoms. ππ stacking inter­actions occur between the pyridine and benzene rings of adjacent cations [centroid–centroid distances = 3.6270 (18) and 3.8685 (18) Å]; the stacks are parallel to the a axis.

Related literature

For background to azo complexes, see: Chand et al. (2003[Chand, B. G., Ray, U. S., Cheng, J., Lu, T.-H. & Sinha, C. (2003). Polyhedron, 22, 1213-1219.]); Das et al. (2006[Das, D., Chand, B. G., Sarker, K. K., Dinda, J. & Sinha, C. (2006). Polyhedron, 25, 2333-2340.]); Arslan (2007[Arslan, F. (2007). Dyes Pigm. 75, 521-525.]). For structures of related azoimine compounds and complexes, see: Panneerselvam et al. (2000[Panneerselvam, K., Hansongnern, K., Rattanawit, N., Ling-Liao, F. & Lu, T.-H. (2000). Anal. Sci. 16, 1107-1108.]); Leesakul et al. (2010[Leesakul, N., Yoopensuk, S., Pakawatchai, C., Saithong, S. & Hansongnern, K. (2010). Acta Cryst. E66, o1923.], 2011[Leesakul, N., Pakawatchai, C., Saithong, S., Tantirungrotechai, Y. & Kwanplod, K. (2011). Acta Cryst. E67, m955-m956.]). For structure of tetra­chloro­zincate (II), see: Harrison (2005[Harrison, W. T. A. (2005). Acta Cryst. E61, m1951-m1952.]); Valdés-Martínez et al. (2005[Valdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590-m1592.]); Bringley & Rajeswaran (2006[Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.]); Xu et al. (2005[Xu, G., Cui, Y.-B., Huang, W. & Gou, S.-H. (2005). Acta Cryst. E61, m2443-m2445.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H16N4)[ZnCl4]

  • Mr = 435.47

  • Monoclinic, P 21 /n

  • a = 7.4556 (4) Å

  • b = 21.4126 (10) Å

  • c = 11.1924 (5) Å

  • β = 99.883 (1)°

  • V = 1760.28 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 K

  • 0.18 × 0.17 × 0.04 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003)[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.699, Tmax = 0.929

  • 16401 measured reflections

  • 3094 independent reflections

  • 2687 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.10

  • 3094 reflections

  • 209 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.89 (2) 2.21 (3) 2.595 (3) 106 (2)
N2—H2A⋯Cl3i 0.90 (2) 2.45 (2) 3.322 (3) 165 (3)
N1—H1A⋯Cl1ii 0.89 (2) 2.37 (2) 3.173 (3) 150 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrea et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The molecule existing azoimine,—NN—CN—, functional group is known to have strong π-acidity and to efficiently stabilize transition metal ions (Arslan, 2007). However, the chemistry of zinc with the azoimine moiety has remained less explored. There has been a substantial investigation of the chemistry of Zn(II) complexes of N-donor heterocycles (Das et al., 2006 and Chand et al., 2003) as possible optical materials. In an effort towards the design of azoimine containing ligands we recently reported the crystal structures of N,N-dimethyl-4-[(2-pyridyldiazenyl]aniline (dmazpy) ligand (Leesakul et al., 2010) and the distorted tetrahedral geometry of a neutral Zn(II) coordination compound with N,N-diethyl-4-[(2-pyridyldiazenyl]aniline (deazpy) ligand, [ZnCl2(Cl15H18N4)2] or [ZnCl2(deazpy)2] (Leesakul et al., 2011).

Herein, we have a similar Zn(II) complex synthesis pathway with differences in the ligand type and the purification method, the ionic structure of N,N-dimethyl-4-[(2-pyridyliumdiazenylium]aniline tetrachlorozincate(II), (C13H16N4)[ZnCl4] or (H2dmazpy).[ZnCl4], was obtained (Scheme I). The title compound, Fig.1, contains an alternating part of an anionic tetrahedral [ZnCl4]2- and pyridyliumazenylium cation, (H2dmazpy)2+. The structure is commonly observed in other related compounds e.g. 4-tert-Butyl-2,6-bis[imidazolium-1-yl)methyl]phenol tetrachloro zincate(II) (Xu et al., 2005), bis(quinolinium)tetrachlorozincate dehydrate (Valdés-Martínez et al., 2005) and p-Phenylenediammonium tetrachlorozincate (II) (Bringley et al., 2006).

The mean value of the Zn—Cl bond distance of ZnCl42- anion is 2.266 (8) Å which is generally observed [2.268 (4) Å] (Harrison, 2005). The Cl—Zn—Cl bond angles in Fig. 1 deviate from 109.5° only slightly [108.19 (3)°-111.53 (3)°]. The cationic species (H2dmazpy)2+ is doubly protonated on the pyridine N1 and azo N2 due to their higher electron density. The N atom of the pyridine ring of the cation adopts a cis-orientation with respect to the azo moiety (—N2 N3—) which is in contrast to the trans-geometry of the free dmazpy ligand (Leesakul et al., 2010). However, it is similar to an observation in a related crystal structure of 2-(4-hydroxyphenylazo)pyridine (3:1) tetrafluoroborate (Panneerselvam et al., 2000). Nevertheless, only single a protonation on the azo N3 was found. In the title compound, the dihedral angle of mean plane of pyridine-azo-phenyl rings is 2.38 (15)°. The NN distance of the (H2dmazpy)2+ is 1.313 (3) Å which is obviously longer than that of the free dmazpy ligand, 1.257 (16) Å. It may be caused by the protonation on the N atom of azo group which decreases the azo bond strength in comparison with the related free dmazpy ligand.

It is worth noting that the two Cl atoms of [Zn—Cl4]2- are linked to the protonated pyridine H1A and the protonated N-azo H2A via H-bonding, with an N1···Cl1 distance of 3.173 (3) Å and an N2···Cl3 distance of 3.322 (3) Å, respectively. (see Fig. 2 and Table 1). In the crystal structure, the intermolecular π-π stacking interactions (Fig. 3) occur between adjacent pyridine (Cg1) and phenyl rings (Cg2). The centroid-centroid distances, Cg1···Cg2, in the stacks which are parallel to the a axis are 3.6270 (18) Å and 3.8685 (18) Å respectively.

Related literature top

For background to azo complexes, see: Chand et al. (2003); Das et al. (2006); Arslan (2007). For structures of related azoimine compounds and complexes, see: Panneerselvam et al. (2000); Leesakul et al. (2010, 2011). For structure of tetrachlorozincate (II), see: Harrison (2005); Valdés-Martínez et al. (2005); Bringley et al. (2006); Xu et al. (2005).

Experimental top

The N,N-dimethyl-4-[2-(pyridyl)diazenyl]aniline) compound was prepared by the method from our previous publication (Leesakul et al., 2010). An acetonitrile solution (20 ml) of The N,N-dimethyl-4-[2-(pyridyl)diazenyl]aniline) (0.14 g, 0.6 mmol) and ZnCl2 (0.04 g, 0.3 mmol) was refluxed for 4 h. The warm reaction mixture at 75°C was filtered. The filtrate was extracted with water and CH2Cl2 (1:1) in order to remove the excess N,N-dimethyl-4-[2-(pyridyl)diazenyl]aniline) compound by CH2Cl2. The filtrate was evaporated and washed the precipitate with CH2Cl2 and diethylether, respectively for twice times. The dark red solids were recrystallized with dichloromethane and methanol (1:2) at room temperature for a week. The redbrown crystals were obtained (yield 37%, 0.05 g).

Refinement top

The structure was solved by direct methods refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms on C atoms were constrained, C—H = 0.9300 Å with Uiso(H) = 1.2Ueq(C) for C-sp2 atoms and C—H = 0.9600 Å with Uiso(H) = 1.5Ueq(C) for C-sp3 atoms of methyl groups, respectively. The hydrongen atoms of N atoms are located in a difference map and restrained, N—H = 0.89 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrea et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of [(H2dmazpy)2+(ZnCl4)2-] with thermal ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions of [(H2dmazpy)2+(ZnCl4)2-].
[Figure 3] Fig. 3. The π···π stacking between phenyl and pyriding rings of (H2dmazpy)2+.
2-{2-[4-(Dimethylamino)phenyl]diazen-1-ium-1-yl}pyridinium tetrachloridozincate top
Crystal data top
(C13H16N4)[ZnCl4]F(000) = 880
Mr = 435.47Dx = 1.643 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3620 reflections
a = 7.4556 (4) Åθ = 2.7–23.6°
b = 21.4126 (10) ŵ = 2.00 mm1
c = 11.1924 (5) ÅT = 293 K
β = 99.883 (1)°Block, redbrown
V = 1760.28 (15) Å30.18 × 0.17 × 0.04 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3094 independent reflections
Radiation source: fine-focus sealed tube2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Frames, each covering 0.3 ° in ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.699, Tmax = 0.929k = 2525
16401 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.038P)2 + 0.8053P]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max = 0.008
209 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
(C13H16N4)[ZnCl4]V = 1760.28 (15) Å3
Mr = 435.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4556 (4) ŵ = 2.00 mm1
b = 21.4126 (10) ÅT = 293 K
c = 11.1924 (5) Å0.18 × 0.17 × 0.04 mm
β = 99.883 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3094 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2687 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.929Rint = 0.034
16401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.36 e Å3
3094 reflectionsΔρmin = 0.22 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2A0.850 (5)1.0694 (15)0.076 (3)0.078 (12)*
H1A0.605 (4)0.9976 (9)0.157 (3)0.048 (9)*
Zn10.31545 (5)0.131012 (15)0.31166 (3)0.03901 (12)
Cl10.53360 (12)0.10101 (4)0.20333 (8)0.0551 (2)
Cl20.27049 (11)0.05405 (4)0.44071 (7)0.0493 (2)
Cl30.05128 (12)0.14947 (4)0.18109 (7)0.0590 (2)
Cl40.41086 (13)0.21647 (3)0.42151 (7)0.0553 (2)
N10.6143 (3)1.03805 (11)0.1729 (2)0.0392 (6)
C10.5358 (4)1.06175 (15)0.2791 (3)0.0428 (7)
H10.47521.03560.33920.051*
C20.5442 (4)1.12383 (15)0.2993 (3)0.0467 (8)
H20.48961.14060.37330.056*
C30.6348 (4)1.16232 (15)0.2090 (3)0.0465 (8)
H30.63961.20520.22190.056*
C40.7171 (4)1.13728 (14)0.1010 (3)0.0448 (7)
H40.77911.16260.04000.054*
C50.7062 (4)1.07333 (14)0.0843 (2)0.0383 (7)
N20.7867 (4)1.04376 (12)0.0205 (2)0.0426 (6)
N30.7675 (3)0.98290 (11)0.0249 (2)0.0416 (6)
C60.8345 (4)0.95095 (13)0.1231 (2)0.0361 (6)
C70.9312 (4)0.97440 (14)0.2352 (2)0.0423 (7)
H70.95281.01710.24420.051*
C80.9916 (4)0.93585 (15)0.3278 (3)0.0452 (7)
H81.05360.95240.40000.054*
C90.9629 (4)0.86986 (15)0.3183 (3)0.0430 (7)
C100.8646 (5)0.84604 (15)0.2046 (3)0.0500 (8)
H100.84240.80340.19530.060*
C110.8059 (4)0.88491 (14)0.1132 (3)0.0451 (7)
H110.74440.86860.04060.054*
N41.0275 (4)0.83274 (14)0.4091 (2)0.0580 (8)
C121.1324 (6)0.8561 (2)0.5244 (3)0.0789 (13)
H12A1.25900.85830.51810.118*
H12B1.11690.82810.58900.118*
H12C1.08940.89690.54110.118*
C131.0056 (8)0.7651 (2)0.4030 (4)0.1017 (17)
H13A1.06380.74890.33940.152*
H13B0.87840.75490.38670.152*
H13C1.06040.74700.47900.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0420 (2)0.0397 (2)0.0336 (2)0.00047 (15)0.00148 (14)0.00352 (14)
Cl10.0547 (5)0.0528 (5)0.0623 (5)0.0067 (4)0.0225 (4)0.0154 (4)
Cl20.0582 (5)0.0471 (4)0.0393 (4)0.0050 (4)0.0010 (3)0.0049 (3)
Cl30.0521 (5)0.0764 (6)0.0420 (4)0.0008 (4)0.0100 (4)0.0068 (4)
Cl40.0763 (6)0.0344 (4)0.0496 (4)0.0049 (4)0.0055 (4)0.0063 (3)
N10.0417 (14)0.0384 (14)0.0374 (13)0.0002 (11)0.0067 (11)0.0037 (11)
C10.0406 (17)0.0515 (18)0.0347 (15)0.0010 (14)0.0015 (13)0.0043 (14)
C20.0456 (18)0.058 (2)0.0344 (16)0.0057 (15)0.0001 (14)0.0040 (14)
C30.0498 (19)0.0415 (17)0.0477 (18)0.0028 (14)0.0068 (15)0.0051 (14)
C40.0456 (18)0.0466 (18)0.0398 (17)0.0047 (14)0.0008 (14)0.0094 (14)
C50.0327 (15)0.0524 (18)0.0297 (14)0.0057 (13)0.0054 (12)0.0029 (13)
N20.0463 (15)0.0449 (15)0.0353 (14)0.0000 (12)0.0033 (11)0.0046 (11)
N30.0438 (15)0.0418 (14)0.0394 (13)0.0019 (11)0.0084 (11)0.0007 (11)
C60.0349 (15)0.0420 (16)0.0326 (14)0.0010 (12)0.0092 (12)0.0003 (12)
C70.0467 (18)0.0425 (16)0.0374 (16)0.0050 (14)0.0064 (13)0.0020 (13)
C80.0451 (18)0.0538 (19)0.0355 (16)0.0011 (15)0.0034 (14)0.0026 (14)
C90.0403 (17)0.0527 (18)0.0387 (16)0.0078 (14)0.0141 (14)0.0064 (14)
C100.061 (2)0.0394 (17)0.0510 (19)0.0001 (15)0.0144 (17)0.0018 (15)
C110.0525 (19)0.0450 (17)0.0367 (16)0.0015 (14)0.0048 (14)0.0056 (14)
N40.0671 (19)0.0623 (18)0.0488 (16)0.0211 (15)0.0216 (15)0.0134 (14)
C120.086 (3)0.107 (3)0.042 (2)0.045 (3)0.004 (2)0.017 (2)
C130.166 (5)0.062 (3)0.081 (3)0.032 (3)0.033 (3)0.031 (2)
Geometric parameters (Å, º) top
Zn1—Cl42.2508 (8)C6—C71.427 (4)
Zn1—Cl22.2539 (8)C6—C111.431 (4)
Zn1—Cl32.2766 (8)C7—C81.341 (4)
Zn1—Cl12.2815 (9)C7—H70.9300
N1—C11.332 (4)C8—C91.430 (4)
N1—C51.338 (4)C8—H80.9300
N1—H1A0.889 (17)C9—N41.314 (4)
C1—C21.352 (4)C9—C101.448 (4)
C1—H10.9300C10—C111.333 (4)
C2—C31.387 (4)C10—H100.9300
C2—H20.9300C11—H110.9300
C3—C41.368 (4)N4—C131.458 (5)
C3—H30.9300N4—C121.476 (5)
C4—C51.386 (4)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—N21.376 (4)C12—H12C0.9600
N2—N31.313 (3)C13—H13A0.9600
N2—H2A0.901 (18)C13—H13B0.9600
N3—C61.318 (4)C13—H13C0.9600
Cl4—Zn1—Cl2108.19 (3)C8—C7—C6121.0 (3)
Cl4—Zn1—Cl3111.53 (3)C8—C7—H7119.5
Cl2—Zn1—Cl3109.32 (3)C6—C7—H7119.5
Cl4—Zn1—Cl1109.38 (4)C7—C8—C9121.7 (3)
Cl2—Zn1—Cl1109.43 (3)C7—C8—H8119.2
Cl3—Zn1—Cl1108.95 (4)C9—C8—H8119.2
C1—N1—C5122.5 (3)N4—C9—C8120.7 (3)
C1—N1—H1A121 (2)N4—C9—C10122.0 (3)
C5—N1—H1A117 (2)C8—C9—C10117.4 (3)
N1—C1—C2119.9 (3)C11—C10—C9120.3 (3)
N1—C1—H1120.1C11—C10—H10119.8
C2—C1—H1120.1C9—C10—H10119.8
C1—C2—C3119.5 (3)C10—C11—C6122.2 (3)
C1—C2—H2120.2C10—C11—H11118.9
C3—C2—H2120.2C6—C11—H11118.9
C4—C3—C2120.0 (3)C9—N4—C13122.8 (3)
C4—C3—H3120.0C9—N4—C12122.7 (3)
C2—C3—H3120.0C13—N4—C12114.5 (3)
C3—C4—C5118.6 (3)N4—C12—H12A109.5
C3—C4—H4120.7N4—C12—H12B109.5
C5—C4—H4120.7H12A—C12—H12B109.5
N1—C5—N2117.7 (3)N4—C12—H12C109.5
N1—C5—C4119.5 (3)H12A—C12—H12C109.5
N2—C5—C4122.8 (3)H12B—C12—H12C109.5
N3—N2—C5117.0 (2)N4—C13—H13A109.5
N3—N2—H2A129 (2)N4—C13—H13B109.5
C5—N2—H2A114 (2)H13A—C13—H13B109.5
N2—N3—C6121.2 (2)N4—C13—H13C109.5
N3—C6—C7127.8 (3)H13A—C13—H13C109.5
N3—C6—C11114.7 (3)H13B—C13—H13C109.5
C7—C6—C11117.5 (3)
C5—N1—C1—C21.4 (5)C11—C6—C7—C80.5 (4)
N1—C1—C2—C30.0 (5)C6—C7—C8—C90.4 (5)
C1—C2—C3—C41.0 (5)C7—C8—C9—N4178.2 (3)
C2—C3—C4—C50.5 (5)C7—C8—C9—C100.4 (5)
C1—N1—C5—N2178.1 (3)N4—C9—C10—C11177.9 (3)
C1—N1—C5—C41.8 (4)C8—C9—C10—C110.6 (5)
C3—C4—C5—N10.8 (5)C9—C10—C11—C60.8 (5)
C3—C4—C5—N2179.1 (3)N3—C6—C11—C10179.7 (3)
N1—C5—N2—N30.4 (4)C7—C6—C11—C100.7 (5)
C4—C5—N2—N3179.5 (3)C8—C9—N4—C13178.5 (4)
C5—N2—N3—C6177.6 (3)C10—C9—N4—C130.1 (5)
N2—N3—C6—C70.7 (5)C8—C9—N4—C120.2 (5)
N2—N3—C6—C11178.8 (3)C10—C9—N4—C12178.2 (3)
N3—C6—C7—C8180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.89 (2)2.21 (3)2.595 (3)106 (2)
N2—H2A···Cl3i0.90 (2)2.45 (2)3.322 (3)165 (3)
N1—H1A···Cl1ii0.89 (2)2.37 (2)3.173 (3)150 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C13H16N4)[ZnCl4]
Mr435.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4556 (4), 21.4126 (10), 11.1924 (5)
β (°) 99.883 (1)
V3)1760.28 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.18 × 0.17 × 0.04
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.699, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
16401, 3094, 2687
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.10
No. of reflections3094
No. of parameters209
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), Mercury (Macrea et al., 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.89 (2)2.21 (3)2.595 (3)106 (2)
N2—H2A···Cl3i0.896 (18)2.449 (19)3.322 (3)165 (3)
N1—H1A···Cl1ii0.889 (17)2.37 (2)3.173 (3)150 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

We acknowledge the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support.

References

First citationArslan, F. (2007). Dyes Pigm. 75, 521–525.  Web of Science CSD CrossRef CAS Google Scholar
First citationBringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChand, B. G., Ray, U. S., Cheng, J., Lu, T.-H. & Sinha, C. (2003). Polyhedron, 22, 1213–1219.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, D., Chand, B. G., Sarker, K. K., Dinda, J. & Sinha, C. (2006). Polyhedron, 25, 2333–2340.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeesakul, N., Pakawatchai, C., Saithong, S., Tantirungrotechai, Y. & Kwanplod, K. (2011). Acta Cryst. E67, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeesakul, N., Yoopensuk, S., Pakawatchai, C., Saithong, S. & Hansongnern, K. (2010). Acta Cryst. E66, o1923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPanneerselvam, K., Hansongnern, K., Rattanawit, N., Ling-Liao, F. & Lu, T.-H. (2000). Anal. Sci. 16, 1107–1108.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValdés-Martínez, J., Muñoz, O. & Toscano, R. A. (2005). Acta Cryst. E61, m1590–m1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Cui, Y.-B., Huang, W. & Gou, S.-H. (2005). Acta Cryst. E61, m2443–m2445.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds