organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Chloro-1,3-thia­zol-2-yl)-2,4-di­fluoro­benzamide

aKey Laboratory of the New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Animal Science and Veterinary Pharmaceutics of CAAS, Lanzhou 730050, People's Republic of China
*Correspondence e-mail: lijy1971@163.com

(Received 27 March 2012; accepted 17 May 2012; online 23 May 2012)

The title compound, C10H5ClF2N2OS, was obtained by linking an amino heterocycle and a substituted benzoyl chloride. The dihedral angle between the two rings is 41.2 (2)° and the equalization of the amide C—N bond lengths reveals the existence of conjugation between the benzene ring and the thia­zole unit. In the crystal, pairs of N—H⋯N hydrogen bonds link mol­ecules into inversion dimers. Non-classical C—H⋯F and C—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For synthesis and the biological activity of thia­zolides, see: Ballard et al. (2011[Ballard, T. E., Wang, X., Olekhnovich, I., Koerner, T., Seymour, C., Salamoun, J., Warthan, M., Hoffman, P. S. & Macdonald, T. L. (2011). ChemMedChem, 6, 362-377.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5ClF2N2OS

  • Mr = 274.68

  • Triclinic, [P \overline 1]

  • a = 6.929 (2) Å

  • b = 7.330 (2) Å

  • c = 12.179 (4) Å

  • α = 101.669 (3)°

  • β = 98.277 (3)°

  • γ = 111.796 (3)°

  • V = 545.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 296 K

  • 0.35 × 0.33 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 0.866

  • 3930 measured reflections

  • 1998 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.06

  • 1998 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.15 2.988 (3) 166
C4—H4⋯F2ii 0.93 2.38 3.127 (4) 137
C4—H4⋯O3ii 0.93 2.56 3.329 (4) 140
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitazoxanide, (2-acetyloloxy-N-(5-nitro-2-thiazolyl)benzamide), belonged to nitrothiazole analogue, was developed as a promising compound to treat both human and animal diseases (Ballard et al., 2011). In this paper, we report the synthesis and structure of the title compound, which is a derivative of nitazoxanide. The conjugation between benzene ring and thiazole moiety confirmed the existance of amide anion, which is considered to directly inhibit the PFOR enzyme (key enzyme of central intermidiary matabolism in anaerobic organisms). The classical intermolecular hydrogen bonds N1—H1···N2i forms centrosymmetrical dimers (Table 1). The non-classical intermolecular hydrogen bonds C4—H4···F2ii and C4—H4···O3ii stabilize molecular packing in crystal. Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z.

Related literature top

For synthesis and the biological activity of thiazolides, see: Ballard et al. (2011).

Experimental top

The title compound was obtained according to routine method: to a solution of 5-chlorothiazol-2-amine (1 mmol) in distilled pyridine was added a equimolar amount of 2,4-difluorobenzoyl chloride with stirring. When addition was complete, the reaction mixture was allowed to stand at room temperature and stirred over night. The reaction was judged complete by TLC analysis. The crude product then seperated on dilution was filtered out, washed with 10% NaHCO3 solution, then several times with water. The dry solid was purified by chromatography to give pure compound and the crystals were obtained by recrystalization from CH3OH.

Refinement top

The positions of all H atoms were determined geometrically and refined using a riding model with C—H = 0.93Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom labels. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
N-(5-Chloro-1,3-thiazol-2-yl)-2,4-difluorobenzamide top
Crystal data top
C10H5ClF2N2OSZ = 2
Mr = 274.68F(000) = 276
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Melting point = 428–429 K
a = 6.929 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.330 (2) ÅCell parameters from 2870 reflections
c = 12.179 (4) Åθ = 3.1–28.2°
α = 101.669 (3)°µ = 0.55 mm1
β = 98.277 (3)°T = 296 K
γ = 111.796 (3)°Block, colourless
V = 545.9 (3) Å30.35 × 0.33 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
1998 independent reflections
Radiation source: fine-focus sealed tube1693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ– and ω–scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.831, Tmax = 0.866k = 88
3930 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.4949P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1998 reflectionsΔρmax = 1.25 e Å3
155 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.53 (3)
Crystal data top
C10H5ClF2N2OSγ = 111.796 (3)°
Mr = 274.68V = 545.9 (3) Å3
Triclinic, P1Z = 2
a = 6.929 (2) ÅMo Kα radiation
b = 7.330 (2) ŵ = 0.55 mm1
c = 12.179 (4) ÅT = 296 K
α = 101.669 (3)°0.35 × 0.33 × 0.27 mm
β = 98.277 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1998 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1693 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.866Rint = 0.028
3930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 1.25 e Å3
1998 reflectionsΔρmin = 0.33 e Å3
155 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0517 (5)0.7233 (5)0.9365 (3)0.0438 (7)
C21.2260 (5)0.8083 (5)1.0282 (3)0.0494 (8)
H21.22960.89681.09580.059*
C31.3958 (5)0.7579 (5)1.0168 (3)0.0467 (8)
C41.3945 (5)0.6268 (5)0.9182 (3)0.0464 (7)
H41.51160.59540.91260.056*
C51.2153 (5)0.5432 (5)0.8280 (3)0.0413 (7)
H51.21200.45300.76120.050*
C61.0387 (4)0.5896 (4)0.8336 (2)0.0358 (6)
C70.8392 (5)0.4900 (4)0.7407 (2)0.0390 (7)
C80.6940 (4)0.3522 (4)0.5350 (2)0.0365 (6)
C90.5284 (5)0.2099 (5)0.3514 (3)0.0505 (8)
H90.51660.17330.27220.061*
C100.3587 (5)0.1551 (4)0.3969 (3)0.0447 (7)
Cl10.09389 (14)0.01753 (14)0.32522 (8)0.0662 (4)
F11.5714 (3)0.8434 (3)1.10528 (18)0.0673 (6)
F20.8890 (3)0.7783 (4)0.9458 (2)0.0796 (8)
N10.8646 (4)0.4602 (4)0.62983 (19)0.0376 (6)
H10.99160.51060.61910.045*
N20.7224 (4)0.3246 (4)0.4302 (2)0.0449 (6)
O30.6609 (3)0.4314 (4)0.75914 (18)0.0553 (6)
S10.43196 (11)0.24360 (11)0.54607 (6)0.0421 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0358 (15)0.0438 (16)0.0480 (17)0.0122 (13)0.0149 (13)0.0095 (13)
C20.0483 (18)0.0462 (17)0.0386 (16)0.0079 (14)0.0089 (14)0.0038 (13)
C30.0365 (15)0.0494 (18)0.0420 (16)0.0035 (13)0.0018 (12)0.0198 (14)
C40.0377 (15)0.0559 (19)0.0504 (18)0.0196 (14)0.0119 (14)0.0236 (15)
C50.0396 (15)0.0447 (16)0.0393 (15)0.0156 (13)0.0128 (12)0.0123 (13)
C60.0329 (13)0.0370 (14)0.0339 (14)0.0084 (11)0.0107 (11)0.0119 (11)
C70.0377 (15)0.0413 (15)0.0368 (15)0.0135 (12)0.0117 (12)0.0121 (12)
C80.0339 (13)0.0349 (14)0.0372 (14)0.0094 (11)0.0101 (11)0.0110 (11)
C90.0490 (18)0.0455 (17)0.0361 (16)0.0020 (14)0.0049 (13)0.0052 (13)
C100.0414 (16)0.0335 (15)0.0440 (16)0.0049 (12)0.0006 (13)0.0066 (12)
Cl10.0435 (5)0.0572 (6)0.0666 (6)0.0003 (4)0.0052 (4)0.0058 (4)
F10.0444 (11)0.0784 (14)0.0528 (12)0.0031 (10)0.0082 (9)0.0204 (10)
F20.0495 (12)0.0830 (16)0.0895 (17)0.0280 (11)0.0141 (11)0.0104 (13)
N10.0304 (11)0.0443 (13)0.0336 (12)0.0099 (10)0.0091 (10)0.0111 (10)
N20.0423 (13)0.0449 (14)0.0341 (13)0.0058 (11)0.0096 (11)0.0062 (11)
O30.0349 (11)0.0801 (17)0.0385 (12)0.0114 (11)0.0119 (9)0.0125 (11)
S10.0327 (4)0.0449 (5)0.0426 (5)0.0098 (3)0.0088 (3)0.0114 (3)
Geometric parameters (Å, º) top
C1—F21.343 (4)C7—O31.220 (3)
C1—C21.366 (4)C7—N11.371 (4)
C1—C61.393 (4)C8—N21.306 (4)
C2—C31.374 (5)C8—N11.379 (4)
C2—H20.9300C8—S11.729 (3)
C3—F11.348 (3)C9—C101.334 (5)
C3—C41.374 (5)C9—N21.378 (4)
C4—C51.376 (4)C9—H90.9300
C4—H40.9300C10—Cl11.719 (3)
C5—C61.394 (4)C10—S11.730 (3)
C5—H50.9300N1—H10.8600
C6—C71.480 (4)
F2—C1—C2117.5 (3)O3—C7—N1120.7 (3)
F2—C1—C6119.1 (3)O3—C7—C6123.3 (3)
C2—C1—C6123.4 (3)N1—C7—C6116.0 (2)
C1—C2—C3117.4 (3)N2—C8—N1121.3 (2)
C1—C2—H2121.3N2—C8—S1115.8 (2)
C3—C2—H2121.3N1—C8—S1122.9 (2)
F1—C3—C4119.0 (3)C10—C9—N2115.1 (3)
F1—C3—C2118.5 (3)C10—C9—H9122.5
C4—C3—C2122.5 (3)N2—C9—H9122.5
C3—C4—C5118.3 (3)C9—C10—Cl1127.8 (3)
C3—C4—H4120.9C9—C10—S1111.6 (2)
C5—C4—H4120.9Cl1—C10—S1120.56 (19)
C4—C5—C6122.0 (3)C7—N1—C8122.4 (2)
C4—C5—H5119.0C7—N1—H1118.8
C6—C5—H5119.0C8—N1—H1118.8
C1—C6—C5116.4 (3)C8—N2—C9110.0 (3)
C1—C6—C7120.8 (3)C8—S1—C1087.44 (14)
C5—C6—C7122.6 (3)
F2—C1—C2—C3177.5 (3)C1—C6—C7—N1145.0 (3)
C6—C1—C2—C30.2 (5)C5—C6—C7—N140.5 (4)
C1—C2—C3—F1178.6 (3)N2—C9—C10—Cl1178.5 (2)
C1—C2—C3—C40.3 (5)N2—C9—C10—S10.6 (4)
F1—C3—C4—C5179.1 (3)O3—C7—N1—C84.4 (4)
C2—C3—C4—C50.1 (5)C6—C7—N1—C8173.7 (2)
C3—C4—C5—C60.8 (4)N2—C8—N1—C7179.6 (3)
F2—C1—C6—C5178.1 (3)S1—C8—N1—C70.1 (4)
C2—C1—C6—C50.4 (4)N1—C8—N2—C9179.1 (3)
F2—C1—C6—C77.1 (4)S1—C8—N2—C90.4 (3)
C2—C1—C6—C7175.2 (3)C10—C9—N2—C80.7 (4)
C4—C5—C6—C10.9 (4)N2—C8—S1—C100.1 (2)
C4—C5—C6—C7175.6 (3)N1—C8—S1—C10179.4 (3)
C1—C6—C7—O337.0 (4)C9—C10—S1—C80.3 (3)
C5—C6—C7—O3137.5 (3)Cl1—C10—S1—C8178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.152.988 (3)166
C4—H4···F2ii0.932.383.127 (4)137
C4—H4···O3ii0.932.563.329 (4)140
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H5ClF2N2OS
Mr274.68
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.929 (2), 7.330 (2), 12.179 (4)
α, β, γ (°)101.669 (3), 98.277 (3), 111.796 (3)
V3)545.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.35 × 0.33 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.831, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
3930, 1998, 1693
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.06
No. of reflections1998
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.152.988 (3)166.3
C4—H4···F2ii0.932.383.127 (4)137.1
C4—H4···O3ii0.932.563.329 (4)139.7
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

This research was supported by the earmarked fund for the China Agriculture Research System (CARS-38) and the open fund of the Key Laboratory of the New Animal Drug Project of Gansu Province and the Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture (1610322011011).

References

First citationBallard, T. E., Wang, X., Olekhnovich, I., Koerner, T., Seymour, C., Salamoun, J., Warthan, M., Hoffman, P. S. & Macdonald, T. L. (2011). ChemMedChem, 6, 362–377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds