organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Pyrrolo­[2,3-b]pyridin-2-yl)pyridine

aCardinal Tien College of Healthcare & Management, Taipei, Taiwan 231, Republic of China, bInstitute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China, and cDepartment of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China
*Correspondence e-mail: pshuang@ctcn.edu.tw

(Received 1 May 2012; accepted 24 May 2012; online 31 May 2012)

In the title compound, C12H9N3, the dihedral angle between the pyridine and aza­indole rings is 6.20 (2)°. In the crystal, pairs of N—H⋯N hydrogen bonds link mol­ecules into inversion dimers.

Related literature

For the production of luminescent organic/organometallic compounds, see: Liu et al. (2000[Liu, S. F., Wu, Q., Schmider, H. L., Aziz, H., Hu, N. X., Popovic, Z. & Wang, S. (2000). J. Am. Chem. Soc. 122, 3671-3678.]). For related structures, see: Sakamoto et al. (1996[Sakamoto, T., Kondo, Y., Takazawa, N. & Yamanaka, H. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 1927-1934.]); Huang et al. (2011[Huang, P.-H., Lin, K.-L. & Wen, Y.-S. (2011). Acta Cryst. E67, o109.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N3

  • Mr = 195.22

  • Monoclinic, P 21 /c

  • a = 10.1416 (10) Å

  • b = 13.7428 (14) Å

  • c = 6.7395 (7) Å

  • β = 94.331 (2)°

  • V = 936.63 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.55 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.996

  • 7069 measured reflections

  • 2154 independent reflections

  • 1792 reflections with I > 2σa(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.145

  • S = 1.19

  • 2154 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 2.10 2.944 (2) 162
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, has been shown to be an precursor for the production of luminescent organic/organometallic compound (Liu et al., 2000). A one pot synthesis of a 7-azaindole substituted in the 2-position has been achieved by Pd complex catalyzed Cross-coupling reaction of 2-bromopyridine (Sakamoto et al., 1996), in high yield (see Scheme). The molecular structure is shown in Fig. 1. The dihedral angle between the pyridine and azaindole rings is 6.20 (2)°, and that between the pyridine and pyrrole rings at 7-azaindole is 0.35 (2)° (Huang et al., 2011). Weak intermolecular N2—H2···N1i (see Table 1) interactions help to stabilize the crystal structure - formation of centrosymmetrical dimers. Symmetry code: (i) -x+1, -y+2, -z.

Related literature top

For the production of luminescent organic/organometallic compounds, see: Liu et al. (2000). For related structures, see: Sakamoto et al. (1996); Huang et al. (2011).

Experimental top

The compound was synthesized by the following procedure (Liu et al., 2000); (Sakamoto et al., 1996). A solution of 1-(benzenesulfonyl)-2-(2-pyridyl)-7-azaindole (2.00 g, 5.97 mmol), ethanol (340 ml), and 10% aqueous NaOH (34 ml) was heated at reflux overnight. The resulting mixture was concertrated, and the residue was dissolved in CH2Cl2. The organic solution was washed with water and aqueous Na2CO3, dried, and concertrated. The residue was purified by column chromatography using CH2Cl2/CH3OH (20:1) as eluent, followed by recrystallization from CH2Cl2 and hexane to yield 0.82 g (70%) of title compound as a white solid. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature. 1H NMR (CDCl3): 10.90 (br s, 1H), 8.69 (ddd, 1H, J = 4.8, 1.6, 1.0 Hz), 8.46 (dd, 1H, J = 4.8, 1.6 Hz), 7.98 (dd, 1H, J = 7.8, 1.3 Hz), 7.85 (m, 1H), 7.76 (td, 1H, J = 7.8, 1.7 Hz), 7.24 (ddd, 1H, J = 7.8, 4.8, 1.2 Hz), 7.12 (dd, 1H, J = 4.8, 1.8 Hz), 6.99 (d, 1H, J = 1.8 Hz). Anal. Calcd for C12H9N3: C, 73.83; H, 4.65; N, 21.52. Found: C, 73.26; H, 4.48; N, 21.58.

Refinement top

H atoms were located geometrically and treated as riding atoms, with C—H = 0.93Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are shown as small spheres of the arbitrary radii.
2-(1H-Pyrrolo[2,3-b]pyridin-2-yl)pyridine top
Crystal data top
C12H9N3F(000) = 408
Mr = 195.22Dx = 1.384 Mg m3
Dm = 1.384 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1871 reflections
a = 10.1416 (10) Åθ = 2.5–26.3°
b = 13.7428 (14) ŵ = 0.09 mm1
c = 6.7395 (7) ÅT = 200 K
β = 94.331 (2)°Needle, colourless
V = 936.63 (16) Å30.55 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2154 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σa(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.938, Tmax = 0.996k = 1717
7069 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2976P]
where P = (Fo2 + 2Fc2)/3
2154 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H9N3V = 936.63 (16) Å3
Mr = 195.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1416 (10) ŵ = 0.09 mm1
b = 13.7428 (14) ÅT = 200 K
c = 6.7395 (7) Å0.55 × 0.15 × 0.05 mm
β = 94.331 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1792 reflections with I > 2σa(I)
Tmin = 0.938, Tmax = 0.996Rint = 0.056
7069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.19Δρmax = 0.25 e Å3
2154 reflectionsΔρmin = 0.20 e Å3
136 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.66995 (16)0.94501 (12)0.0034 (2)0.0382 (4)
N20.50593 (15)0.92225 (11)0.2357 (2)0.0324 (4)
H20.43940.95130.16840.039*
N30.27130 (16)0.91454 (12)0.4136 (2)0.0371 (4)
C10.7961 (2)0.92562 (16)0.0253 (3)0.0418 (5)
H10.82960.94750.14540.050*
C20.8818 (2)0.87517 (16)0.1101 (3)0.0412 (5)
H2A0.97070.86390.08080.049*
C30.8377 (2)0.84179 (14)0.2859 (3)0.0391 (5)
H30.89480.80700.37900.047*
C40.70684 (19)0.86035 (13)0.3238 (3)0.0333 (4)
C50.62979 (18)0.91210 (13)0.1741 (3)0.0316 (4)
C60.62305 (19)0.84091 (13)0.4777 (3)0.0351 (5)
H60.64660.80730.59840.042*
C70.50115 (19)0.87982 (13)0.4198 (3)0.0323 (4)
C80.37880 (18)0.87873 (13)0.5192 (3)0.0327 (4)
C90.3725 (2)0.84151 (14)0.7108 (3)0.0411 (5)
H90.45010.81790.78280.049*
C100.2536 (2)0.83931 (15)0.7945 (3)0.0465 (6)
H100.24740.81380.92440.056*
C110.1429 (2)0.87497 (16)0.6860 (3)0.0460 (5)
H110.05860.87380.73880.055*
C120.1579 (2)0.91213 (16)0.5003 (3)0.0440 (5)
H120.08170.93800.42830.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0389 (9)0.0415 (9)0.0336 (9)0.0069 (7)0.0001 (7)0.0021 (7)
N20.0326 (8)0.0329 (8)0.0306 (8)0.0031 (6)0.0059 (6)0.0030 (7)
N30.0347 (9)0.0376 (9)0.0382 (9)0.0009 (7)0.0026 (7)0.0040 (7)
C10.0422 (11)0.0459 (12)0.0373 (11)0.0069 (9)0.0026 (9)0.0005 (9)
C20.0352 (11)0.0435 (12)0.0444 (12)0.0067 (9)0.0013 (9)0.0031 (10)
C30.0366 (11)0.0361 (11)0.0426 (12)0.0037 (8)0.0104 (9)0.0006 (9)
C40.0379 (10)0.0259 (9)0.0341 (10)0.0004 (8)0.0101 (8)0.0009 (8)
C50.0336 (10)0.0281 (9)0.0319 (10)0.0027 (8)0.0050 (8)0.0030 (8)
C60.0390 (11)0.0298 (10)0.0344 (10)0.0013 (8)0.0106 (8)0.0053 (8)
C70.0382 (10)0.0253 (9)0.0321 (10)0.0037 (8)0.0065 (8)0.0015 (8)
C80.0357 (10)0.0253 (9)0.0358 (10)0.0038 (7)0.0054 (8)0.0002 (8)
C90.0453 (12)0.0367 (11)0.0401 (11)0.0023 (9)0.0050 (9)0.0062 (9)
C100.0566 (14)0.0433 (12)0.0397 (12)0.0035 (10)0.0054 (10)0.0083 (10)
C110.0410 (12)0.0458 (12)0.0521 (13)0.0032 (10)0.0094 (10)0.0023 (10)
C120.0393 (11)0.0444 (12)0.0473 (12)0.0000 (9)0.0027 (9)0.0011 (10)
Geometric parameters (Å, º) top
N1—C51.328 (2)C4—C61.415 (3)
N1—C11.335 (3)C4—C51.420 (3)
N2—C51.360 (2)C6—C71.376 (3)
N2—C71.376 (2)C6—H60.9500
N2—H20.8800C7—C81.454 (3)
N3—C121.329 (3)C8—C91.395 (3)
N3—C81.349 (2)C9—C101.369 (3)
C1—C21.396 (3)C9—H90.9500
C1—H10.9500C10—C111.383 (3)
C2—C31.377 (3)C10—H100.9500
C2—H2A0.9500C11—C121.371 (3)
C3—C41.393 (3)C11—H110.9500
C3—H30.9500C12—H120.9500
C5—N1—C1114.66 (18)C7—C6—H6126.4
C5—N2—C7109.17 (15)C4—C6—H6126.4
C5—N2—H2125.4N2—C7—C6109.17 (17)
C7—N2—H2125.4N2—C7—C8120.62 (16)
C12—N3—C8116.82 (17)C6—C7—C8130.19 (18)
N1—C1—C2124.1 (2)N3—C8—C9122.01 (18)
N1—C1—H1117.9N3—C8—C7115.95 (17)
C2—C1—H1117.9C9—C8—C7122.04 (18)
C3—C2—C1120.04 (19)C10—C9—C8119.5 (2)
C3—C2—H2A120.0C10—C9—H9120.2
C1—C2—H2A120.0C8—C9—H9120.2
C2—C3—C4118.22 (19)C9—C10—C11118.7 (2)
C2—C3—H3120.9C9—C10—H10120.7
C4—C3—H3120.9C11—C10—H10120.7
C3—C4—C6137.09 (19)C12—C11—C10118.2 (2)
C3—C4—C5116.24 (18)C12—C11—H11120.9
C6—C4—C5106.67 (17)C10—C11—H11120.9
N1—C5—N2125.47 (17)N3—C12—C11124.7 (2)
N1—C5—C4126.71 (18)N3—C12—H12117.6
N2—C5—C4107.81 (17)C11—C12—H12117.6
C7—C6—C4107.17 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.102.944 (2)162
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H9N3
Mr195.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.1416 (10), 13.7428 (14), 6.7395 (7)
β (°) 94.331 (2)
V3)936.63 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.938, 0.996
No. of measured, independent and
observed [I > 2σa(I)] reflections
7069, 2154, 1792
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.145, 1.19
No. of reflections2154
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.1002.944 (2)162
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

This work was partially supported by the Instrumentation Center, National Taiwan University, and Cardinal Tien College of Healthcare & Management.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, P.-H., Lin, K.-L. & Wen, Y.-S. (2011). Acta Cryst. E67, o109.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, S. F., Wu, Q., Schmider, H. L., Aziz, H., Hu, N. X., Popovic, Z. & Wang, S. (2000). J. Am. Chem. Soc. 122, 3671–3678.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakamoto, T., Kondo, Y., Takazawa, N. & Yamanaka, H. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 1927–1934.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds