metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis[1-(2-bromo­benz­yl)-3-(pyrimidin-2-yl)-1H-imidazol-2(3H)-one]copper(II)

aDepartment of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, People's Republic of China
*Correspondence e-mail: chunxin0923@zju.edu.cn

(Received 30 April 2012; accepted 11 May 2012; online 19 May 2012)

In the title complex, [CuBr2(C14H11BrN4O)2], the CuII ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5) Å, in agreement with a classical carbonyl bond. The Cu—O bond length is 2.011 (3) Å. The two bromo­benzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4)° with the coordination plane.

Related literature

For general background, see: Moncol et al. (2008[Moncol, J., Segľa, P., Mikloš, D., Fischer, A. & Marian, K. (2008). Acta Cryst. E64, m509-m510.]); Wu et al. (2003[Wu, G. G., Wang, G. P., Fu, X. C. & Zhu, L. G. (2003). Molecules, 8, 287-296.]); Anbu & Kandaswamy (2012[Anbu, S. & Kandaswamy, M. (2012). Inorg. Chim. Acta, 385, 45-52.]). For related structures, see: Citadelle et al. (2010[Citadelle, C. A., Nouy, E. L., Bisaro, F., Slawin, A. M. Z. & Cazin, C. S. J. (2010). Dalton Trans. 39, 4489-4491.]); Liu et al. (2011[Liu, B., Zhang, Y., Xu, D. C. & Chen, W. Z. (2011). Chem. Commun. 41, 2883-2885.]); Marjani et al. (2005[Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11-m14.]); Meghdadi et al. (2012[Meghdadi, S., Mereiter, K., Langer, V., Amiri, A., Erami, R. S., Massoud, A. A. & Amirnasr, M. (2012). Inorg. Chim. Acta, 385, 31-38.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C14H11BrN4O)2]

  • Mr = 885.72

  • Monoclinic, P 21 /c

  • a = 8.6803 (11) Å

  • b = 23.0354 (8) Å

  • c = 7.8543 (9) Å

  • β = 109.419 (1)°

  • V = 1481.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.18 mm−1

  • T = 298 K

  • 0.43 × 0.30 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.177, Tmax = 0.479

  • 7275 measured reflections

  • 2622 independent reflections

  • 2019 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.01

  • 2622 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cu2+ cation has been widely studied since a host of low-molecular-weight copper complexes have been proven beneficial against several diseases such as turberculosis, rheumatoid, gastric ulcers, and cancers. And it is well known that copper(II) complexes with different ligands usually show flexible coordination environment. The 1-(2-bromobenzyl)-3-(pyrimidin-2-yl)imidazolium bromide was used as the ligand, reacting with excessive copper powder in air, giving a CuII compound. We here report the crystal structure of the title compound (I).

Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges. The C=O bond distance is 1.256 (5) Å and Cu—O bond distance is 2.013 (3) Å. The two bromobenzyl rings are approximately parallel to each other. The dihedral angle between the bromobenzyl ring and the coordination plane is 70.1 (4)°.

Related literature top

For general background, see: Moncol et al. (2008); Wu et al. (2003); Anbu et al. (2012). For related structures, see: Citadelle et al. (2010); Liu et al. (2011);; Marjani et al. (2005); Meghdadi et al. (2012).

Experimental top

A solution of 1-(2-bromobenzyl)-3-(pyrimidin-2-yl)imidazolium bromide (396 mg, 1.0 mmol) in 10 ml of CH3CN was treated with copper powder (38 mg, 0.6 mmol). The mixture was allowed to react at 80 °C for 2 days in air. The solution was filtered through silica to remove unreacted copper. The filtrate was concentrated to ca 2 ml. Addition of Et2O (20 ml) to the filtrate afforded a yellow precipitate. The crystals of this complex suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into its acetonitrile solution.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Dibromidobis[1-(2-bromobenzyl)-3-(pyrimidin-2-yl)-1H-imidazol- 2(3H)-one]copper(II) top
Crystal data top
[CuBr2(C14H11BrN4O)2]F(000) = 862
Mr = 885.72Dx = 1.986 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6803 (11) ÅCell parameters from 7275 reflections
b = 23.0354 (8) Åθ = 1.8–25.1°
c = 7.8543 (9) ŵ = 6.18 mm1
β = 109.419 (1)°T = 298 K
V = 1481.2 (3) Å3Block, yellow
Z = 20.43 × 0.30 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2622 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
phi and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.177, Tmax = 0.479k = 2720
7275 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0654P)2]
where P = (Fo2 + 2Fc2)/3
2622 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[CuBr2(C14H11BrN4O)2]V = 1481.2 (3) Å3
Mr = 885.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.6803 (11) ŵ = 6.18 mm1
b = 23.0354 (8) ÅT = 298 K
c = 7.8543 (9) Å0.43 × 0.30 × 0.14 mm
β = 109.419 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2622 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2019 reflections with I > 2σ(I)
Tmin = 0.177, Tmax = 0.479Rint = 0.066
7275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 1.31 e Å3
2622 reflectionsΔρmin = 0.90 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0270 (3)
N10.7847 (4)0.41135 (18)0.7064 (5)0.0240 (9)
N20.6658 (4)0.37501 (18)0.8889 (5)0.0245 (9)
N30.6973 (5)0.46886 (18)0.4448 (5)0.0240 (9)
N40.9437 (5)0.41415 (19)0.5252 (6)0.0307 (11)
Br10.68599 (7)0.22945 (3)1.05716 (9)0.0525 (2)
Br20.70578 (6)0.54952 (2)0.82796 (7)0.0343 (2)
O10.5017 (4)0.42702 (15)0.6410 (4)0.0271 (8)
C10.6372 (5)0.4069 (2)0.7368 (6)0.0249 (11)
C20.8315 (6)0.3607 (2)0.9542 (7)0.0308 (13)
H20.88210.33931.05820.037*
C30.9052 (6)0.3822 (2)0.8467 (7)0.0300 (12)
H31.01540.37880.86030.036*
C40.8100 (6)0.4324 (2)0.5504 (7)0.0242 (11)
C50.9699 (6)0.4335 (2)0.3762 (8)0.0372 (14)
H51.06540.42260.35570.045*
C60.8598 (6)0.4692 (2)0.2517 (7)0.0342 (13)
H60.87730.48140.14670.041*
C70.7231 (6)0.4854 (2)0.2919 (7)0.0286 (12)
H70.64570.50880.21040.034*
C80.5415 (6)0.3582 (2)0.9661 (7)0.0295 (12)
H8A0.47360.39160.96640.035*
H8B0.59460.34641.09050.035*
C90.4349 (6)0.3096 (2)0.8659 (7)0.0295 (12)
C100.4763 (6)0.2516 (3)0.8917 (7)0.0344 (13)
C110.3759 (8)0.2078 (3)0.8035 (9)0.0502 (17)
H110.40890.16930.82620.060*
C120.2274 (8)0.2208 (3)0.6820 (10)0.058 (2)
H120.15850.19110.62070.070*
C130.1780 (7)0.2780 (3)0.6490 (9)0.0559 (19)
H130.07670.28680.56480.067*
C140.2800 (6)0.3221 (3)0.7416 (8)0.0414 (15)
H140.24550.36050.72130.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0258 (4)0.0231 (5)0.0378 (5)0.0072 (4)0.0181 (4)0.0100 (4)
N10.023 (2)0.023 (2)0.028 (2)0.0032 (18)0.0107 (17)0.0006 (19)
N20.027 (2)0.022 (2)0.026 (2)0.0005 (19)0.0111 (17)0.0003 (19)
N30.027 (2)0.021 (2)0.025 (2)0.0001 (19)0.0106 (18)0.0016 (19)
N40.026 (2)0.032 (3)0.040 (3)0.004 (2)0.0180 (19)0.002 (2)
Br10.0517 (4)0.0387 (4)0.0715 (5)0.0133 (3)0.0262 (3)0.0235 (3)
Br20.0355 (3)0.0329 (4)0.0373 (4)0.0010 (2)0.0158 (2)0.0018 (2)
O10.0232 (17)0.0231 (19)0.037 (2)0.0054 (15)0.0129 (15)0.0114 (16)
C10.027 (3)0.025 (3)0.025 (3)0.002 (2)0.011 (2)0.000 (2)
C20.029 (3)0.034 (3)0.027 (3)0.004 (2)0.006 (2)0.006 (2)
C30.023 (2)0.035 (3)0.032 (3)0.005 (2)0.008 (2)0.004 (3)
C40.027 (2)0.018 (3)0.031 (3)0.003 (2)0.014 (2)0.004 (2)
C50.033 (3)0.037 (4)0.050 (4)0.001 (3)0.025 (3)0.007 (3)
C60.042 (3)0.034 (3)0.035 (3)0.001 (3)0.023 (3)0.005 (3)
C70.029 (3)0.025 (3)0.032 (3)0.001 (2)0.010 (2)0.002 (2)
C80.037 (3)0.028 (3)0.029 (3)0.003 (3)0.017 (2)0.003 (2)
C90.035 (3)0.027 (3)0.034 (3)0.002 (2)0.021 (2)0.007 (2)
C100.034 (3)0.034 (3)0.042 (3)0.000 (3)0.021 (2)0.003 (3)
C110.058 (4)0.034 (4)0.074 (5)0.012 (3)0.042 (4)0.008 (3)
C120.055 (4)0.055 (5)0.073 (5)0.030 (4)0.033 (4)0.027 (4)
C130.033 (3)0.078 (6)0.056 (4)0.013 (4)0.014 (3)0.002 (4)
C140.037 (3)0.047 (4)0.046 (3)0.002 (3)0.022 (3)0.006 (3)
Geometric parameters (Å, º) top
Cu1—O1i2.011 (3)C3—H30.9300
Cu1—O12.011 (3)C5—C61.387 (8)
Cu1—N3i2.032 (4)C5—H50.9300
Cu1—N32.032 (4)C6—C71.378 (7)
Cu1—Br22.8404 (6)C6—H60.9300
Cu1—Br2i2.8404 (6)C7—H70.9300
N1—C11.383 (6)C8—C91.498 (7)
N1—C41.400 (6)C8—H8A0.9700
N1—C31.412 (6)C8—H8B0.9700
N2—C11.353 (6)C9—C101.381 (8)
N2—C21.396 (6)C9—C141.404 (7)
N2—C81.455 (6)C10—C111.362 (8)
N3—C41.346 (6)C11—C121.358 (9)
N3—C71.348 (6)C11—H110.9300
N4—C41.309 (6)C12—C131.384 (9)
N4—C51.340 (7)C12—H120.9300
Br1—C101.921 (5)C13—C141.384 (9)
O1—C11.256 (5)C13—H130.9300
C2—C31.314 (7)C14—H140.9300
C2—H20.9300
O1i—Cu1—O1180.00 (11)N4—C4—N1115.2 (4)
O1i—Cu1—N3i88.28 (15)N3—C4—N1117.5 (4)
O1—Cu1—N3i91.72 (15)N4—C5—C6122.4 (5)
O1i—Cu1—N391.72 (15)N4—C5—H5118.8
O1—Cu1—N388.28 (15)C6—C5—H5118.8
N3i—Cu1—N3180.000 (1)C7—C6—C5116.3 (5)
O1i—Cu1—Br292.92 (10)C7—C6—H6121.9
O1—Cu1—Br287.08 (10)C5—C6—H6121.9
N3i—Cu1—Br289.16 (11)N3—C7—C6122.6 (5)
N3—Cu1—Br290.84 (11)N3—C7—H7118.7
O1i—Cu1—Br2i87.08 (10)C6—C7—H7118.7
O1—Cu1—Br2i92.92 (10)N2—C8—C9113.2 (4)
N3i—Cu1—Br2i90.84 (11)N2—C8—H8A108.9
N3—Cu1—Br2i89.16 (11)C9—C8—H8A108.9
Br2—Cu1—Br2i180.00 (2)N2—C8—H8B108.9
C1—N1—C4126.9 (4)C9—C8—H8B108.9
C1—N1—C3108.5 (4)H8A—C8—H8B107.8
C4—N1—C3123.8 (4)C10—C9—C14116.3 (5)
C1—N2—C2108.5 (4)C10—C9—C8124.1 (5)
C1—N2—C8124.7 (4)C14—C9—C8119.5 (5)
C2—N2—C8126.9 (4)C11—C10—C9123.4 (5)
C4—N3—C7115.0 (4)C11—C10—Br1116.7 (5)
C4—N3—Cu1125.5 (3)C9—C10—Br1119.9 (4)
C7—N3—Cu1119.4 (3)C12—C11—C10119.4 (6)
C4—N4—C5116.2 (4)C12—C11—H11120.3
C1—O1—Cu1118.2 (3)C10—C11—H11120.3
O1—C1—N2126.1 (4)C11—C12—C13120.3 (6)
O1—C1—N1127.3 (4)C11—C12—H12119.9
N2—C1—N1106.5 (4)C13—C12—H12119.9
C3—C2—N2109.7 (4)C12—C13—C14119.8 (6)
C3—C2—H2125.1C12—C13—H13120.1
N2—C2—H2125.1C14—C13—H13120.1
C2—C3—N1106.8 (4)C13—C14—C9120.8 (6)
C2—C3—H3126.6C13—C14—H14119.6
N1—C3—H3126.6C9—C14—H14119.6
N4—C4—N3127.3 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuBr2(C14H11BrN4O)2]
Mr885.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.6803 (11), 23.0354 (8), 7.8543 (9)
β (°) 109.419 (1)
V3)1481.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.18
Crystal size (mm)0.43 × 0.30 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.177, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
7275, 2622, 2019
Rint0.066
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.01
No. of reflections2622
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.90

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author thanks the Natural Science Foundation of China (21072170).

References

First citationAnbu, S. & Kandaswamy, M. (2012). Inorg. Chim. Acta, 385, 45–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationCitadelle, C. A., Nouy, E. L., Bisaro, F., Slawin, A. M. Z. & Cazin, C. S. J. (2010). Dalton Trans. 39, 4489–4491.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, B., Zhang, Y., Xu, D. C. & Chen, W. Z. (2011). Chem. Commun. 41, 2883–2885.  Web of Science CSD CrossRef Google Scholar
First citationMarjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeghdadi, S., Mereiter, K., Langer, V., Amiri, A., Erami, R. S., Massoud, A. A. & Amirnasr, M. (2012). Inorg. Chim. Acta, 385, 31–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoncol, J., Segľa, P., Mikloš, D., Fischer, A. & Marian, K. (2008). Acta Cryst. E64, m509–m510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, G. G., Wang, G. P., Fu, X. C. & Zhu, L. G. (2003). Molecules, 8, 287–296.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds