metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(1H-benzotriazol-1-yl)meth­yl]-2-methyl-1H-imdazole-κN3}di­chlorido­zinc

aSchool of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China
*Correspondence e-mail: yanghy2009@yahoo.com.cn

(Received 16 February 2012; accepted 16 May 2012; online 26 May 2012)

In the mononuclear title compound, [ZnCl2(C11H11N5)2], the ZnII atom is coordinated by two Cl atoms and two imidazole N atoms in a distorted tetra­hedral geometry. Adjacent complex mol­ecules are stacked through aromatic ππ inter­actions; the closest distance between adjacent aromatic rings is 3.598 (2) Å.

Related literature

For an introduction to metal-organic networks, see: Chen et al. (2001[Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021-1023.]). For general background to complexes constructed from N-heterocyclic ligands, see: Yang et al. (2009[Yang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049-4056.]); Meng et al. (2009[Meng, X.-R., Zhu, X.-Q., Qi, Y.-F., Hou, H.-W. & Fan, Y.-T. (2009). J. Mol. Struct. 934, 28-36.]); Zhao et al. (2012a[Zhao, L., Liu, B., Jin, G. & Meng, X. (2012a). Acta Cryst. E68, m139-m140.],b[Zhao, L., Liu, B., Li, T. & Meng, X. (2012b). Acta Cryst. E68, m162.]). For ππ inter­actions, see: Janiak et al. (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H11N5)2]

  • Mr = 562.79

  • Triclinic, [P \overline 1]

  • a = 8.1625 (16) Å

  • b = 12.692 (3) Å

  • c = 13.290 (3) Å

  • α = 65.52 (3)°

  • β = 79.47 (3)°

  • γ = 84.02 (3)°

  • V = 1231.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 295 K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: numerical (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.780, Tmax = 0.807

  • 9045 measured reflections

  • 4291 independent reflections

  • 3870 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 1.02

  • 4291 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, metal-organic networks have been widely developed because of the charming structure topologies and applications in various areas (Chen et al., 2001). The flexible multidentate N-heterocyclic ligands are good candidates for constructing metal-organic networks due to their diverse coordination modes (Yang et al., 2009; Meng et al., 2009; Zhao et al., 2012a; Zhao et al., 2012b). In this work, we selected a new N-heterocyclic compound 1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imdazol) as ligand, generating a new coordination compound, Zn(C11H11N5)2Cl2, (I), which is reported here. In the I, the Zn atom is four-coordinated by two N atoms from two ligands and two Cl atoms in a distorted tetrahedral geometry with the dihedral angle of 84.1 (2)° between the N6/Zn1/N10 and Cl1/Zn1/Cl2 planes (Fig. 1). In the crystal structure, the two adjacent mononuclear structure units are stacked through the aromatic ππ-stacking interactions (the closest distance between adjacent aromatic rings is 3.598 (2)Å), forming a quasi-dinuclear structure (Fig. 2), and these quasi-dinuclear structure units are further linked by intermolecular interactions to form a three-dimensional supramolecular network (Fig. 3).

Related literature top

For an introduction to metal-organic networks, see: Chen et al. (2001). For general background to complexes constructed from N-heterocyclic ligands, see: Yang et al. (2009); Meng et al. (2009); Zhao et al. (2012a,b). For ππ interactions, see: Janiak et al. (2000).

Experimental top

A methanol solution (5 ml) of 1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imdazol) (21.3 mg, 0.1 mmol) was added dropwise into a methanol–aqueous solution (3 ml) of ZnCl2 (0.05 mmol, 6.8 mg). The precipitate was filtered and the resulting solution was left at room temperature. After three days, good quality colourless crystals were obtained from the filtrate and dried in air.

Refinement top

H atoms were generated geometrically, with C—H = 0.96, 0.97 and 0.93Å for methyl, methylene and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title nolecule, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The ππ-stacking interactions between the two adjacent mononuclear structure units. Symmetry code: (i) -x, -y, -z.
[Figure 3] Fig. 3. View of the crystal packing along the a axis.
Bis{1-[(1H-benzotriazol-1-yl)methyl]-2-methyl-1H-imdazole- κN3}dichloridozinc top
Crystal data top
[ZnCl2(C11H11N5)2]Z = 2
Mr = 562.79F(000) = 576
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1625 (16) ÅCell parameters from 3518 reflections
b = 12.692 (3) Åθ = 2.5–26.0°
c = 13.290 (3) ŵ = 1.25 mm1
α = 65.52 (3)°T = 295 K
β = 79.47 (3)°Block, colourless
γ = 84.02 (3)°0.21 × 0.20 × 0.18 mm
V = 1231.3 (6) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
4291 independent reflections
Radiation source: fine-focus sealed tube3870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 99
Absorption correction: numerical
(REQAB; Jacobson, 1998)
k = 1515
Tmin = 0.780, Tmax = 0.807l = 1515
9045 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.550P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4291 reflectionsΔρmax = 0.25 e Å3
318 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (4)
Crystal data top
[ZnCl2(C11H11N5)2]γ = 84.02 (3)°
Mr = 562.79V = 1231.3 (6) Å3
Triclinic, P1Z = 2
a = 8.1625 (16) ÅMo Kα radiation
b = 12.692 (3) ŵ = 1.25 mm1
c = 13.290 (3) ÅT = 295 K
α = 65.52 (3)°0.21 × 0.20 × 0.18 mm
β = 79.47 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
4291 independent reflections
Absorption correction: numerical
(REQAB; Jacobson, 1998)
3870 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.807Rint = 0.020
9045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4291 reflectionsΔρmin = 0.21 e Å3
318 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.26096 (3)0.74531 (2)0.46846 (2)0.03355 (10)
C10.0640 (4)0.7685 (2)0.6732 (2)0.0512 (7)
H1A0.05890.72330.62990.077*
H1B0.17130.80720.67500.077*
H1C0.04690.71860.74810.077*
C20.6003 (3)0.3826 (2)0.7613 (2)0.0409 (6)
H2A0.56110.30450.80440.049*
H2B0.69080.37960.70390.049*
C30.5257 (4)0.2904 (3)1.1385 (2)0.0641 (8)
H30.44950.24231.19630.077*
C40.1027 (4)0.8220 (3)1.1020 (2)0.0606 (9)
H40.06620.77021.17480.073*
C50.6498 (4)0.3382 (3)1.1651 (2)0.0613 (8)
H50.65430.32041.23990.074*
C60.7635 (4)0.4097 (3)1.0851 (2)0.0531 (7)
H60.84460.44231.10320.064*
C70.2358 (5)0.8891 (3)1.0776 (3)0.0692 (10)
H70.29050.88391.13510.083*
C80.6422 (3)0.6102 (3)0.5543 (2)0.0539 (7)
H8A0.63010.66180.47890.081*
H8B0.72570.55130.55330.081*
H8C0.67530.65300.59190.081*
C90.2172 (3)0.9801 (2)0.8796 (2)0.0505 (7)
H90.25511.03170.80700.061*
C100.2928 (4)0.9661 (3)0.9675 (3)0.0662 (9)
H100.38591.00920.95430.079*
C110.2104 (3)1.0085 (2)0.5854 (2)0.0475 (6)
H110.24521.07550.58650.057*
C120.5123 (3)0.3121 (2)1.0295 (2)0.0499 (7)
H120.42940.28061.01180.060*
C130.0228 (3)0.8343 (2)1.0126 (2)0.0423 (6)
C140.2853 (3)0.9530 (2)0.5215 (2)0.0449 (6)
H140.38220.97580.46980.054*
C150.7536 (3)0.4324 (2)0.9738 (2)0.0399 (6)
C160.2988 (3)0.4307 (2)0.7382 (2)0.0424 (6)
H160.25150.36730.79930.051*
C170.0800 (3)0.9127 (2)0.90483 (19)0.0361 (5)
C180.0675 (3)0.85568 (19)0.62160 (18)0.0337 (5)
C190.0489 (3)0.9778 (2)0.72795 (19)0.0390 (6)
H19A0.03631.05820.71340.047*
H19B0.16040.97020.71640.047*
C200.6307 (3)0.38376 (19)0.94853 (19)0.0336 (5)
C210.2188 (3)0.5156 (2)0.6632 (2)0.0413 (6)
H210.10430.52070.66320.050*
C220.4817 (3)0.5555 (2)0.61400 (18)0.0337 (5)
Cl10.45953 (8)0.83942 (6)0.32652 (5)0.04840 (17)
Cl20.03843 (8)0.70774 (5)0.41322 (5)0.04285 (16)
N10.1179 (3)0.78472 (19)1.01042 (18)0.0547 (6)
N20.8546 (3)0.4955 (2)0.87684 (19)0.0533 (6)
N30.1494 (3)0.82872 (19)0.90881 (18)0.0495 (6)
N40.8026 (3)0.48747 (19)0.79389 (18)0.0489 (6)
N50.0311 (2)0.90653 (16)0.84270 (15)0.0354 (4)
N60.3321 (2)0.59458 (16)0.58550 (15)0.0348 (4)
N70.0725 (2)0.94689 (16)0.64867 (15)0.0350 (4)
N80.6644 (2)0.42128 (16)0.83454 (16)0.0364 (4)
N90.4650 (2)0.45578 (16)0.70724 (15)0.0347 (4)
N100.1957 (2)0.85662 (16)0.54477 (15)0.0355 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03514 (17)0.03640 (16)0.02612 (15)0.00623 (11)0.00370 (11)0.00895 (11)
C10.0563 (18)0.0530 (16)0.0458 (15)0.0214 (13)0.0089 (13)0.0238 (13)
C20.0439 (15)0.0411 (13)0.0426 (14)0.0049 (11)0.0164 (12)0.0192 (11)
C30.059 (2)0.077 (2)0.0445 (17)0.0119 (16)0.0098 (15)0.0178 (16)
C40.085 (2)0.0578 (18)0.0370 (15)0.0294 (17)0.0215 (16)0.0194 (14)
C50.065 (2)0.083 (2)0.0399 (16)0.0015 (17)0.0088 (15)0.0293 (16)
C60.0531 (18)0.0654 (18)0.0510 (16)0.0007 (14)0.0160 (14)0.0306 (15)
C70.078 (2)0.082 (2)0.075 (2)0.043 (2)0.050 (2)0.053 (2)
C80.0376 (15)0.0638 (18)0.0451 (15)0.0141 (13)0.0039 (12)0.0053 (13)
C90.0418 (15)0.0581 (17)0.0529 (16)0.0030 (13)0.0104 (13)0.0222 (14)
C100.0482 (18)0.082 (2)0.087 (3)0.0086 (16)0.0295 (18)0.047 (2)
C110.0572 (17)0.0461 (15)0.0410 (14)0.0214 (13)0.0012 (13)0.0186 (12)
C120.0381 (15)0.0631 (17)0.0495 (16)0.0100 (13)0.0024 (13)0.0237 (14)
C130.0550 (17)0.0365 (13)0.0316 (13)0.0073 (12)0.0056 (12)0.0125 (11)
C140.0412 (15)0.0540 (16)0.0412 (14)0.0205 (12)0.0042 (12)0.0209 (12)
C150.0368 (14)0.0440 (14)0.0427 (14)0.0005 (11)0.0105 (11)0.0196 (11)
C160.0402 (15)0.0434 (14)0.0347 (13)0.0129 (11)0.0036 (11)0.0053 (11)
C170.0384 (14)0.0367 (13)0.0330 (12)0.0015 (10)0.0064 (11)0.0143 (10)
C180.0385 (14)0.0339 (12)0.0277 (12)0.0056 (10)0.0062 (11)0.0102 (10)
C190.0469 (15)0.0379 (13)0.0315 (12)0.0023 (11)0.0077 (11)0.0135 (10)
C200.0304 (12)0.0365 (12)0.0338 (12)0.0024 (10)0.0063 (10)0.0144 (10)
C210.0297 (13)0.0474 (14)0.0388 (14)0.0090 (11)0.0015 (11)0.0094 (11)
C220.0332 (13)0.0389 (13)0.0284 (11)0.0043 (10)0.0040 (10)0.0127 (10)
Cl10.0465 (4)0.0581 (4)0.0330 (3)0.0189 (3)0.0043 (3)0.0112 (3)
Cl20.0389 (3)0.0525 (4)0.0368 (3)0.0112 (3)0.0077 (3)0.0147 (3)
N10.0725 (17)0.0467 (13)0.0350 (12)0.0167 (12)0.0062 (11)0.0091 (10)
N20.0482 (14)0.0619 (15)0.0474 (13)0.0193 (11)0.0101 (11)0.0148 (12)
N30.0565 (14)0.0484 (12)0.0400 (12)0.0222 (11)0.0037 (11)0.0141 (10)
N40.0472 (13)0.0543 (13)0.0394 (12)0.0158 (11)0.0071 (10)0.0096 (10)
N50.0417 (12)0.0358 (10)0.0270 (10)0.0091 (9)0.0025 (9)0.0102 (8)
N60.0319 (11)0.0385 (11)0.0296 (10)0.0057 (8)0.0031 (9)0.0089 (8)
N70.0415 (12)0.0348 (10)0.0263 (9)0.0062 (9)0.0036 (9)0.0093 (8)
N80.0340 (11)0.0387 (11)0.0365 (11)0.0030 (9)0.0090 (9)0.0133 (9)
N90.0363 (11)0.0347 (10)0.0320 (10)0.0029 (8)0.0087 (9)0.0106 (8)
N100.0364 (11)0.0398 (11)0.0309 (10)0.0097 (8)0.0014 (9)0.0145 (9)
Geometric parameters (Å, º) top
Zn1—N62.012 (2)C10—H100.9300
Zn1—N102.035 (2)C11—C141.345 (4)
Zn1—Cl22.2413 (8)C11—N71.370 (3)
Zn1—Cl12.2431 (12)C11—H110.9300
C1—C181.482 (3)C12—C201.383 (4)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—N11.376 (3)
C1—H1C0.9600C13—C171.390 (3)
C2—N81.449 (3)C14—N101.385 (3)
C2—N91.457 (3)C14—H140.9300
C2—H2A0.9700C15—N21.370 (3)
C2—H2B0.9700C15—C201.388 (3)
C3—C121.381 (4)C16—C211.335 (3)
C3—C51.399 (4)C16—N91.374 (3)
C3—H30.9300C16—H160.9300
C4—C71.358 (5)C17—N51.361 (3)
C4—C131.404 (4)C18—N101.319 (3)
C4—H40.9300C18—N71.353 (3)
C5—C61.353 (4)C19—N51.441 (3)
C5—H50.9300C19—N71.458 (3)
C6—C151.401 (4)C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—C101.405 (5)C20—N81.369 (3)
C7—H70.9300C21—N61.383 (3)
C8—C221.477 (3)C21—H210.9300
C8—H8A0.9600C22—N61.329 (3)
C8—H8B0.9600C22—N91.353 (3)
C8—H8C0.9600N1—N31.294 (3)
C9—C101.359 (4)N2—N41.296 (3)
C9—C171.387 (4)N3—N51.360 (3)
C9—H90.9300N4—N81.367 (3)
N6—Zn1—N10106.75 (8)C17—C13—C4120.2 (3)
N6—Zn1—Cl2106.36 (6)C11—C14—N10109.3 (2)
N10—Zn1—Cl2110.35 (6)C11—C14—H14125.4
N6—Zn1—Cl1116.35 (6)N10—C14—H14125.4
N10—Zn1—Cl1103.11 (6)N2—C15—C20109.1 (2)
Cl2—Zn1—Cl1113.66 (3)N2—C15—C6130.3 (2)
C18—C1—H1A109.5C20—C15—C6120.6 (2)
C18—C1—H1B109.5C21—C16—N9106.3 (2)
H1A—C1—H1B109.5C21—C16—H16126.9
C18—C1—H1C109.5N9—C16—H16126.9
H1A—C1—H1C109.5N5—C17—C13104.0 (2)
H1B—C1—H1C109.5N5—C17—C9133.1 (2)
N8—C2—N9114.16 (19)C13—C17—C9122.8 (2)
N8—C2—H2A108.7N10—C18—N7110.1 (2)
N9—C2—H2A108.7N10—C18—C1126.2 (2)
N8—C2—H2B108.7N7—C18—C1123.7 (2)
N9—C2—H2B108.7N5—C19—N7112.75 (19)
H2A—C2—H2B107.6N5—C19—H19A109.0
C12—C3—C5122.4 (3)N7—C19—H19A109.0
C12—C3—H3118.8N5—C19—H19B109.0
C5—C3—H3118.8N7—C19—H19B109.0
C7—C4—C13117.1 (3)H19A—C19—H19B107.8
C7—C4—H4121.5N8—C20—C12133.3 (2)
C13—C4—H4121.5N8—C20—C15103.8 (2)
C6—C5—C3121.8 (3)C12—C20—C15122.8 (2)
C6—C5—H5119.1C16—C21—N6109.7 (2)
C3—C5—H5119.1C16—C21—H21125.2
C5—C6—C15117.0 (3)N6—C21—H21125.2
C5—C6—H6121.5N6—C22—N9109.2 (2)
C15—C6—H6121.5N6—C22—C8126.3 (2)
C4—C7—C10121.6 (3)N9—C22—C8124.6 (2)
C4—C7—H7119.2N3—N1—C13108.5 (2)
C10—C7—H7119.2N4—N2—C15108.6 (2)
C22—C8—H8A109.5N1—N3—N5108.8 (2)
C22—C8—H8B109.5N2—N4—N8108.6 (2)
H8A—C8—H8B109.5C17—N5—N3110.18 (19)
C22—C8—H8C109.5C17—N5—C19129.7 (2)
H8A—C8—H8C109.5N3—N5—C19119.62 (19)
H8B—C8—H8C109.5C22—N6—C21106.54 (19)
C10—C9—C17115.8 (3)C22—N6—Zn1130.58 (16)
C10—C9—H9122.1C21—N6—Zn1122.47 (15)
C17—C9—H9122.1C18—N7—C11107.9 (2)
C9—C10—C7122.5 (3)C18—N7—C19126.8 (2)
C9—C10—H10118.7C11—N7—C19125.3 (2)
C7—C10—H10118.7N4—N8—C20109.87 (19)
C14—C11—N7106.4 (2)N4—N8—C2118.9 (2)
C14—C11—H11126.8C20—N8—C2129.8 (2)
N7—C11—H11126.8C22—N9—C16108.33 (19)
C20—C12—C3115.4 (3)C22—N9—C2126.1 (2)
C20—C12—H12122.3C16—N9—C2125.4 (2)
C3—C12—H12122.3C18—N10—C14106.4 (2)
N1—C13—C17108.6 (2)C18—N10—Zn1129.92 (16)
N1—C13—C4131.1 (3)C14—N10—Zn1123.69 (17)
C12—C3—C5—C60.6 (5)C16—C21—N6—Zn1172.67 (17)
C3—C5—C6—C151.1 (4)N10—Zn1—N6—C2291.4 (2)
C13—C4—C7—C101.0 (4)Cl2—Zn1—N6—C22150.73 (19)
C17—C9—C10—C70.5 (4)Cl1—Zn1—N6—C2223.0 (2)
C4—C7—C10—C91.4 (5)N10—Zn1—N6—C2180.14 (19)
C5—C3—C12—C200.4 (4)Cl2—Zn1—N6—C2137.69 (19)
C7—C4—C13—N1176.0 (3)Cl1—Zn1—N6—C21165.44 (16)
C7—C4—C13—C170.1 (4)N10—C18—N7—C110.2 (3)
N7—C11—C14—N100.3 (3)C1—C18—N7—C11179.7 (2)
C5—C6—C15—N2176.4 (3)N10—C18—N7—C19178.32 (19)
C5—C6—C15—C200.7 (4)C1—C18—N7—C192.1 (4)
N1—C13—C17—N50.3 (3)C14—C11—N7—C180.1 (3)
C4—C13—C17—N5176.4 (2)C14—C11—N7—C19178.1 (2)
N1—C13—C17—C9177.8 (2)N5—C19—N7—C1877.5 (3)
C4—C13—C17—C91.0 (4)N5—C19—N7—C11104.7 (3)
C10—C9—C17—N5175.9 (3)N2—N4—N8—C201.5 (3)
C10—C9—C17—C130.7 (4)N2—N4—N8—C2169.2 (2)
C3—C12—C20—N8176.7 (3)C12—C20—N8—N4176.8 (3)
C3—C12—C20—C150.8 (4)C15—C20—N8—N41.0 (3)
N2—C15—C20—N80.1 (3)C12—C20—N8—C210.9 (4)
C6—C15—C20—N8177.8 (2)C15—C20—N8—C2166.9 (2)
N2—C15—C20—C12178.0 (2)N9—C2—N8—N496.1 (3)
C6—C15—C20—C120.3 (4)N9—C2—N8—C2099.1 (3)
N9—C16—C21—N60.4 (3)N6—C22—N9—C160.4 (3)
C17—C13—N1—N30.5 (3)C8—C22—N9—C16179.2 (2)
C4—C13—N1—N3175.8 (3)N6—C22—N9—C2176.3 (2)
C20—C15—N2—N40.8 (3)C8—C22—N9—C23.3 (4)
C6—C15—N2—N4176.5 (3)C21—C16—N9—C220.1 (3)
C13—N1—N3—N50.5 (3)C21—C16—N9—C2175.9 (2)
C15—N2—N4—N81.4 (3)N8—C2—N9—C2282.1 (3)
C13—C17—N5—N30.0 (3)N8—C2—N9—C16102.7 (3)
C9—C17—N5—N3177.1 (3)N7—C18—N10—C140.4 (3)
C13—C17—N5—C19171.4 (2)C1—C18—N10—C14179.9 (2)
C9—C17—N5—C195.7 (4)N7—C18—N10—Zn1179.89 (14)
N1—N3—N5—C170.3 (3)C1—C18—N10—Zn10.6 (3)
N1—N3—N5—C19172.7 (2)C11—C14—N10—C180.4 (3)
N7—C19—N5—C1779.1 (3)C11—C14—N10—Zn1179.98 (17)
N7—C19—N5—N3110.1 (2)N6—Zn1—N10—C1869.1 (2)
N9—C22—N6—C210.6 (3)Cl2—Zn1—N10—C1846.1 (2)
C8—C22—N6—C21178.9 (2)Cl1—Zn1—N10—C18167.84 (18)
N9—C22—N6—Zn1171.97 (15)N6—Zn1—N10—C14111.50 (19)
C8—C22—N6—Zn18.5 (4)Cl2—Zn1—N10—C14133.32 (18)
C16—C21—N6—C220.7 (3)Cl1—Zn1—N10—C1411.60 (19)

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H11N5)2]
Mr562.79
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.1625 (16), 12.692 (3), 13.290 (3)
α, β, γ (°)65.52 (3), 79.47 (3), 84.02 (3)
V3)1231.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionNumerical
(REQAB; Jacobson, 1998)
Tmin, Tmax0.780, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
9045, 4291, 3870
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.02
No. of reflections4291
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to Zhongyuan University of Technology for financial support and thank Professor Hong-Wei Hou of Zhengzhou University for his help.

References

First citationChen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMeng, X.-R., Zhu, X.-Q., Qi, Y.-F., Hou, H.-W. & Fan, Y.-T. (2009). J. Mol. Struct. 934, 28–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049–4056.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L., Liu, B., Jin, G. & Meng, X. (2012a). Acta Cryst. E68, m139–m140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Liu, B., Li, T. & Meng, X. (2012b). Acta Cryst. E68, m162.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds