organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1-Acetyl-5-benzoyl-1,4,5,6-tetra­hydro­pyrrolo­[3,4-c]pyrazol-3-yl)benzamide

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
*Correspondence e-mail: hongzhaoupr@yahoo.com

(Received 17 April 2012; accepted 2 May 2012; online 12 May 2012)

In the mol­ecule of the title compound, C21H18N4O3, the fused pyrrolo­[3,4-c]pyrazole ring system is approximately planar [maximum deviation = 0.0486 (16) Å] and forms dihedral angles of 87.21 (8) and 35.46 (7)° with the phenyl rings. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link the mol­ecules into chains parallel to [201].

Related literature

For background to potential anti­cancer kinase inhibitors, see: Fancelli et al. (2005[Fancelli, D., et al. (2005). J. Med. Chem. 48, 3080-3084.]); Gadekar et al. (1968[Gadekar, S. M., Johnson, B. D. & Cohen, E. (1968). J. Med. Chem. 11, 616-618.]). For the structures of related compounds synthesized by our group, see: Guo et al. (2010[Guo, X., Bai, X. G., Li, Y. L. & Wang, Y. C. (2010). Acta Cryst. E66, o1108.]); Xia et al. (2011[Xia, W.-B., Bai, X.-G., Liu, H.-T. & Wang, J.-X. (2011). Acta Cryst. E67, o1150.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N4O3

  • Mr = 374.39

  • Monoclinic, P 21 /c

  • a = 5.32163 (11) Å

  • b = 21.1878 (5) Å

  • c = 16.4585 (3) Å

  • β = 96.9378 (17)°

  • V = 1842.16 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.819, Tmax = 1.000

  • 10256 measured reflections

  • 3276 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.07

  • 3276 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1i 0.86 2.23 2.997 (2) 148
C20—H20⋯O1ii 0.93 2.49 3.359 (3) 156
C5—H5ACg1ii 0.97 2.64 3.508 (3) 150
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+2, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our ongoing project (Guo et al., 2010; Xia et al., 2011) devoted to the development of potential anticancer kinase inhibitors (Fancelli et al., 2005; Gadekar et al., 1968), we have synthesized the title compound and report its crystal structure herein.

In the molecule of the title compound (Fig. 1), bond lengths and angles have normal values. The fused pyrrole-pyrazole ring system is approximately planar (maximum deviation 0.0486 (16) Å for atom N3), the dihedral angle between the two five-membered rings being 1.32 (14)°. The phenyl rings C9–C14 and C16–C21 form dihedral angles of 87.21 (8) and 35.46 (7)°, respectively, with the mean plane through C1/N1/N2/C3/C2/C4/N3/C5. In the crystal structure (Fig. 2), molecules are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) and by weak C—H···π interactions to form chains running parallel to the [2 0 1] direction.

Related literature top

For background to potential anticancer kinase inhibitors, see: Fancelli et al. (2005); Gadekar et al. (1968). For the structures of related compounds synthesized by our group, see: Guo et al. (2010); Xia et al. (2011).

Experimental top

A solution of benzoyl chloride (3.37 g, 24 mmol) in THF (20 ml) was added slowly to a mixture of 5-tert-butyl 1-ethyl 3-aminopyrrolo[3,4-c]pyrazole-1,5(4H,6H)-dicarboxylate (6.5 g, 21.8 mmol) and DIEA (N,N-diisopropylethylamine; 24 ml, 130.8 mmol) in THF (250 ml) at 0–5 °C for 12 h, the resulting suspension was evaporated under vacuum to dryness, and the residual was taken up with AcOEt and water, the organic layer was separated and stayed for 2 h to form white solid in the solution, separated by filtration and washed with Et2O, to give 7.37 g (84.5%) of 5-tert-butyl 1-ethyl 3-benzamidopyrrolo[3,4-c]pyrazole-1,5(4H,6H)-dicarboxylate as a white solid. A suspension of 5-tert-butyl 1-ethyl 3-benzamidopyrrolo[3,4-c]pyrazole-1,5(4H,6H)-dicarboxylate (7.6 g, 19 mmol) in DCM (300 ml) was pumped dried hydrochloride gas under room temperature for 3 h, filtered, extensively washed with Et2O, and dried under vacuum at 40 °C to give 6.37 g (100%) of ethyl 3-benzamido-5,6-dihydropyrrolo[3,4-c]pyrazole-1(4H)-carboxylate hydrochloride as white powder. A solution of benzoyl chloride (3.04 g, 21.6 mmol) in THF (20 ml) was added slowly to a suspension of ethyl 3-benzamido-5,6-dihydropyrrolo[3,4-c]pyrazole-1(4H)-carboxylate hydrochloride (6.05 g, 18 mmol) and DIEA (17.8 ml, 108 mmol) in THF (200 ml) at 0–5 °C, The resulting suspension was evaporated under vacuum to dryness, and the residual was taken up with AcOEt and water, the organic layer was separated and stayed for 2 h to form white solid in the solution, separated by filtration and washed with Et2O, to give 7.1 g (97.6%) of ethyl 3-benzamido-5-benzoyl-5,6-dihydropyrrolo[3,4-c]pyrazole-1(4H)-carboxylate as a white solid. A solution of ethyl 3-benzamido-5-benzoyl-5,6-dihydropyrrolo[3,4-c]pyrazole-1(4H)-carboxylate (6.8 g, 16.8 mmol) in MeOH (300 ml) and Et3N (30 ml) was stirred at room temperature for 2 h. The resulting mixture was evaporated to dryness and dried under vacuum to give 5.47 g (98%) of N-(5-benzoyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-3-yl)benzamide as white powder. A solution of acetyl chloride (0.424 g, 5.4 mmol) in THF (10 ml) was added slowly to a mixture of N-(5-benzoyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-3-yl)benzamide (1.5 g, 4.5 mmol) and DIEA (4.5 ml, 27 mmol) in THF (80 ml) at 0–5 °C for 12 h, the resulting suspension was evaporated under vacuum to dryness, and the residual was taken up with AcOEt and water, the organic layer was separated and stayed for 2 h to form white solid in the solution, separated by filtration and washed with Et2O, to give 1.5 g (89%) of N-(1-acetyl-5-benzoyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-3-yl)benzamide as a white solid. Colourless block crystals suitable for X-ray diffraction were obtained in 6 days by slow envaporation of a mixed solution (1:1 v/v) of dichloromethane and ethyl acetate.

Refinement top

All H atoms were placed in calculated positions and refined using a riding motion approximation, with C—H = 0.93–0.97 Å, N—H=0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
N-(1-Acetyl-5-benzoyl-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazol-3- yl)benzamide top
Crystal data top
C21H18N4O3F(000) = 784
Mr = 374.39Dx = 1.350 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5825 reflections
a = 5.32163 (11) Åθ = 3.4–66.8°
b = 21.1878 (5) ŵ = 0.76 mm1
c = 16.4585 (3) ÅT = 293 K
β = 96.9378 (17)°Block, colorless
V = 1842.16 (7) Å30.25 × 0.22 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3276 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2856 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4713 pixels mm-1θmax = 66.9°, θmin = 3.4°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2523
Tmin = 0.819, Tmax = 1.000l = 1918
10256 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.8604P]
where P = (Fo2 + 2Fc2)/3
3276 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H18N4O3V = 1842.16 (7) Å3
Mr = 374.39Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.32163 (11) ŵ = 0.76 mm1
b = 21.1878 (5) ÅT = 293 K
c = 16.4585 (3) Å0.25 × 0.22 × 0.18 mm
β = 96.9378 (17)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3276 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2856 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.018
10256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.62 e Å3
3276 reflectionsΔρmin = 0.25 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5691 (3)0.31747 (7)0.32789 (9)0.0590 (4)
N40.3203 (3)0.24185 (8)0.66211 (9)0.0422 (4)
H40.39040.21610.69830.051*
N30.3129 (3)0.29957 (8)0.44421 (10)0.0421 (4)
N20.0354 (3)0.16211 (8)0.61696 (10)0.0481 (4)
N10.1782 (3)0.15647 (8)0.56051 (10)0.0459 (4)
O20.3492 (4)0.33753 (8)0.60417 (11)0.0722 (6)
C80.3981 (4)0.33561 (9)0.37999 (11)0.0421 (4)
C30.1126 (3)0.22096 (9)0.60959 (10)0.0380 (4)
C10.2243 (4)0.21181 (9)0.51951 (11)0.0387 (4)
O30.5009 (4)0.10010 (8)0.49746 (12)0.0764 (6)
C20.0472 (3)0.25406 (9)0.54786 (10)0.0370 (4)
C50.4179 (4)0.23584 (9)0.45428 (11)0.0413 (4)
H5A0.42400.21110.40450.050*
H5B0.58500.23750.47210.050*
C40.0927 (4)0.31603 (9)0.50527 (12)0.0449 (5)
H4A0.13510.34880.54250.054*
H4B0.05220.32920.47900.054*
C150.4185 (4)0.30113 (9)0.65912 (12)0.0446 (5)
C210.8086 (4)0.27803 (11)0.75721 (12)0.0471 (5)
H210.80900.23660.73840.057*
C160.6190 (4)0.31905 (9)0.72611 (11)0.0425 (4)
C90.2769 (4)0.39859 (9)0.37409 (12)0.0456 (5)
C170.6176 (4)0.38031 (11)0.75652 (14)0.0562 (6)
H170.49120.40830.73590.067*
C200.9981 (4)0.29859 (13)0.81639 (14)0.0600 (6)
H201.12830.27130.83600.072*
C60.3162 (5)0.10024 (11)0.54676 (15)0.0661 (7)
C180.8033 (5)0.39953 (12)0.81712 (16)0.0663 (7)
H180.79870.44010.83840.080*
C190.9951 (4)0.35908 (14)0.84631 (15)0.0658 (7)
H191.12250.37260.88620.079*
C120.0648 (6)0.51684 (12)0.35967 (17)0.0757 (8)
H120.00220.55680.35310.091*
C140.0915 (6)0.40756 (13)0.3251 (2)0.0800 (8)
H140.03710.37380.29550.096*
C100.3456 (8)0.44917 (14)0.4169 (2)0.1090 (14)
H100.46670.44400.45260.131*
C70.2147 (10)0.04482 (15)0.5952 (3)0.144 (2)
H7A0.03540.04180.59330.216*
H7B0.29550.00710.57270.216*
H7C0.24730.04960.65100.216*
C110.2405 (10)0.50798 (14)0.4088 (3)0.1191 (16)
H110.29400.54180.43830.143*
C130.0164 (7)0.46637 (15)0.3188 (2)0.0912 (10)
H130.14620.47160.28630.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0642 (10)0.0544 (9)0.0505 (8)0.0047 (7)0.0257 (7)0.0032 (7)
N40.0440 (9)0.0414 (9)0.0372 (8)0.0003 (7)0.0114 (7)0.0038 (6)
N30.0397 (8)0.0425 (9)0.0404 (8)0.0025 (6)0.0106 (7)0.0033 (7)
N20.0570 (10)0.0412 (9)0.0413 (9)0.0033 (7)0.0135 (7)0.0027 (7)
N10.0542 (10)0.0384 (9)0.0410 (9)0.0075 (7)0.0103 (7)0.0016 (7)
O20.0808 (12)0.0558 (10)0.0684 (11)0.0185 (8)0.0383 (9)0.0207 (8)
C80.0409 (10)0.0441 (10)0.0385 (9)0.0099 (8)0.0066 (8)0.0028 (8)
C30.0415 (10)0.0392 (10)0.0312 (9)0.0001 (8)0.0037 (7)0.0005 (7)
C10.0408 (10)0.0405 (10)0.0332 (9)0.0033 (8)0.0025 (7)0.0009 (7)
O30.0830 (12)0.0615 (11)0.0758 (11)0.0270 (9)0.0268 (10)0.0046 (9)
C20.0382 (9)0.0390 (9)0.0320 (9)0.0013 (7)0.0032 (7)0.0001 (7)
C50.0388 (10)0.0436 (10)0.0393 (10)0.0039 (8)0.0042 (8)0.0007 (8)
C40.0438 (10)0.0424 (10)0.0439 (10)0.0044 (8)0.0140 (8)0.0051 (8)
C150.0432 (11)0.0447 (11)0.0424 (10)0.0015 (8)0.0097 (8)0.0029 (8)
C210.0381 (10)0.0599 (12)0.0422 (10)0.0033 (9)0.0002 (8)0.0017 (9)
C160.0373 (10)0.0487 (11)0.0393 (10)0.0054 (8)0.0039 (8)0.0027 (8)
C90.0526 (11)0.0414 (10)0.0387 (10)0.0096 (8)0.0109 (8)0.0033 (8)
C170.0543 (12)0.0482 (12)0.0616 (13)0.0054 (10)0.0119 (10)0.0011 (10)
C200.0346 (11)0.0916 (18)0.0508 (12)0.0024 (11)0.0067 (9)0.0084 (12)
C60.0853 (17)0.0459 (13)0.0605 (14)0.0183 (12)0.0185 (13)0.0035 (10)
C180.0727 (16)0.0577 (14)0.0636 (14)0.0207 (12)0.0114 (12)0.0061 (11)
C190.0480 (13)0.0912 (19)0.0534 (13)0.0250 (12)0.0130 (10)0.0008 (12)
C120.109 (2)0.0471 (14)0.0671 (16)0.0103 (14)0.0054 (15)0.0079 (12)
C140.0849 (19)0.0602 (16)0.100 (2)0.0115 (13)0.0312 (17)0.0197 (14)
C100.171 (4)0.0469 (15)0.127 (3)0.0042 (18)0.093 (3)0.0123 (16)
C70.198 (5)0.0529 (18)0.153 (4)0.045 (2)0.095 (3)0.036 (2)
C110.201 (4)0.0424 (15)0.130 (3)0.001 (2)0.085 (3)0.0123 (17)
C130.101 (2)0.076 (2)0.102 (2)0.0246 (17)0.0325 (19)0.0060 (17)
Geometric parameters (Å, º) top
O1—C81.234 (2)C21—H210.9300
N4—C151.364 (3)C16—C171.391 (3)
N4—C31.391 (2)C9—C101.357 (3)
N4—H40.8600C9—C141.361 (4)
N3—C81.338 (2)C17—C181.378 (3)
N3—C51.478 (2)C17—H170.9300
N3—C41.490 (2)C20—C191.374 (4)
N2—C31.323 (2)C20—H200.9300
N2—N11.384 (2)C6—C71.484 (4)
N1—C11.360 (2)C18—C191.374 (4)
N1—C61.403 (3)C18—H180.9300
O2—C151.212 (2)C19—H190.9300
C8—C91.490 (3)C12—C111.322 (5)
C3—C21.428 (2)C12—C131.361 (4)
C1—C21.342 (3)C12—H120.9300
C1—C51.485 (2)C14—C131.381 (4)
O3—C61.197 (3)C14—H140.9300
C2—C41.494 (3)C10—C111.379 (5)
C5—H5A0.9700C10—H100.9300
C5—H5B0.9700C7—H7A0.9600
C4—H4A0.9700C7—H7B0.9600
C4—H4B0.9700C7—H7C0.9600
C15—C161.488 (3)C11—H110.9300
C21—C161.382 (3)C13—H130.9300
C21—C201.385 (3)
C15—N4—C3123.38 (15)C21—C16—C15122.68 (19)
C15—N4—H4118.3C17—C16—C15118.04 (18)
C3—N4—H4118.3C10—C9—C14117.2 (2)
C8—N3—C5120.87 (15)C10—C9—C8121.8 (2)
C8—N3—C4124.28 (16)C14—C9—C8120.9 (2)
C5—N3—C4114.54 (14)C18—C17—C16120.1 (2)
C3—N2—N1105.01 (15)C18—C17—H17119.9
C1—N1—N2110.03 (15)C16—C17—H17119.9
C1—N1—C6126.34 (17)C19—C20—C21120.4 (2)
N2—N1—C6123.57 (17)C19—C20—H20119.8
O1—C8—N3121.50 (19)C21—C20—H20119.8
O1—C8—C9121.48 (17)O3—C6—N1118.8 (2)
N3—C8—C9117.02 (16)O3—C6—C7125.3 (2)
N2—C3—N4118.38 (16)N1—C6—C7115.8 (2)
N2—C3—C2111.31 (16)C19—C18—C17120.4 (2)
N4—C3—C2130.26 (17)C19—C18—H18119.8
C2—C1—N1109.02 (16)C17—C18—H18119.8
C2—C1—C5114.80 (17)C20—C19—C18119.8 (2)
N1—C1—C5136.18 (17)C20—C19—H19120.1
C1—C2—C3104.63 (16)C18—C19—H19120.1
C1—C2—C4110.84 (16)C11—C12—C13118.8 (3)
C3—C2—C4144.53 (17)C11—C12—H12120.6
N3—C5—C198.93 (14)C13—C12—H12120.6
N3—C5—H5A112.0C9—C14—C13120.5 (3)
C1—C5—H5A112.0C9—C14—H14119.7
N3—C5—H5B112.0C13—C14—H14119.7
C1—C5—H5B112.0C9—C10—C11121.7 (3)
H5A—C5—H5B109.7C9—C10—H10119.1
N3—C4—C2100.40 (15)C11—C10—H10119.1
N3—C4—H4A111.7C6—C7—H7A109.5
C2—C4—H4A111.7C6—C7—H7B109.5
N3—C4—H4B111.7H7A—C7—H7B109.5
C2—C4—H4B111.7C6—C7—H7C109.5
H4A—C4—H4B109.5H7A—C7—H7C109.5
O2—C15—N4121.98 (17)H7B—C7—H7C109.5
O2—C15—C16121.14 (18)C12—C11—C10120.8 (3)
N4—C15—C16116.88 (16)C12—C11—H11119.6
C16—C21—C20120.0 (2)C10—C11—H11119.6
C16—C21—H21120.0C12—C13—C14120.8 (3)
C20—C21—H21120.0C12—C13—H13119.6
C21—C16—C17119.25 (18)C14—C13—H13119.6
C3—N2—N1—C10.7 (2)C3—N4—C15—O28.7 (3)
C3—N2—N1—C6178.1 (2)C3—N4—C15—C16172.23 (17)
C5—N3—C8—O11.1 (3)C20—C21—C16—C171.7 (3)
C4—N3—C8—O1174.41 (19)C20—C21—C16—C15176.36 (19)
C5—N3—C8—C9178.70 (17)O2—C15—C16—C21138.6 (2)
C4—N3—C8—C95.4 (3)N4—C15—C16—C2140.5 (3)
N1—N2—C3—N4176.94 (16)O2—C15—C16—C1739.5 (3)
N1—N2—C3—C20.7 (2)N4—C15—C16—C17141.4 (2)
C15—N4—C3—N2178.88 (19)O1—C8—C9—C1098.7 (3)
C15—N4—C3—C24.0 (3)N3—C8—C9—C1081.5 (3)
N2—N1—C1—C20.4 (2)O1—C8—C9—C1481.3 (3)
C6—N1—C1—C2177.8 (2)N3—C8—C9—C1498.5 (3)
N2—N1—C1—C5179.4 (2)C21—C16—C17—C180.2 (3)
C6—N1—C1—C53.2 (4)C15—C16—C17—C18178.4 (2)
N1—C1—C2—C30.0 (2)C16—C21—C20—C191.9 (3)
C5—C1—C2—C3179.24 (16)C1—N1—C6—O34.1 (4)
N1—C1—C2—C4179.16 (17)N2—N1—C6—O3178.9 (2)
C5—C1—C2—C40.1 (2)C1—N1—C6—C7175.1 (3)
N2—C3—C2—C10.5 (2)N2—N1—C6—C71.9 (4)
N4—C3—C2—C1176.80 (19)C16—C17—C18—C191.9 (4)
N2—C3—C2—C4179.1 (3)C21—C20—C19—C180.2 (4)
N4—C3—C2—C41.8 (4)C17—C18—C19—C201.7 (4)
C8—N3—C5—C1167.03 (17)C10—C9—C14—C131.2 (5)
C4—N3—C5—C16.9 (2)C8—C9—C14—C13178.8 (3)
C2—C1—C5—N34.0 (2)C14—C9—C10—C112.7 (6)
N1—C1—C5—N3177.0 (2)C8—C9—C10—C11177.3 (4)
C8—N3—C4—C2166.62 (18)C13—C12—C11—C101.9 (7)
C5—N3—C4—C27.0 (2)C9—C10—C11—C121.1 (7)
C1—C2—C4—N34.1 (2)C11—C12—C13—C143.3 (6)
C3—C2—C4—N3177.3 (3)C9—C14—C13—C121.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.862.232.997 (2)148
C20—H20···O1ii0.932.493.359 (3)156
C5—H5A···Cg1ii0.972.643.508 (3)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18N4O3
Mr374.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.32163 (11), 21.1878 (5), 16.4585 (3)
β (°) 96.9378 (17)
V3)1842.16 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10256, 3276, 2856
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.07
No. of reflections3276
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C16–C21 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.862.232.997 (2)148.0
C20—H20···O1ii0.932.493.359 (3)156
C5—H5A···Cg1ii0.972.643.508 (3)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation (81072577).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFancelli, D., et al. (2005). J. Med. Chem. 48, 3080–3084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGadekar, S. M., Johnson, B. D. & Cohen, E. (1968). J. Med. Chem. 11, 616–618.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGuo, X., Bai, X. G., Li, Y. L. & Wang, Y. C. (2010). Acta Cryst. E66, o1108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, W.-B., Bai, X.-G., Liu, H.-T. & Wang, J.-X. (2011). Acta Cryst. E67, o1150.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds