metal-organic compounds
Dibromidobis[1-(2-bromobenzyl)-3-(pyrimidin-2-yl)-1H-imidazol-2(3H)-one]copper(II)
aDepartment of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, People's Republic of China
*Correspondence e-mail: chunxin0923@zju.edu.cn
In the title complex, [CuBr2(C14H11BrN4O)2], the CuII ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5) Å, in agreement with a classical carbonyl bond. The Cu—O bond length is 2.011 (3) Å. The two bromobenzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4)° with the coordination plane.
Related literature
For general background, see: Moncol et al. (2008); Wu et al. (2003); Anbu & Kandaswamy (2012). For related structures, see: Citadelle et al. (2010); Liu et al. (2011); Marjani et al. (2005); Meghdadi et al. (2012).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812021460/ru2034sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S1600536812021460/ru2034Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812021460/ru2034Isup2.hkl
A solution of 1-(2-bromobenzyl)-3-(pyrimidin-2-yl)imidazolium bromide (396 mg, 1.0 mmol) in 10 ml of CH3CN was treated with copper powder (38 mg, 0.6 mmol). The mixture was allowed to react at 80 °C for 2 days in air. The solution was filtered through silica to remove unreacted copper. The filtrate was concentrated to ca 2 ml. Addition of Et2O (20 ml) to the filtrate afforded a yellow precipitate. The crystals of this complex suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into its acetonitrile solution.
H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. |
[CuBr2(C14H11BrN4O)2] | F(000) = 862 |
Mr = 885.72 | Dx = 1.986 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6803 (11) Å | Cell parameters from 7275 reflections |
b = 23.0354 (8) Å | θ = 1.8–25.1° |
c = 7.8543 (9) Å | µ = 6.18 mm−1 |
β = 109.419 (1)° | T = 298 K |
V = 1481.2 (3) Å3 | Block, yellow |
Z = 2 | 0.43 × 0.30 × 0.14 mm |
Bruker SMART CCD area-detector diffractometer | 2622 independent reflections |
Radiation source: fine-focus sealed tube | 2019 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
phi and ω scans | θmax = 25.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→8 |
Tmin = 0.177, Tmax = 0.479 | k = −27→20 |
7275 measured reflections | l = −9→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0654P)2] where P = (Fo2 + 2Fc2)/3 |
2622 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 1.31 e Å−3 |
0 restraints | Δρmin = −0.90 e Å−3 |
[CuBr2(C14H11BrN4O)2] | V = 1481.2 (3) Å3 |
Mr = 885.72 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.6803 (11) Å | µ = 6.18 mm−1 |
b = 23.0354 (8) Å | T = 298 K |
c = 7.8543 (9) Å | 0.43 × 0.30 × 0.14 mm |
β = 109.419 (1)° |
Bruker SMART CCD area-detector diffractometer | 2622 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2019 reflections with I > 2σ(I) |
Tmin = 0.177, Tmax = 0.479 | Rint = 0.066 |
7275 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.31 e Å−3 |
2622 reflections | Δρmin = −0.90 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0270 (3) | |
N1 | 0.7847 (4) | 0.41135 (18) | 0.7064 (5) | 0.0240 (9) | |
N2 | 0.6658 (4) | 0.37501 (18) | 0.8889 (5) | 0.0245 (9) | |
N3 | 0.6973 (5) | 0.46886 (18) | 0.4448 (5) | 0.0240 (9) | |
N4 | 0.9437 (5) | 0.41415 (19) | 0.5252 (6) | 0.0307 (11) | |
Br1 | 0.68599 (7) | 0.22945 (3) | 1.05716 (9) | 0.0525 (2) | |
Br2 | 0.70578 (6) | 0.54952 (2) | 0.82796 (7) | 0.0343 (2) | |
O1 | 0.5017 (4) | 0.42702 (15) | 0.6410 (4) | 0.0271 (8) | |
C1 | 0.6372 (5) | 0.4069 (2) | 0.7368 (6) | 0.0249 (11) | |
C2 | 0.8315 (6) | 0.3607 (2) | 0.9542 (7) | 0.0308 (13) | |
H2 | 0.8821 | 0.3393 | 1.0582 | 0.037* | |
C3 | 0.9052 (6) | 0.3822 (2) | 0.8467 (7) | 0.0300 (12) | |
H3 | 1.0154 | 0.3788 | 0.8603 | 0.036* | |
C4 | 0.8100 (6) | 0.4324 (2) | 0.5504 (7) | 0.0242 (11) | |
C5 | 0.9699 (6) | 0.4335 (2) | 0.3762 (8) | 0.0372 (14) | |
H5 | 1.0654 | 0.4226 | 0.3557 | 0.045* | |
C6 | 0.8598 (6) | 0.4692 (2) | 0.2517 (7) | 0.0342 (13) | |
H6 | 0.8773 | 0.4814 | 0.1467 | 0.041* | |
C7 | 0.7231 (6) | 0.4854 (2) | 0.2919 (7) | 0.0286 (12) | |
H7 | 0.6457 | 0.5088 | 0.2104 | 0.034* | |
C8 | 0.5415 (6) | 0.3582 (2) | 0.9661 (7) | 0.0295 (12) | |
H8A | 0.4736 | 0.3916 | 0.9664 | 0.035* | |
H8B | 0.5946 | 0.3464 | 1.0905 | 0.035* | |
C9 | 0.4349 (6) | 0.3096 (2) | 0.8659 (7) | 0.0295 (12) | |
C10 | 0.4763 (6) | 0.2516 (3) | 0.8917 (7) | 0.0344 (13) | |
C11 | 0.3759 (8) | 0.2078 (3) | 0.8035 (9) | 0.0502 (17) | |
H11 | 0.4089 | 0.1693 | 0.8262 | 0.060* | |
C12 | 0.2274 (8) | 0.2208 (3) | 0.6820 (10) | 0.058 (2) | |
H12 | 0.1585 | 0.1911 | 0.6207 | 0.070* | |
C13 | 0.1780 (7) | 0.2780 (3) | 0.6490 (9) | 0.0559 (19) | |
H13 | 0.0767 | 0.2868 | 0.5648 | 0.067* | |
C14 | 0.2800 (6) | 0.3221 (3) | 0.7416 (8) | 0.0414 (15) | |
H14 | 0.2455 | 0.3605 | 0.7213 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0258 (4) | 0.0231 (5) | 0.0378 (5) | 0.0072 (4) | 0.0181 (4) | 0.0100 (4) |
N1 | 0.023 (2) | 0.023 (2) | 0.028 (2) | 0.0032 (18) | 0.0107 (17) | 0.0006 (19) |
N2 | 0.027 (2) | 0.022 (2) | 0.026 (2) | −0.0005 (19) | 0.0111 (17) | 0.0003 (19) |
N3 | 0.027 (2) | 0.021 (2) | 0.025 (2) | 0.0001 (19) | 0.0106 (18) | 0.0016 (19) |
N4 | 0.026 (2) | 0.032 (3) | 0.040 (3) | 0.004 (2) | 0.0180 (19) | 0.002 (2) |
Br1 | 0.0517 (4) | 0.0387 (4) | 0.0715 (5) | 0.0133 (3) | 0.0262 (3) | 0.0235 (3) |
Br2 | 0.0355 (3) | 0.0329 (4) | 0.0373 (4) | 0.0010 (2) | 0.0158 (2) | −0.0018 (2) |
O1 | 0.0232 (17) | 0.0231 (19) | 0.037 (2) | 0.0054 (15) | 0.0129 (15) | 0.0114 (16) |
C1 | 0.027 (3) | 0.025 (3) | 0.025 (3) | −0.002 (2) | 0.011 (2) | 0.000 (2) |
C2 | 0.029 (3) | 0.034 (3) | 0.027 (3) | 0.004 (2) | 0.006 (2) | 0.006 (2) |
C3 | 0.023 (2) | 0.035 (3) | 0.032 (3) | 0.005 (2) | 0.008 (2) | 0.004 (3) |
C4 | 0.027 (2) | 0.018 (3) | 0.031 (3) | −0.003 (2) | 0.014 (2) | −0.004 (2) |
C5 | 0.033 (3) | 0.037 (4) | 0.050 (4) | −0.001 (3) | 0.025 (3) | −0.007 (3) |
C6 | 0.042 (3) | 0.034 (3) | 0.035 (3) | −0.001 (3) | 0.023 (3) | −0.005 (3) |
C7 | 0.029 (3) | 0.025 (3) | 0.032 (3) | 0.001 (2) | 0.010 (2) | −0.002 (2) |
C8 | 0.037 (3) | 0.028 (3) | 0.029 (3) | 0.003 (3) | 0.017 (2) | 0.003 (2) |
C9 | 0.035 (3) | 0.027 (3) | 0.034 (3) | −0.002 (2) | 0.021 (2) | 0.007 (2) |
C10 | 0.034 (3) | 0.034 (3) | 0.042 (3) | 0.000 (3) | 0.021 (2) | 0.003 (3) |
C11 | 0.058 (4) | 0.034 (4) | 0.074 (5) | −0.012 (3) | 0.042 (4) | −0.008 (3) |
C12 | 0.055 (4) | 0.055 (5) | 0.073 (5) | −0.030 (4) | 0.033 (4) | −0.027 (4) |
C13 | 0.033 (3) | 0.078 (6) | 0.056 (4) | −0.013 (4) | 0.014 (3) | −0.002 (4) |
C14 | 0.037 (3) | 0.047 (4) | 0.046 (3) | 0.002 (3) | 0.022 (3) | 0.006 (3) |
Cu1—O1i | 2.011 (3) | C3—H3 | 0.9300 |
Cu1—O1 | 2.011 (3) | C5—C6 | 1.387 (8) |
Cu1—N3i | 2.032 (4) | C5—H5 | 0.9300 |
Cu1—N3 | 2.032 (4) | C6—C7 | 1.378 (7) |
Cu1—Br2 | 2.8404 (6) | C6—H6 | 0.9300 |
Cu1—Br2i | 2.8404 (6) | C7—H7 | 0.9300 |
N1—C1 | 1.383 (6) | C8—C9 | 1.498 (7) |
N1—C4 | 1.400 (6) | C8—H8A | 0.9700 |
N1—C3 | 1.412 (6) | C8—H8B | 0.9700 |
N2—C1 | 1.353 (6) | C9—C10 | 1.381 (8) |
N2—C2 | 1.396 (6) | C9—C14 | 1.404 (7) |
N2—C8 | 1.455 (6) | C10—C11 | 1.362 (8) |
N3—C4 | 1.346 (6) | C11—C12 | 1.358 (9) |
N3—C7 | 1.348 (6) | C11—H11 | 0.9300 |
N4—C4 | 1.309 (6) | C12—C13 | 1.384 (9) |
N4—C5 | 1.340 (7) | C12—H12 | 0.9300 |
Br1—C10 | 1.921 (5) | C13—C14 | 1.384 (9) |
O1—C1 | 1.256 (5) | C13—H13 | 0.9300 |
C2—C3 | 1.314 (7) | C14—H14 | 0.9300 |
C2—H2 | 0.9300 | ||
O1i—Cu1—O1 | 180.00 (11) | N4—C4—N1 | 115.2 (4) |
O1i—Cu1—N3i | 88.28 (15) | N3—C4—N1 | 117.5 (4) |
O1—Cu1—N3i | 91.72 (15) | N4—C5—C6 | 122.4 (5) |
O1i—Cu1—N3 | 91.72 (15) | N4—C5—H5 | 118.8 |
O1—Cu1—N3 | 88.28 (15) | C6—C5—H5 | 118.8 |
N3i—Cu1—N3 | 180.000 (1) | C7—C6—C5 | 116.3 (5) |
O1i—Cu1—Br2 | 92.92 (10) | C7—C6—H6 | 121.9 |
O1—Cu1—Br2 | 87.08 (10) | C5—C6—H6 | 121.9 |
N3i—Cu1—Br2 | 89.16 (11) | N3—C7—C6 | 122.6 (5) |
N3—Cu1—Br2 | 90.84 (11) | N3—C7—H7 | 118.7 |
O1i—Cu1—Br2i | 87.08 (10) | C6—C7—H7 | 118.7 |
O1—Cu1—Br2i | 92.92 (10) | N2—C8—C9 | 113.2 (4) |
N3i—Cu1—Br2i | 90.84 (11) | N2—C8—H8A | 108.9 |
N3—Cu1—Br2i | 89.16 (11) | C9—C8—H8A | 108.9 |
Br2—Cu1—Br2i | 180.00 (2) | N2—C8—H8B | 108.9 |
C1—N1—C4 | 126.9 (4) | C9—C8—H8B | 108.9 |
C1—N1—C3 | 108.5 (4) | H8A—C8—H8B | 107.8 |
C4—N1—C3 | 123.8 (4) | C10—C9—C14 | 116.3 (5) |
C1—N2—C2 | 108.5 (4) | C10—C9—C8 | 124.1 (5) |
C1—N2—C8 | 124.7 (4) | C14—C9—C8 | 119.5 (5) |
C2—N2—C8 | 126.9 (4) | C11—C10—C9 | 123.4 (5) |
C4—N3—C7 | 115.0 (4) | C11—C10—Br1 | 116.7 (5) |
C4—N3—Cu1 | 125.5 (3) | C9—C10—Br1 | 119.9 (4) |
C7—N3—Cu1 | 119.4 (3) | C12—C11—C10 | 119.4 (6) |
C4—N4—C5 | 116.2 (4) | C12—C11—H11 | 120.3 |
C1—O1—Cu1 | 118.2 (3) | C10—C11—H11 | 120.3 |
O1—C1—N2 | 126.1 (4) | C11—C12—C13 | 120.3 (6) |
O1—C1—N1 | 127.3 (4) | C11—C12—H12 | 119.9 |
N2—C1—N1 | 106.5 (4) | C13—C12—H12 | 119.9 |
C3—C2—N2 | 109.7 (4) | C12—C13—C14 | 119.8 (6) |
C3—C2—H2 | 125.1 | C12—C13—H13 | 120.1 |
N2—C2—H2 | 125.1 | C14—C13—H13 | 120.1 |
C2—C3—N1 | 106.8 (4) | C13—C14—C9 | 120.8 (6) |
C2—C3—H3 | 126.6 | C13—C14—H14 | 119.6 |
N1—C3—H3 | 126.6 | C9—C14—H14 | 119.6 |
N4—C4—N3 | 127.3 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuBr2(C14H11BrN4O)2] |
Mr | 885.72 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 8.6803 (11), 23.0354 (8), 7.8543 (9) |
β (°) | 109.419 (1) |
V (Å3) | 1481.2 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.18 |
Crystal size (mm) | 0.43 × 0.30 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.177, 0.479 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7275, 2622, 2019 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.117, 1.01 |
No. of reflections | 2622 |
No. of parameters | 196 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.31, −0.90 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).
Acknowledgements
The author thanks the Natural Science Foundation of China (21072170).
References
Anbu, S. & Kandaswamy, M. (2012). Inorg. Chim. Acta, 385, 45–52. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Citadelle, C. A., Nouy, E. L., Bisaro, F., Slawin, A. M. Z. & Cazin, C. S. J. (2010). Dalton Trans. 39, 4489–4491. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, B., Zhang, Y., Xu, D. C. & Chen, W. Z. (2011). Chem. Commun. 41, 2883–2885. Web of Science CSD CrossRef Google Scholar
Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meghdadi, S., Mereiter, K., Langer, V., Amiri, A., Erami, R. S., Massoud, A. A. & Amirnasr, M. (2012). Inorg. Chim. Acta, 385, 31–38. Web of Science CSD CrossRef CAS Google Scholar
Moncol, J., Segľa, P., Mikloš, D., Fischer, A. & Marian, K. (2008). Acta Cryst. E64, m509–m510. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, G. G., Wang, G. P., Fu, X. C. & Zhu, L. G. (2003). Molecules, 8, 287–296. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cu2+ cation has been widely studied since a host of low-molecular-weight copper complexes have been proven beneficial against several diseases such as turberculosis, rheumatoid, gastric ulcers, and cancers. And it is well known that copper(II) complexes with different ligands usually show flexible coordination environment. The 1-(2-bromobenzyl)-3-(pyrimidin-2-yl)imidazolium bromide was used as the ligand, reacting with excessive copper powder in air, giving a CuII compound. We here report the crystal structure of the title compound (I).
Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges. The C=O bond distance is 1.256 (5) Å and Cu—O bond distance is 2.013 (3) Å. The two bromobenzyl rings are approximately parallel to each other. The dihedral angle between the bromobenzyl ring and the coordination plane is 70.1 (4)°.