organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­­oxy­phen­­oxy)acetohydrazide

aCollege of Food Engineering, Jilin Teachers' Institute of Engineering and Technology, 130052 Changchun, Jilin, People's Republic of China
*Correspondence e-mail: lg2003915@163.com

(Received 5 April 2012; accepted 28 May 2012; online 31 May 2012)

The title compound, C9H12N2O3, was synthesized by the reaction of ethyl 2-(4-meth­oxy­phen­oxy)acetate with hydrazine hydrate in ethanol. In the acetohydrazide group, the N—N bond is relatively short [1.413 (2) Å], suggesting some degree of electronic delocalization in the mol­ecule. In the crystal, mol­ecules are linked into sheets lying parallel to the ab plane by N—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For general background to and the biological activity of hydrazides, see: Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Ozdemir et al. (2009[Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhib. Med. Chem. 24, 825-831.]); Ashiq et al. (2009[Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.]); Zhang & Shi (2009[Zhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538.]). For related structures, see: Dutkiewicz et al. (2009[Dutkiewicz, G., Chidan Kumar, C. S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o3189.]); Fun et al. (2009[Fun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184-o1185.], 2010a[Fun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010a). Acta Cryst. E66, o31-o32.],b[Fun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010b). Acta Cryst. E66, o53-o54.], 2011[Fun, H.-K., Quah, C. K., Malladi, S. M. V. A. & Isloor, A. M. (2011). Acta Cryst. E67, o165.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O3

  • Mr = 196.21

  • Orthorhombic, P 21 21 21

  • a = 4.0964 (17) Å

  • b = 6.382 (3) Å

  • c = 35.608 (14) Å

  • V = 930.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.981

  • 4782 measured reflections

  • 1631 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 0.88

  • 1631 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.89 (2) 2.51 (2) 3.155 (2) 130.4 (16)
N1—H1⋯N2ii 0.88 (2) 2.18 (2) 2.984 (2) 152.2 (18)
N2—H2B⋯O3iii 0.91 (2) 2.13 (2) 3.027 (2) 167.5 (18)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazides have been of great interest for many years because they have different biological activities and been used for the synthesis of various heterocyclic compounds (Khattab, 2005; Dutkiewicz et al., 2009; Ozdemir et al., 2009; Ashiq et al., 2009; Zhang & Shi, 2009; Fun et al., 2009, 2010a,b, 2011). In order to search for new hydrazide compounds with higher bioactivity, the title compound, was synthesized. Its molecular and crystal structures were determined. The molecular structure is shown in Fig. 1. In the crystal structure (Fig. 2), molecules are linked into infinite two-dimensional networks by the classical intermolecular N–H···N and N–H···O hydrogen bonds. For parameters of these interactions, see Table 1.

Related literature top

For general background to and the biological activity of hydrazides, see: Khattab (2005); Ozdemir et al. (2009); Ashiq et al. (2009); Zhang & Shi (2009). For related structures, see: Dutkiewicz et al. (2009); Fun et al. (2009, 2010a,b, 2011).

Experimental top

The title compound was synthesized by the reaction of 2-(4-methoxyphenoxy)acetate (1 mmol) with hydrazine hydrate 85% (1.1 mmol) in ethanol (15 ml) under reflux conditions (338 K) for 5 h. The solvent was removed and the solid product recrystallized from ethanol. After six days colourless crystals suitable for X-ray diffraction study were obtained.

Refinement top

The H atoms attached to N atoms were located in a difference Fourier map and allowed to refined freely. The remaining H atoms were placed in calculated positions (C–H = 0.93-0.97Å) and refined as riding atoms and with Uiso(H) = 1.2 or 1.5Ueq(C), respectively. The 609 Friedel pairs were measured.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The structure of the infinite two-dimensional networks formed via hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(4-Methoxyphenoxy)acetohydrazide top
Crystal data top
C9H12N2O3F(000) = 416
Mr = 196.21Dx = 1.400 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2044 reflections
a = 4.0964 (17) Åθ = 2.3–25.2°
b = 6.382 (3) ŵ = 0.11 mm1
c = 35.608 (14) ÅT = 298 K
V = 930.9 (7) Å3Block, colourless
Z = 40.30 × 0.25 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1631 independent reflections
Radiation source: fine-focus sealed tube1503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 44
Tmin = 0.969, Tmax = 0.981k = 77
4782 measured reflectionsl = 4237
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.070P)2 + 0.087P]
where P = (Fo2 + 2Fc2)/3
1631 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C9H12N2O3V = 930.9 (7) Å3
Mr = 196.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.0964 (17) ŵ = 0.11 mm1
b = 6.382 (3) ÅT = 298 K
c = 35.608 (14) Å0.30 × 0.25 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1631 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1503 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.981Rint = 0.021
4782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.09 e Å3
1631 reflectionsΔρmin = 0.15 e Å3
140 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7470 (4)0.5028 (2)0.28285 (3)0.0575 (4)
O30.2287 (3)1.24787 (16)0.45169 (3)0.0492 (3)
O20.2900 (3)0.86238 (18)0.41321 (3)0.0475 (3)
N10.0331 (4)0.9456 (2)0.47495 (3)0.0375 (3)
N20.2052 (4)0.9626 (2)0.50921 (4)0.0409 (4)
C10.9213 (6)0.3121 (3)0.28446 (6)0.0622 (6)
H1A1.11280.33010.29970.093*
H1B0.98440.27120.25960.093*
H1C0.78520.20550.29530.093*
C30.4850 (5)0.7769 (3)0.31370 (4)0.0445 (4)
H30.45830.84040.29040.053*
C70.6851 (5)0.4962 (3)0.35087 (5)0.0456 (4)
H70.79430.36900.35290.055*
C20.6424 (4)0.5884 (3)0.31602 (4)0.0418 (4)
C60.5651 (4)0.5936 (3)0.38255 (4)0.0434 (4)
H60.59520.53170.40590.052*
C90.0652 (4)1.0868 (2)0.44833 (4)0.0354 (4)
C50.4022 (4)0.7803 (2)0.38004 (4)0.0373 (4)
C80.0994 (4)1.0462 (2)0.41147 (4)0.0394 (4)
H8A0.06411.03150.39190.047*
H8B0.23761.16430.40510.047*
C40.3656 (4)0.8742 (3)0.34537 (4)0.0432 (4)
H40.26041.00290.34340.052*
H10.085 (6)0.833 (3)0.4716 (6)0.060 (6)*
H2B0.073 (6)1.041 (3)0.5243 (5)0.063 (6)*
H2A0.384 (6)1.036 (3)0.5048 (5)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0747 (9)0.0574 (7)0.0404 (7)0.0081 (7)0.0097 (7)0.0019 (5)
O30.0573 (8)0.0379 (6)0.0523 (7)0.0129 (6)0.0001 (6)0.0029 (5)
O20.0616 (8)0.0476 (7)0.0333 (6)0.0157 (7)0.0007 (6)0.0033 (5)
N10.0445 (8)0.0316 (7)0.0364 (7)0.0048 (6)0.0010 (6)0.0002 (5)
N20.0459 (9)0.0384 (8)0.0385 (7)0.0022 (7)0.0027 (7)0.0012 (6)
C10.0675 (14)0.0622 (12)0.0570 (12)0.0038 (11)0.0112 (11)0.0109 (9)
C30.0533 (11)0.0464 (9)0.0339 (8)0.0017 (9)0.0018 (8)0.0082 (7)
C70.0549 (11)0.0383 (8)0.0437 (9)0.0064 (8)0.0028 (8)0.0054 (7)
C20.0445 (10)0.0438 (9)0.0369 (9)0.0057 (8)0.0030 (7)0.0010 (7)
C60.0536 (10)0.0429 (9)0.0337 (8)0.0032 (9)0.0010 (7)0.0079 (7)
C90.0363 (8)0.0298 (7)0.0401 (8)0.0019 (7)0.0087 (7)0.0011 (7)
C50.0396 (9)0.0370 (8)0.0354 (8)0.0015 (7)0.0014 (7)0.0010 (6)
C80.0430 (9)0.0361 (8)0.0390 (8)0.0026 (7)0.0032 (7)0.0037 (7)
C40.0495 (10)0.0386 (8)0.0416 (9)0.0032 (8)0.0021 (7)0.0069 (7)
Geometric parameters (Å, º) top
O1—C21.3701 (19)C3—C21.367 (2)
O1—C11.412 (2)C3—C41.377 (2)
O3—C91.2329 (18)C3—H30.9300
O2—C51.3714 (19)C7—C61.379 (2)
O2—C81.410 (2)C7—C21.384 (2)
N1—C91.314 (2)C7—H70.9300
N1—N21.413 (2)C6—C51.368 (2)
N1—H10.88 (2)C6—H60.9300
N2—H2B0.91 (2)C9—C81.498 (2)
N2—H2A0.89 (2)C5—C41.380 (2)
C1—H1A0.9600C8—H8A0.9700
C1—H1B0.9600C8—H8B0.9700
C1—H1C0.9600C4—H40.9300
C2—O1—C1117.82 (13)C3—C2—C7119.18 (15)
C5—O2—C8117.75 (11)O1—C2—C7124.33 (16)
C9—N1—N2121.34 (14)C5—C6—C7120.86 (14)
C9—N1—H1121.3 (13)C5—C6—H6119.6
N2—N1—H1117.2 (14)C7—C6—H6119.6
N1—N2—H2B104.8 (14)O3—C9—N1123.78 (15)
N1—N2—H2A107.4 (13)O3—C9—C8118.28 (13)
H2B—N2—H2A107.8 (19)N1—C9—C8117.92 (13)
O1—C1—H1A109.5C6—C5—O2116.09 (13)
O1—C1—H1B109.5C6—C5—C4119.31 (14)
H1A—C1—H1B109.5O2—C5—C4124.59 (14)
O1—C1—H1C109.5O2—C8—C9110.77 (12)
H1A—C1—H1C109.5O2—C8—H8A109.5
H1B—C1—H1C109.5C9—C8—H8A109.5
C2—C3—C4120.96 (14)O2—C8—H8B109.5
C2—C3—H3119.5C9—C8—H8B109.5
C4—C3—H3119.5H8A—C8—H8B108.1
C6—C7—C2119.79 (16)C3—C4—C5119.86 (15)
C6—C7—H7120.1C3—C4—H4120.1
C2—C7—H7120.1C5—C4—H4120.1
C3—C2—O1116.49 (14)
C4—C3—C2—O1178.88 (17)C7—C6—C5—C41.7 (3)
C4—C3—C2—C70.8 (3)C8—O2—C5—C6175.24 (14)
C1—O1—C2—C3177.62 (16)C8—O2—C5—C45.8 (2)
C1—O1—C2—C72.7 (3)C5—O2—C8—C9167.00 (14)
C6—C7—C2—C30.9 (3)O3—C9—C8—O2176.64 (14)
C6—C7—C2—O1178.80 (17)N1—C9—C8—O24.9 (2)
C2—C7—C6—C50.4 (3)C2—C3—C4—C50.5 (3)
N2—N1—C9—O34.3 (2)C6—C5—C4—C31.7 (3)
N2—N1—C9—C8174.01 (14)O2—C5—C4—C3179.35 (17)
C7—C6—C5—O2179.31 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.89 (2)2.51 (2)3.155 (2)130.4 (16)
N1—H1···N2ii0.88 (2)2.18 (2)2.984 (2)152.2 (18)
N2—H2B···O3iii0.91 (2)2.13 (2)3.027 (2)167.5 (18)
Symmetry codes: (i) x1/2, y+5/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H12N2O3
Mr196.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)4.0964 (17), 6.382 (3), 35.608 (14)
V3)930.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4782, 1631, 1503
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 0.88
No. of reflections1631
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.09, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.89 (2)2.51 (2)3.155 (2)130.4 (16)
N1—H1···N2ii0.88 (2)2.18 (2)2.984 (2)152.2 (18)
N2—H2B···O3iii0.91 (2)2.13 (2)3.027 (2)167.5 (18)
Symmetry codes: (i) x1/2, y+5/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+5/2, z+1.
 

References

First citationAshiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65, o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutkiewicz, G., Chidan Kumar, C. S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o3189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010a). Acta Cryst. E66, o31–o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010b). Acta Cryst. E66, o53–o54.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S. M. V. A. & Isloor, A. M. (2011). Acta Cryst. E67, o165.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184–o1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218-1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhib. Med. Chem. 24, 825-831.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-X. & Shi, Z.-Q. (2009). Acta Cryst. E65, o1538.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds