organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4,5-Di­phenyl-2-(pyridin-2-yl)-1H-imidazol-1-yl]-3-phenyl­propan-1-ol

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 3 April 2012; accepted 26 April 2012; online 12 May 2012)

In the title compound, C29H25N3O, the central imidazole ring forms dihedral angles of 64.7 (3), 33.5 (3) and 81.2 (2)° with the pyridyl and two phenyl substituents, respectively. An intra­molecular C—H⋯N hydrogen bond is observed. In the crystal, O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the a axis.

Related literature

For the synthesis and properties of chiral ionic liquids, see: Ding & Armstrong (2005[Ding, J. & Armstrong, D. W. (2005). Chirality, 17, 281-292.]); Bwambok et al. (2008[Bwambok, D. K., Marwani, H. M., Fernand, V. E., Fakayode, S. O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I. M. (2008). Chirality, 20, 151-158.]); Mao et al. (2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418-2425.]). For a related structure, see: Xiao et al. (2012[Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.]).

[Scheme 1]

Experimental

Crystal data
  • C29H25N3O

  • Mr = 431.52

  • Orthorhombic, P 21 21 21

  • a = 9.2695 (4) Å

  • b = 15.8818 (6) Å

  • c = 16.0498 (6) Å

  • V = 2362.79 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 291 K

  • 0.38 × 0.28 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.809, Tmax = 0.868

  • 9413 measured reflections

  • 4442 independent reflections

  • 3981 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.04

  • 4442 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1871 Friedel pairs

  • Flack parameter: 0.2 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯N3 0.97 2.42 3.277 (2) 146
C22—H22⋯O1i 0.93 2.54 3.350 (3) 146
O1—H1⋯N1ii 0.85 (3) 1.94 (3) 2.789 (2) 174 (3)
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Our group is interested in the synthesis of chiral imidazole derivatives from natural precursors through a convenient four component–one pot synthetic protocol using an aldehyde, glyoxal, ammonia, and an amine (Mao et al., 2010). During our studies we observed that by carefully choosing the four components, a number of different imidazole derivatives could be obtained easily (Xiao et al., 2012). The condensation of L-phenylalaninol, dibenzoyl, 2-formyl pyridine and ammonium acetate afforded the title compound. This compound may serve as a starting material for the research of imidazolium based chiral ionic liquids in catalysis, chiral recognization and separation (Ding & Armstrong, 2005; Bwambok et al., 2008).

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (N1, C7, C8, N2, C15) is essentially planar, featuring an average deviation smaller than 0.6 (2) Å. The dihedral angle between the pyridyl and imidazole rings is 64.7 (3) °, and the dihedral angles between the two phenyl substituents and the imidazole ring are 33.5 (3)° and 81.2 (2)°, respectively. The chiral C28 atom maintains the S configuration of the L-phenylalaninol. The molecular conformation is enforced by an intramolecular C—H···N hydrogen bond (Table 1). In the crystal structure, molecules are linked by intermolecular O–H···N and C—H···O hydrogen bonds into chains parallel to the a axis.

Related literature top

For the synthesis and properties of chiral ionic liquids, see: Ding & Armstrong (2005); Bwambok et al. (2008); Mao et al. (2010). For a related structure, see: Xiao et al. (2012).

Experimental top

To a solution of L-phenylalaninol (15.1 g, 0.1 mol) in MeOH (50 ml) in an ice-bath, molar equivalents of dibenzoyl, 2-formyl pyridine and ammonium acetate were added. The mixture was kept stirring in the ice-bath until all the solids were dissolved before being heated to 60°C for 5 h. The mixture was then cooled to r.t. and the solvent was removed by evaporation. The residue was washed with H2O to obtain the crude product. Crystallization of the crude product in EtOH afforded colourless crystals of the title compound.

Refinement top

The H atoms associated to the hydroxy group and to the C29 methylene group were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.98 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
2-[4,5-Diphenyl-2-(pyridin-2-yl)-1H-imidazol-1-yl]-3-phenylpropan-1-ol top
Crystal data top
C29H25N3OF(000) = 912
Mr = 431.52Dx = 1.213 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3448 reflections
a = 9.2695 (4) Åθ = 3.9–70.3°
b = 15.8818 (6) ŵ = 0.58 mm1
c = 16.0498 (6) ÅT = 291 K
V = 2362.79 (16) Å3Prismatic, colourless
Z = 40.38 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4442 independent reflections
Radiation source: fine-focus sealed tube3981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 70.4°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 116
Tmin = 0.809, Tmax = 0.868k = 1919
9413 measured reflectionsl = 1918
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1152P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.12 e Å3
4442 reflectionsΔρmin = 0.13 e Å3
311 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0043 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1871 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (4)
Crystal data top
C29H25N3OV = 2362.79 (16) Å3
Mr = 431.52Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.2695 (4) ŵ = 0.58 mm1
b = 15.8818 (6) ÅT = 291 K
c = 16.0498 (6) Å0.38 × 0.28 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4442 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3981 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.868Rint = 0.029
9413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 0.12 e Å3
S = 1.04Δρmin = 0.13 e Å3
4442 reflectionsAbsolute structure: Flack (1983), 1871 Friedel pairs
311 parametersAbsolute structure parameter: 0.2 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74800 (17)0.67325 (12)0.63461 (10)0.0746 (4)
H10.788 (3)0.6736 (19)0.5871 (18)0.094 (9)*
N10.38909 (18)0.81423 (9)0.51834 (9)0.0550 (4)
N20.45320 (16)0.73451 (8)0.62480 (8)0.0463 (3)
N30.3134 (2)0.60522 (11)0.49389 (10)0.0667 (5)
C10.3385 (3)1.00699 (12)0.64156 (14)0.0632 (5)
H1A0.31700.98290.69290.076*
C20.3175 (3)1.09285 (14)0.63001 (17)0.0765 (7)
H20.28011.12540.67310.092*
C30.3515 (4)1.12968 (14)0.55573 (18)0.0897 (9)
H30.33901.18730.54840.108*
C40.4043 (4)1.08104 (15)0.49205 (18)0.0922 (8)
H40.42701.10590.44130.111*
C50.4241 (3)0.99523 (14)0.50254 (15)0.0744 (6)
H50.45990.96290.45880.089*
C60.3908 (2)0.95713 (11)0.57826 (12)0.0559 (5)
C70.4089 (2)0.86522 (10)0.58664 (11)0.0507 (4)
C80.44924 (19)0.81699 (10)0.65331 (10)0.0462 (4)
C90.5020 (2)0.84066 (10)0.73772 (10)0.0499 (4)
C100.6491 (3)0.84668 (14)0.75092 (14)0.0680 (5)
H100.71330.83510.70790.082*
C110.7002 (4)0.87002 (17)0.82853 (18)0.0939 (9)
H110.79900.87480.83720.113*
C120.6071 (5)0.88607 (16)0.89254 (16)0.1047 (13)
H120.64250.90130.94460.126*
C130.4622 (4)0.87974 (17)0.87992 (14)0.0975 (10)
H130.39890.89090.92350.117*
C140.4087 (3)0.85679 (14)0.80277 (13)0.0712 (6)
H140.30960.85220.79470.085*
C150.4153 (2)0.73696 (11)0.54294 (10)0.0496 (4)
C160.4123 (2)0.66518 (10)0.48335 (10)0.0503 (4)
C170.5080 (3)0.66655 (14)0.41749 (13)0.0661 (5)
H170.57350.71050.41150.079*
C180.5044 (3)0.60158 (16)0.36082 (15)0.0778 (6)
H180.56820.60070.31610.093*
C190.4059 (3)0.53848 (14)0.37106 (15)0.0769 (6)
H190.40170.49340.33420.092*
C200.3140 (3)0.54377 (14)0.43719 (14)0.0771 (7)
H200.24620.50110.44330.093*
C210.1277 (2)0.65894 (16)0.71789 (14)0.0702 (5)
H210.10680.64860.66210.084*
C220.0228 (3)0.69407 (19)0.7686 (2)0.0900 (8)
H220.06770.70660.74690.108*
C230.0523 (3)0.71040 (17)0.85053 (19)0.0858 (8)
H230.01750.73470.88450.103*
C240.1850 (3)0.69072 (16)0.88228 (15)0.0768 (6)
H240.20500.70120.93810.092*
C250.2892 (2)0.65539 (14)0.83191 (13)0.0620 (5)
H250.37910.64230.85430.074*
C260.2624 (2)0.63902 (11)0.74854 (11)0.0518 (4)
C270.3778 (2)0.60045 (11)0.69460 (11)0.0550 (4)
H27A0.33470.58180.64270.066*
H27B0.41670.55130.72260.066*
C280.5014 (2)0.66113 (10)0.67490 (10)0.0475 (4)
H280.53480.68360.72840.057*
C290.6303 (2)0.61828 (12)0.63495 (11)0.0552 (4)
H29A0.607 (2)0.5961 (13)0.5795 (12)0.054 (5)*
H29B0.656 (2)0.5676 (14)0.6711 (13)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0663 (9)0.0981 (12)0.0593 (8)0.0147 (9)0.0172 (7)0.0167 (8)
N10.0679 (9)0.0455 (7)0.0516 (8)0.0010 (7)0.0131 (7)0.0021 (6)
N20.0545 (8)0.0394 (6)0.0449 (7)0.0044 (6)0.0003 (6)0.0021 (5)
N30.0840 (12)0.0588 (9)0.0571 (9)0.0182 (9)0.0078 (8)0.0028 (8)
C10.0696 (13)0.0496 (9)0.0703 (12)0.0003 (9)0.0161 (11)0.0032 (9)
C20.0835 (15)0.0513 (11)0.0947 (17)0.0112 (11)0.0284 (14)0.0126 (11)
C30.115 (2)0.0438 (9)0.110 (2)0.0078 (12)0.0412 (17)0.0066 (12)
C40.131 (2)0.0600 (13)0.0858 (16)0.0023 (15)0.0165 (18)0.0223 (12)
C50.1002 (18)0.0520 (10)0.0711 (12)0.0030 (11)0.0102 (13)0.0109 (9)
C60.0619 (12)0.0431 (8)0.0626 (10)0.0013 (8)0.0200 (9)0.0003 (8)
C70.0562 (10)0.0428 (8)0.0530 (9)0.0027 (8)0.0081 (8)0.0006 (7)
C80.0498 (9)0.0419 (7)0.0470 (8)0.0029 (7)0.0014 (7)0.0001 (6)
C90.0668 (10)0.0383 (7)0.0446 (8)0.0040 (7)0.0009 (8)0.0027 (6)
C100.0750 (13)0.0635 (11)0.0654 (11)0.0066 (10)0.0133 (11)0.0033 (10)
C110.118 (2)0.0734 (14)0.0907 (18)0.0084 (15)0.0504 (17)0.0026 (14)
C120.199 (4)0.0574 (12)0.0574 (13)0.0037 (19)0.0422 (19)0.0018 (10)
C130.172 (3)0.0718 (15)0.0484 (11)0.0041 (18)0.0144 (16)0.0023 (10)
C140.0922 (16)0.0635 (11)0.0578 (11)0.0013 (11)0.0134 (11)0.0014 (9)
C150.0545 (10)0.0452 (8)0.0492 (8)0.0024 (8)0.0041 (8)0.0019 (7)
C160.0595 (10)0.0438 (8)0.0478 (8)0.0027 (8)0.0096 (8)0.0010 (7)
C170.0654 (12)0.0655 (11)0.0675 (11)0.0032 (10)0.0017 (10)0.0087 (9)
C180.0777 (14)0.0837 (15)0.0721 (13)0.0122 (13)0.0085 (12)0.0193 (12)
C190.1013 (18)0.0572 (11)0.0721 (13)0.0065 (12)0.0160 (14)0.0179 (10)
C200.1032 (19)0.0589 (11)0.0693 (13)0.0229 (13)0.0153 (13)0.0068 (10)
C210.0683 (13)0.0761 (13)0.0663 (12)0.0071 (11)0.0070 (10)0.0059 (10)
C220.0617 (14)0.0954 (18)0.113 (2)0.0056 (13)0.0016 (14)0.0151 (16)
C230.0765 (16)0.0768 (15)0.1042 (19)0.0024 (12)0.0317 (15)0.0014 (14)
C240.0943 (17)0.0745 (13)0.0616 (12)0.0117 (13)0.0199 (12)0.0041 (10)
C250.0652 (12)0.0650 (11)0.0557 (10)0.0059 (9)0.0038 (9)0.0049 (9)
C260.0590 (10)0.0444 (8)0.0521 (9)0.0102 (8)0.0057 (8)0.0076 (7)
C270.0706 (12)0.0403 (8)0.0542 (9)0.0067 (8)0.0078 (9)0.0018 (7)
C280.0596 (10)0.0407 (7)0.0423 (7)0.0000 (7)0.0018 (7)0.0049 (6)
C290.0674 (11)0.0531 (9)0.0452 (8)0.0070 (9)0.0046 (8)0.0036 (8)
Geometric parameters (Å, º) top
O1—H10.85 (3)C13—H130.9300
O1—C291.397 (3)C13—C141.383 (4)
N1—C71.375 (2)C14—H140.9300
N1—C151.312 (2)C15—C161.488 (2)
N2—C81.388 (2)C16—C171.380 (3)
N2—C151.360 (2)C17—H170.9300
N2—C281.485 (2)C17—C181.376 (3)
N3—C161.333 (3)C18—H180.9300
N3—C201.334 (3)C18—C191.366 (4)
C1—H1A0.9300C19—H190.9300
C1—C21.390 (3)C19—C201.364 (4)
C1—C61.376 (3)C20—H200.9300
C2—H20.9300C21—H210.9300
C2—C31.365 (4)C21—C221.385 (4)
C3—H30.9300C21—C261.379 (3)
C3—C41.371 (4)C22—H220.9300
C4—H40.9300C22—C231.368 (4)
C4—C51.385 (3)C23—H230.9300
C5—H50.9300C23—C241.368 (4)
C5—C61.392 (3)C24—H240.9300
C6—C71.476 (2)C24—C251.379 (3)
C7—C81.368 (2)C25—H250.9300
C8—C91.488 (2)C25—C261.386 (3)
C9—C101.384 (3)C26—C271.507 (3)
C9—C141.380 (3)C27—H27A0.9700
C10—H100.9300C27—H27B0.9700
C10—C111.383 (3)C27—C281.530 (2)
C11—H110.9300C28—H280.9800
C11—C121.366 (5)C28—C291.517 (3)
C12—H120.9300C29—H29A0.98 (2)
C12—C131.361 (5)C29—H29B1.02 (2)
C29—O1—H1110 (2)N3—C16—C15118.61 (17)
C15—N1—C7106.63 (14)N3—C16—C17123.39 (18)
C8—N2—C28124.76 (14)C17—C16—C15117.91 (17)
C15—N2—C8106.54 (14)C16—C17—H17120.7
C15—N2—C28128.55 (14)C18—C17—C16118.6 (2)
C16—N3—C20115.7 (2)C18—C17—H17120.7
C2—C1—H1A119.5C17—C18—H18120.4
C6—C1—H1A119.5C19—C18—C17119.1 (2)
C6—C1—C2121.0 (2)C19—C18—H18120.4
C1—C2—H2119.9C18—C19—H19121.1
C3—C2—C1120.3 (2)C20—C19—C18117.8 (2)
C3—C2—H2119.9C20—C19—H19121.1
C2—C3—H3120.3N3—C20—C19125.3 (2)
C2—C3—C4119.5 (2)N3—C20—H20117.3
C4—C3—H3120.3C19—C20—H20117.3
C3—C4—H4119.6C22—C21—H21119.4
C3—C4—C5120.7 (3)C26—C21—H21119.4
C5—C4—H4119.6C26—C21—C22121.2 (2)
C4—C5—H5119.9C21—C22—H22120.0
C4—C5—C6120.3 (2)C23—C22—C21120.1 (3)
C6—C5—H5119.9C23—C22—H22120.0
C1—C6—C5118.20 (19)C22—C23—H23120.2
C1—C6—C7122.82 (19)C24—C23—C22119.6 (3)
C5—C6—C7118.96 (19)C24—C23—H23120.2
N1—C7—C6119.65 (16)C23—C24—H24119.8
C8—C7—N1109.29 (15)C23—C24—C25120.3 (2)
C8—C7—C6131.02 (16)C25—C24—H24119.8
N2—C8—C9121.99 (15)C24—C25—H25119.4
C7—C8—N2106.12 (14)C24—C25—C26121.1 (2)
C7—C8—C9131.32 (15)C26—C25—H25119.4
C10—C9—C8118.72 (18)C21—C26—C25117.7 (2)
C14—C9—C8122.0 (2)C21—C26—C27122.11 (18)
C14—C9—C10119.3 (2)C25—C26—C27120.24 (19)
C9—C10—H10120.2C26—C27—H27A108.9
C11—C10—C9119.6 (3)C26—C27—H27B108.9
C11—C10—H10120.2C26—C27—C28113.23 (14)
C10—C11—H11119.6H27A—C27—H27B107.7
C12—C11—C10120.7 (3)C28—C27—H27A108.9
C12—C11—H11119.6C28—C27—H27B108.9
C11—C12—H12120.1N2—C28—C27112.40 (15)
C13—C12—C11119.8 (2)N2—C28—H28106.5
C13—C12—H12120.1N2—C28—C29111.11 (13)
C12—C13—H13119.8C27—C28—H28106.5
C12—C13—C14120.4 (3)C29—C28—C27113.22 (15)
C14—C13—H13119.8C29—C28—H28106.5
C9—C14—C13120.1 (3)O1—C29—C28109.65 (16)
C9—C14—H14119.9O1—C29—H29A113.2 (12)
C13—C14—H14119.9O1—C29—H29B108.3 (13)
N1—C15—N2111.42 (15)C28—C29—H29A111.7 (12)
N1—C15—C16121.31 (15)C28—C29—H29B107.3 (12)
N2—C15—C16127.12 (15)H29A—C29—H29B106.5 (16)
N1—C7—C8—N20.3 (2)C10—C9—C14—C130.8 (3)
N1—C7—C8—C9170.93 (19)C10—C11—C12—C130.5 (4)
N1—C15—C16—N3116.1 (2)C11—C12—C13—C140.3 (4)
N1—C15—C16—C1760.7 (3)C12—C13—C14—C90.5 (4)
N2—C8—C9—C1077.2 (2)C14—C9—C10—C111.0 (3)
N2—C8—C9—C14102.9 (2)C15—N1—C7—C6178.44 (19)
N2—C15—C16—N368.7 (3)C15—N1—C7—C80.6 (2)
N2—C15—C16—C17114.5 (2)C15—N2—C8—C70.0 (2)
N2—C28—C29—O164.47 (19)C15—N2—C8—C9172.28 (17)
N3—C16—C17—C181.9 (3)C15—N2—C28—C2772.9 (2)
C1—C2—C3—C41.1 (4)C15—N2—C28—C2955.2 (2)
C1—C6—C7—N1147.0 (2)C15—C16—C17—C18178.6 (2)
C1—C6—C7—C835.7 (3)C16—N3—C20—C190.2 (4)
C2—C1—C6—C50.9 (3)C16—C17—C18—C190.6 (4)
C2—C1—C6—C7177.3 (2)C17—C18—C19—C200.8 (4)
C2—C3—C4—C50.4 (5)C18—C19—C20—N31.0 (4)
C3—C4—C5—C60.1 (5)C20—N3—C16—C15178.34 (19)
C4—C5—C6—C10.2 (4)C20—N3—C16—C171.7 (3)
C4—C5—C6—C7178.2 (2)C21—C22—C23—C240.9 (4)
C5—C6—C7—N131.3 (3)C21—C26—C27—C28108.7 (2)
C5—C6—C7—C8146.0 (2)C22—C21—C26—C250.0 (3)
C6—C1—C2—C31.4 (4)C22—C21—C26—C27179.8 (2)
C6—C7—C8—N2177.9 (2)C22—C23—C24—C250.6 (4)
C6—C7—C8—C96.6 (4)C23—C24—C25—C260.0 (4)
C7—N1—C15—N20.6 (2)C24—C25—C26—C210.3 (3)
C7—N1—C15—C16176.46 (17)C24—C25—C26—C27179.95 (18)
C7—C8—C9—C1092.9 (3)C25—C26—C27—C2871.5 (2)
C7—C8—C9—C1487.0 (3)C26—C21—C22—C230.6 (4)
C8—N2—C15—N10.4 (2)C26—C27—C28—N264.04 (19)
C8—N2—C15—C16175.96 (18)C26—C27—C28—C29169.04 (15)
C8—N2—C28—C27112.38 (18)C27—C28—C29—O1167.93 (15)
C8—N2—C28—C29119.57 (18)C28—N2—C8—C7175.71 (16)
C8—C9—C10—C11178.9 (2)C28—N2—C8—C93.4 (3)
C8—C9—C14—C13179.1 (2)C28—N2—C15—N1175.13 (17)
C9—C10—C11—C120.9 (4)C28—N2—C15—C160.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···N30.972.423.277 (2)146
C22—H22···O1i0.932.543.350 (3)146
O1—H1···N1ii0.85 (3)1.94 (3)2.789 (2)174 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC29H25N3O
Mr431.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)9.2695 (4), 15.8818 (6), 16.0498 (6)
V3)2362.79 (16)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.38 × 0.28 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.809, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
9413, 4442, 3981
Rint0.029
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.04
No. of reflections4442
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.13
Absolute structureFlack (1983), 1871 Friedel pairs
Absolute structure parameter0.2 (4)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···N30.972.423.277 (2)146
C22—H22···O1i0.932.543.350 (3)146
O1—H1···N1ii0.85 (3)1.94 (3)2.789 (2)174 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of the People's Republic of China (Nos. 20902017 and 21172055).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBwambok, D. K., Marwani, H. M., Fernand, V. E., Fakayode, S. O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I. M. (2008). Chirality, 20, 151–158.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, J. & Armstrong, D. W. (2005). Chirality, 17, 281–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds