organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy­anilinium 2-carb­­oxy­acetate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 29 April 2012; accepted 24 May 2012; online 31 May 2012)

In the title compound, C6H8NO+·C3H3O4, the amino N atom is protonated, and one of the carboxyl groups is deprotonated to maintain the charge balance. In the crystal, classical N—H⋯O and O—H⋯O hydrogen bonds connect the ions into a two-dimensional network parallel to the ac plane. In addition, the structure is further stabilized by C—H⋯O and ππ inter­actions [centroid–centroid distance = 4.115 (2) Å].

Related literature

For the structures and properties of related compounds, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]); Xue et al. (2002[Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118-4121.]); Ye et al. (2008[Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S.-P.-D. (2008). Inorg. Chem. 47, 772-774.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO+·C3H3O4

  • Mr = 213.19

  • Monoclinic, P 21 /c

  • a = 5.1416 (1) Å

  • b = 22.5507 (7) Å

  • c = 7.8176 (3) Å

  • β = 97.827 (1)°

  • V = 897.98 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 6380 measured reflections

  • 2040 independent reflections

  • 1611 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.133

  • S = 1.07

  • 2040 reflections

  • 137 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3i 0.82 1.94 2.745 (2) 168
N1—H1A⋯O2ii 0.89 2.10 2.989 (2) 177
N1—H1B⋯O4iii 0.89 2.33 3.090 (2) 144
N1—H1C⋯O2iv 0.89 1.98 2.836 (2) 160
O1—H1⋯O4 0.82 1.65 2.450 (2) 165
C3—H3A⋯O3iii 0.93 2.47 3.398 (3) 175
C8—H8B⋯O1v 0.97 2.31 3.163 (3) 147
Symmetry codes: (i) x+1, y, z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H-bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2001; Huang et al., 1999; Zhang et al., 2001). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new crystal materials have been elaborated (Wang et al., 2002; Xue et al., 2002; Ye et al. ,2008). Herewith, we present the synthesis and crystal structure of the title compound, 4-hydroxyanilinium 2-carboxyacetate.

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit was composed of one 4-hydroxyanilinium cation and one 2-carboxyacetate anion. The protonated N atom was involved in strong intramolecular N–H···O hydrogen bonds with the N···O distances of N1–H1A···O2ii - 2.989 (2)Å; N1–H1B···O4iii - 3.090 (2)Å and N1–H1C···O2iv - 2.836 (2)Å. The N–H···O and O–H···O H-bonding interactions connected the ion units into a 2D network parallel to the ac-plane. The weak non-classical intermolecular C3–H3A···O3iii and C8–H8B···O1v interactions were presented in the crystal structure with C3···O3iii = 3.398 (3)Å and C8···O1v = 3.163 (3)Å, respectively. The crystal packing was further stabilized by aromatic ππ interactions between the benzene rings of the neighbouring cations with the Cg···Cg distances of 4.115 (2)Å (Cg is the centroide of the benzene ring) (Fig. 2 and Table 1). Symmetry codes: (ii) x+1, -y+1/2, z+1/2; (iii) x, -y+1/2, z-1/2; (iv) x, -y+1/2, z+1/2, (v) x-1, y, z.

Related literature top

For the structures and properties of related compounds, see: Chen et al. (2001); Wang et al. (2002); Xue et al. (2002); Huang et al. (1999); Zhang et al. (2001); Ye et al. (2008).

Experimental top

The malonic acid (10 mmol), 4-aminophenol (10 mmol) and ethanol (50 mL) were added into a 100 mL flask. The mixture was stirred at 333 K for 2 h, and then the precipitate was filtrated out. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

All the H atoms attached to C atoms were placed into the idealized positions and treated as riding with C–H = 0.93Å (aromatic) and C–H = 0.97Å (methylene) with Uiso(H) = 1.2Ueq(C). The H atoms based on N and O were placed into the calculated positions with the H–N = 0.89Å and H–O = 0.82Å and refined with Uiso(H) = 1.5Ueq(N and O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the H-bonding and ππ interactions (dotted line).
4-Hydroxyanilinium 2-carboxyacetate top
Crystal data top
C6H8NO+·C3H3O4F(000) = 448
Mr = 213.19Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2040 reflections
a = 5.1416 (1) Åθ = 2.8–27.5°
b = 22.5507 (7) ŵ = 0.13 mm1
c = 7.8176 (3) ÅT = 173 K
β = 97.827 (1)°Block, colourless
V = 897.98 (5) Å30.10 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2040 independent reflections
Radiation source: fine-focus sealed tube1611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.8°
CCD profile fitting scansh = 56
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2827
Tmin = 0.910, Tmax = 1.000l = 1010
6380 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.3433P]
where P = (Fo2 + 2Fc2)/3
2040 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.31 e Å3
5 restraintsΔρmin = 0.40 e Å3
Crystal data top
C6H8NO+·C3H3O4V = 897.98 (5) Å3
Mr = 213.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1416 (1) ŵ = 0.13 mm1
b = 22.5507 (7) ÅT = 173 K
c = 7.8176 (3) Å0.10 × 0.05 × 0.05 mm
β = 97.827 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
2040 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1611 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.041
6380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0505 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
2040 reflectionsΔρmin = 0.40 e Å3
137 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.4476 (3)0.34202 (6)0.35078 (19)0.0191 (3)
H50.58450.35670.39820.029*
O30.1396 (3)0.40201 (6)0.53276 (17)0.0187 (3)
O20.1261 (3)0.43371 (6)0.01270 (17)0.0183 (3)
O10.3518 (3)0.47345 (6)0.22298 (18)0.0184 (3)
H10.32770.47100.32440.028*
O40.2284 (3)0.45183 (6)0.50832 (17)0.0182 (3)
C40.5512 (4)0.16064 (8)0.3365 (2)0.0155 (4)
C30.3222 (4)0.18648 (10)0.2564 (3)0.0193 (4)
H3A0.18870.16300.19950.023*
N10.5772 (4)0.09560 (7)0.3326 (2)0.0193 (4)
H1A0.73830.08530.37960.029*
H1B0.54890.08300.22370.029*
H1C0.46010.07920.39210.029*
C80.0615 (4)0.42836 (9)0.2494 (2)0.0171 (4)
H8A0.12520.38940.21110.021*
H8B0.20600.45590.22240.021*
C90.0095 (4)0.42644 (8)0.4436 (2)0.0152 (4)
C60.7210 (4)0.25601 (9)0.4274 (3)0.0177 (4)
H6A0.85450.27930.48490.021*
C10.4915 (4)0.28237 (8)0.3480 (2)0.0151 (4)
C70.1530 (4)0.44583 (9)0.1445 (2)0.0154 (4)
C50.7508 (4)0.19480 (9)0.4208 (3)0.0179 (4)
H5A0.90470.17700.47300.021*
C20.2936 (4)0.24722 (9)0.2616 (2)0.0184 (4)
H2A0.14090.26480.20680.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0184 (7)0.0138 (7)0.0239 (7)0.0005 (6)0.0019 (6)0.0006 (6)
O30.0210 (7)0.0179 (8)0.0173 (7)0.0017 (6)0.0030 (6)0.0005 (5)
O20.0196 (7)0.0195 (8)0.0159 (7)0.0006 (6)0.0030 (5)0.0005 (5)
O10.0163 (7)0.0186 (8)0.0197 (7)0.0017 (6)0.0003 (5)0.0003 (6)
O40.0172 (7)0.0171 (7)0.0187 (7)0.0012 (6)0.0032 (5)0.0031 (6)
C40.0208 (10)0.0125 (10)0.0146 (9)0.0015 (8)0.0072 (8)0.0004 (7)
C30.0204 (10)0.0195 (11)0.0170 (10)0.0026 (8)0.0006 (8)0.0034 (8)
N10.0257 (9)0.0178 (9)0.0150 (8)0.0002 (8)0.0047 (7)0.0004 (7)
C80.0152 (9)0.0210 (11)0.0146 (9)0.0018 (8)0.0002 (7)0.0008 (8)
C90.0160 (10)0.0111 (9)0.0175 (9)0.0026 (8)0.0006 (7)0.0013 (7)
C60.0173 (10)0.0163 (10)0.0185 (10)0.0016 (8)0.0012 (8)0.0023 (8)
C10.0192 (10)0.0130 (10)0.0131 (9)0.0000 (8)0.0024 (7)0.0001 (7)
C70.0153 (9)0.0115 (9)0.0183 (9)0.0035 (8)0.0010 (7)0.0015 (7)
C50.0156 (9)0.0200 (11)0.0173 (9)0.0018 (8)0.0005 (7)0.0024 (8)
C20.0165 (9)0.0206 (11)0.0169 (10)0.0023 (8)0.0016 (8)0.0007 (8)
Geometric parameters (Å, º) top
O5—C11.365 (2)N1—H1B0.8900
O5—H50.8200N1—H1C0.8900
O3—C91.234 (2)C8—C71.513 (3)
O2—C71.248 (2)C8—C91.513 (3)
O1—C71.280 (2)C8—H8A0.9700
O1—H10.8207C8—H8B0.9700
O4—C91.302 (2)C6—C11.390 (3)
C4—C51.378 (3)C6—C51.391 (3)
C4—C31.384 (3)C6—H6A0.9300
C4—N11.473 (2)C1—C21.390 (3)
C3—C21.379 (3)C5—H5A0.9300
C3—H3A0.9300C2—H2A0.9300
N1—H1A0.8900
C1—O5—H5105.8H8A—C8—H8B107.2
C7—O1—H1102.4O3—C9—O4123.22 (17)
C5—C4—C3120.89 (18)O3—C9—C8119.73 (17)
C5—C4—N1120.19 (18)O4—C9—C8117.06 (17)
C3—C4—N1118.91 (17)C1—C6—C5119.96 (18)
C2—C3—C4119.50 (18)C1—C6—H6A120.0
C2—C3—H3A120.3C5—C6—H6A120.0
C4—C3—H3A120.3O5—C1—C6123.16 (17)
C4—N1—H1A109.5O5—C1—C2117.24 (17)
C4—N1—H1B109.5C6—C1—C2119.59 (18)
H1A—N1—H1B109.5O2—C7—O1123.55 (18)
C4—N1—H1C109.5O2—C7—C8119.03 (17)
H1A—N1—H1C109.5O1—C7—C8117.41 (17)
H1B—N1—H1C109.5C4—C5—C6119.60 (18)
C7—C8—C9117.20 (16)C4—C5—H5A120.2
C7—C8—H8A108.0C6—C5—H5A120.2
C9—C8—H8A108.0C3—C2—C1120.44 (18)
C7—C8—H8B108.0C3—C2—H2A119.8
C9—C8—H8B108.0C1—C2—H2A119.8
C5—C4—C3—C20.2 (3)C9—C8—C7—O119.3 (3)
N1—C4—C3—C2178.95 (17)C3—C4—C5—C60.8 (3)
C7—C8—C9—O3166.29 (18)N1—C4—C5—C6178.33 (17)
C7—C8—C9—O414.4 (3)C1—C6—C5—C40.5 (3)
C5—C6—C1—O5179.28 (18)C4—C3—C2—C10.7 (3)
C5—C6—C1—C20.3 (3)O5—C1—C2—C3178.69 (18)
C9—C8—C7—O2161.91 (18)C6—C1—C2—C31.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.821.942.745 (2)168
N1—H1A···O2ii0.892.102.989 (2)177
N1—H1B···O4iii0.892.333.090 (2)144
N1—H1C···O2iv0.891.982.836 (2)160
O1—H1···O40.821.652.450 (2)165
C3—H3A···O3iii0.932.473.398 (3)175
C8—H8B···O1v0.972.313.163 (3)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H8NO+·C3H3O4
Mr213.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.1416 (1), 22.5507 (7), 7.8176 (3)
β (°) 97.827 (1)
V3)897.98 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6380, 2040, 1611
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.133, 1.07
No. of reflections2040
No. of parameters137
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.40

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.821.942.745 (2)168.2
N1—H1A···O2ii0.892.102.989 (2)176.5
N1—H1B···O4iii0.892.333.090 (2)143.8
N1—H1C···O2iv0.891.982.836 (2)159.8
O1—H1···O40.821.652.450 (2)165.0
C3—H3A···O3iii0.932.473.398 (3)175
C8—H8B···O1v0.972.313.163 (3)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.  CSD CrossRef CAS Google Scholar
First citationYe, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S.-P.-D. (2008). Inorg. Chem. 47, 772–774.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics, 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds