organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­tosyl-1,4-diazepane

aDepartment of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
*Correspondence e-mail: zhaizw2005@126.com

(Received 20 April 2012; accepted 8 May 2012; online 12 May 2012)

In the title compound, C19H24N2O4S2, the dihedral angle formed by the benzene rings is 82.88 (7)°, and the mol­ecular conformation is enforced by weak intra­molecular C—H⋯O contacts. Two C atoms of the 1,4-diazepane ring are disordered over two sets of sites with a refined occupancy ratio of 0.534 (13):0.466 (13). In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O inter­actions into chains parallel to the a axis.

Related literature

For related structures, see: Romba et al. (2002[Romba, J., Steinhauser, S. & Hegetschweiler, K. (2002). Z. Kristallogr. New Cryst. Struct. 217, 133-134.]). For the biological activity of heterocyclic compounds, see: Xu et al. (2006[Xu, L. Z., Huang, Y. W., Yu, G. P., Si, G. D. & Zhu, Q. (2006). Struct. Chem. 17, 235-239.]); Yu et al. (2009[Yu, G. P., Xu, L. Z., Yi, X., Bi, W. Z., Zhu, Q. & Zhai, Z. W. (2009). J. Agric. Food Chem. 57, 4854-4860.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O4S2

  • Mr = 408.52

  • Orthorhombic, P 21 21 21

  • a = 6.3407 (13) Å

  • b = 10.367 (2) Å

  • c = 30.516 (6) Å

  • V = 2005.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.944, Tmax = 0.971

  • 11747 measured reflections

  • 3531 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.07

  • 3531 reflections

  • 265 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1442 Friedel pairs

  • Flack parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O3 0.97 2.40 2.886 (3) 110
C12—H12A⋯O1 0.97 2.39 2.878 (3) 111
C10—H10B⋯O4i 0.97 2.52 3.142 (3) 122
C12—H12A⋯O2i 0.97 2.50 3.035 (3) 115
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many heterocyclic compounds have been widely used as potent and broad-spectrum fungicides (Xu et al., 2006; Yu et al., 2009). In order to search for new heterocylic compounds with higher biological activities, we synthesized the title compound and describe its structure herein.

In title compound (Fig. 1), all bond lengths are normal and in a good agreement with those reported for related compounds (Romba et al., 2002). Two atoms (C8 and C9) of the 1,4-diazepane ring are disordered over two orientations with refined occupancy ratio of 0.466 (13)/0.534 (13). The dihedral angle formed by the phenyl rings is 82.88 (7)°. The molecular conformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonds to form chains parallel to the a axis.

Related literature top

For related structures, see: Romba et al. (2002). For the biological activity of heterocyclic compounds, see: Xu et al. (2006); Yu et al. (2009).

Experimental top

NaH (1.9 g, 0.08 mol) was dissolved in 30 ml DMF and cooled with an ice bath, then N,N'-di(p-toluenesulfonyl)ethane-1,2-diamine (7.4 g, 0.02 mol) in 10 ml DMF was added dropwise to the solution. After stirring 30 min, 1,3-dibromopropane in 5 ml DMF was added dropwise and the resulting suspension stirred overnight at room temperature. The residue was quenched by saturated NH4Cl and extracted with ethyl acetate (3 × 200 ml). The combined organic layer was washed with saturated NaCl and dried over sodium sulfate. The solvent was removed and the residue was recrystallized from EtOH/DMF (5:1 v/v) to give the title compound (6.7 g, 82%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 or 0.99 Å and with Uiso(H) = 1.2 times Ueq(C) for methylene H atoms and 1.5Ueq(C) for the methyl H atoms. Distance constraints (N—C = 1.47 (1) Å; C—C = 1.52 (1) Å) were applied to the disordered atoms C8 and C9.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 40% probability displacement ellipsoids.
1,4-Ditosyl-1,4-diazepane top
Crystal data top
C19H24N2O4S2F(000) = 864
Mr = 408.52Dx = 1.353 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7269 reflections
a = 6.3407 (13) Åθ = 1.7–27.5°
b = 10.367 (2) ŵ = 0.29 mm1
c = 30.516 (6) ÅT = 173 K
V = 2005.9 (7) Å3Block, colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
3531 independent reflections
Radiation source: Sealed Tube3430 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 77
Tmin = 0.944, Tmax = 0.971k = 812
11747 measured reflectionsl = 3635
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.035P)2 + 0.4874P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3531 reflectionsΔρmax = 0.13 e Å3
265 parametersΔρmin = 0.20 e Å3
6 restraintsAbsolute structure: Flack (1983), 1442 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C19H24N2O4S2V = 2005.9 (7) Å3
Mr = 408.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3407 (13) ŵ = 0.29 mm1
b = 10.367 (2) ÅT = 173 K
c = 30.516 (6) Å0.20 × 0.20 × 0.10 mm
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3430 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.971Rint = 0.035
11747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.13 e Å3
S = 1.07Δρmin = 0.20 e Å3
3531 reflectionsAbsolute structure: Flack (1983), 1442 Friedel pairs
265 parametersAbsolute structure parameter: 0.03 (7)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.84854 (9)0.00702 (6)0.40081 (2)0.04437 (16)
S20.83732 (9)0.12928 (5)0.22154 (2)0.03921 (15)
O10.7421 (3)0.08375 (18)0.42783 (6)0.0594 (5)
O21.0685 (3)0.0089 (2)0.39251 (7)0.0716 (6)
O30.7251 (3)0.24688 (15)0.21378 (6)0.0501 (4)
O41.0600 (2)0.13432 (18)0.22902 (6)0.0532 (5)
N10.7323 (3)0.0080 (2)0.35377 (6)0.0439 (5)
N20.7313 (3)0.06018 (17)0.26359 (6)0.0388 (5)
C10.6335 (4)0.1951 (3)0.44536 (8)0.0511 (6)
H10.52140.13740.44640.061*
C20.6164 (5)0.3155 (3)0.46458 (8)0.0603 (8)
H20.49110.33860.47830.072*
C30.7831 (6)0.4029 (3)0.46375 (8)0.0618 (8)
C40.9649 (5)0.3682 (3)0.44218 (9)0.0589 (7)
H41.07650.42630.44080.071*
C50.9853 (4)0.2489 (3)0.42246 (8)0.0495 (6)
H51.10910.22740.40790.059*
C60.8205 (4)0.1615 (2)0.42453 (7)0.0419 (5)
C8A0.8715 (15)0.0801 (9)0.3232 (2)0.044 (2)0.466 (13)
H8A10.88010.16950.33230.053*0.466 (13)
H8A21.01250.04380.32410.053*0.466 (13)
C9A0.7867 (18)0.0729 (7)0.2768 (3)0.040 (2)0.466 (13)
H9A10.89200.10650.25680.048*0.466 (13)
H9A20.66240.12700.27450.048*0.466 (13)
C8B0.7774 (14)0.1092 (6)0.31983 (19)0.0377 (15)0.534 (13)
H8B10.64800.15440.31260.045*0.534 (13)
H8B20.87650.17140.33160.045*0.534 (13)
C9B0.8687 (11)0.0489 (7)0.2785 (3)0.0353 (17)0.534 (13)
H9B11.00980.01730.28440.042*0.534 (13)
H9B20.87780.11350.25560.042*0.534 (13)
C100.5022 (4)0.0686 (3)0.26975 (8)0.0517 (7)
H10A0.43900.01440.26330.062*
H10B0.44470.13120.24940.062*
C110.4459 (4)0.1078 (3)0.31613 (9)0.0518 (7)
H11A0.51500.18910.32260.062*
H11B0.29500.12260.31750.062*
C120.5040 (4)0.0126 (3)0.35127 (8)0.0536 (7)
H12A0.45350.04380.37930.064*
H12B0.43500.06910.34530.064*
C130.7984 (4)0.0278 (2)0.17594 (7)0.0394 (5)
C140.9546 (4)0.0588 (2)0.16374 (8)0.0449 (6)
H141.08030.06300.17940.054*
C150.9215 (4)0.1392 (3)0.12792 (8)0.0515 (6)
H151.02660.19680.11960.062*
C160.7342 (5)0.1350 (3)0.10436 (9)0.0521 (6)
C170.5795 (4)0.0506 (3)0.11791 (9)0.0543 (7)
H170.45210.04860.10280.065*
C180.6080 (4)0.0313 (2)0.15328 (8)0.0469 (6)
H180.50150.08770.16180.056*
C190.7052 (6)0.2180 (3)0.06426 (9)0.0691 (9)
H19A0.56370.25090.06360.104*
H19B0.80300.28870.06520.104*
H19C0.73050.16730.03850.104*
C70.7658 (6)0.5318 (3)0.48659 (10)0.0877 (12)
H7A0.77050.59970.46520.131*
H7B0.63490.53590.50230.131*
H7C0.88100.54150.50670.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0326 (3)0.0467 (3)0.0537 (3)0.0031 (3)0.0021 (3)0.0001 (3)
S20.0305 (3)0.0333 (3)0.0538 (3)0.0003 (2)0.0042 (3)0.0032 (3)
O10.0676 (13)0.0522 (11)0.0584 (11)0.0016 (9)0.0065 (9)0.0171 (9)
O20.0299 (9)0.0798 (14)0.1052 (15)0.0070 (10)0.0024 (10)0.0327 (13)
O30.0498 (10)0.0296 (8)0.0710 (12)0.0033 (7)0.0041 (9)0.0093 (8)
O40.0271 (8)0.0608 (11)0.0717 (12)0.0036 (8)0.0061 (8)0.0080 (10)
N10.0411 (11)0.0450 (11)0.0457 (10)0.0089 (9)0.0087 (9)0.0023 (10)
N20.0373 (11)0.0326 (10)0.0464 (11)0.0048 (8)0.0031 (9)0.0025 (9)
C10.0479 (15)0.0597 (16)0.0458 (13)0.0042 (13)0.0092 (12)0.0037 (12)
C20.073 (2)0.0680 (18)0.0401 (14)0.0238 (16)0.0104 (14)0.0042 (13)
C30.094 (2)0.0522 (16)0.0395 (14)0.0121 (16)0.0093 (15)0.0031 (12)
C40.077 (2)0.0505 (15)0.0497 (15)0.0081 (16)0.0049 (14)0.0054 (13)
C50.0482 (15)0.0590 (16)0.0413 (14)0.0046 (13)0.0025 (12)0.0031 (12)
C60.0394 (13)0.0492 (14)0.0370 (12)0.0026 (11)0.0018 (11)0.0036 (10)
C8A0.035 (4)0.050 (4)0.048 (4)0.011 (4)0.005 (3)0.006 (3)
C9A0.046 (5)0.031 (3)0.043 (4)0.001 (3)0.004 (4)0.001 (3)
C8B0.036 (4)0.041 (3)0.036 (3)0.002 (3)0.003 (3)0.005 (2)
C9B0.035 (4)0.030 (3)0.041 (3)0.006 (2)0.001 (3)0.001 (3)
C100.0334 (13)0.0642 (17)0.0576 (16)0.0106 (12)0.0099 (11)0.0107 (14)
C110.0268 (11)0.0530 (16)0.0758 (18)0.0059 (11)0.0004 (12)0.0106 (13)
C120.0353 (13)0.0765 (19)0.0491 (14)0.0133 (13)0.0033 (11)0.0035 (15)
C130.0356 (12)0.0383 (12)0.0442 (12)0.0016 (10)0.0024 (10)0.0101 (10)
C140.0402 (13)0.0438 (13)0.0506 (14)0.0029 (11)0.0007 (12)0.0061 (12)
C150.0561 (16)0.0442 (14)0.0543 (15)0.0045 (13)0.0055 (13)0.0047 (13)
C160.0640 (17)0.0446 (13)0.0477 (14)0.0054 (13)0.0038 (13)0.0051 (13)
C170.0542 (16)0.0577 (16)0.0511 (14)0.0062 (13)0.0158 (13)0.0090 (13)
C180.0413 (14)0.0464 (14)0.0529 (14)0.0032 (11)0.0066 (11)0.0019 (11)
C190.092 (2)0.0543 (17)0.0613 (18)0.0067 (17)0.0096 (17)0.0056 (14)
C70.140 (4)0.063 (2)0.0591 (18)0.028 (2)0.021 (2)0.0131 (15)
Geometric parameters (Å, º) top
S1—O11.4216 (19)C8B—C9B1.522 (7)
S1—O21.4273 (18)C8B—H8B10.9700
S1—N11.614 (2)C8B—H8B20.9700
S1—C61.766 (2)C9B—H9B10.9700
S2—O41.4313 (17)C9B—H9B20.9700
S2—O31.4313 (16)C10—C111.515 (4)
S2—N21.616 (2)C10—H10A0.9700
S2—C131.762 (2)C10—H10B0.9700
N1—C121.465 (3)C11—C121.504 (4)
N1—C8A1.486 (6)C11—H11A0.9700
N1—C8B1.502 (5)C11—H11B0.9700
N2—C101.467 (3)C12—H12A0.9700
N2—C9A1.480 (7)C12—H12B0.9700
N2—C9B1.499 (6)C13—C141.388 (3)
C1—C21.384 (4)C13—C181.392 (3)
C1—C61.389 (4)C14—C151.391 (4)
C1—H10.9300C14—H140.9300
C2—C31.392 (4)C15—C161.389 (4)
C2—H20.9300C15—H150.9300
C3—C41.375 (4)C16—C171.378 (4)
C3—C71.511 (4)C16—C191.507 (4)
C4—C51.381 (4)C17—C181.385 (4)
C4—H40.9300C17—H170.9300
C5—C61.385 (3)C18—H180.9300
C5—H50.9300C19—H19A0.9600
C8A—C9A1.516 (8)C19—H19B0.9600
C8A—H8A10.9700C19—H19C0.9600
C8A—H8A20.9700C7—H7A0.9600
C9A—H9A10.9700C7—H7B0.9600
C9A—H9A20.9700C7—H7C0.9600
O1—S1—O2119.36 (13)C9B—C8B—H8B2109.5
O1—S1—N1107.66 (11)H8B1—C8B—H8B2108.0
O2—S1—N1106.80 (12)N2—C9B—C8B109.9 (5)
O1—S1—C6108.33 (12)N2—C9B—H9B1109.7
O2—S1—C6106.02 (12)C8B—C9B—H9B1109.7
N1—S1—C6108.25 (11)N2—C9B—H9B2109.7
O4—S2—O3119.05 (11)C8B—C9B—H9B2109.7
O4—S2—N2107.45 (11)H9B1—C9B—H9B2108.2
O3—S2—N2107.59 (10)N2—C10—C11111.7 (2)
O4—S2—C13106.62 (11)N2—C10—H10A109.3
O3—S2—C13107.95 (11)C11—C10—H10A109.3
N2—S2—C13107.71 (10)N2—C10—H10B109.3
C12—N1—C8A128.8 (4)C11—C10—H10B109.3
C12—N1—C8B104.7 (4)H10A—C10—H10B107.9
C12—N1—S1119.77 (16)C12—C11—C10115.6 (2)
C8A—N1—S1106.9 (3)C12—C11—H11A108.4
C8B—N1—S1122.1 (3)C10—C11—H11A108.4
C10—N2—C9A104.8 (5)C12—C11—H11B108.4
C10—N2—C9B125.6 (3)C10—C11—H11B108.4
C10—N2—S2119.14 (16)H11A—C11—H11B107.4
C9A—N2—S2122.1 (5)N1—C12—C11112.0 (2)
C9B—N2—S2109.5 (3)N1—C12—H12A109.2
C2—C1—C6119.2 (3)C11—C12—H12A109.2
C2—C1—H1120.4N1—C12—H12B109.2
C6—C1—H1120.4C11—C12—H12B109.2
C1—C2—C3121.3 (3)H12A—C12—H12B107.9
C1—C2—H2119.3C14—C13—C18120.2 (2)
C3—C2—H2119.3C14—C13—S2119.87 (18)
C4—C3—C2118.4 (3)C18—C13—S2119.90 (19)
C4—C3—C7120.9 (3)C13—C14—C15119.4 (2)
C2—C3—C7120.8 (3)C13—C14—H14120.3
C3—C4—C5121.4 (3)C15—C14—H14120.3
C3—C4—H4119.3C16—C15—C14121.1 (3)
C5—C4—H4119.3C16—C15—H15119.4
C4—C5—C6119.7 (3)C14—C15—H15119.4
C4—C5—H5120.1C17—C16—C15118.3 (3)
C6—C5—H5120.1C17—C16—C19121.3 (3)
C5—C6—C1120.0 (2)C15—C16—C19120.5 (3)
C5—C6—S1119.9 (2)C16—C17—C18122.0 (3)
C1—C6—S1120.1 (2)C16—C17—H17119.0
N1—C8A—C9A110.6 (7)C18—C17—H17119.0
N1—C8A—H8A1109.5C17—C18—C13119.0 (2)
C9A—C8A—H8A1109.5C17—C18—H18120.5
N1—C8A—H8A2109.5C13—C18—H18120.5
C9A—C8A—H8A2109.5C16—C19—H19A109.5
H8A1—C8A—H8A2108.1C16—C19—H19B109.5
N2—C9A—C8A112.6 (6)H19A—C19—H19B109.5
N2—C9A—H9A1109.1C16—C19—H19C109.5
C8A—C9A—H9A1109.1H19A—C19—H19C109.5
N2—C9A—H9A2109.1H19B—C19—H19C109.5
C8A—C9A—H9A2109.1C3—C7—H7A109.5
H9A1—C9A—H9A2107.8C3—C7—H7B109.5
N1—C8B—C9B110.9 (6)H7A—C7—H7B109.5
N1—C8B—H8B1109.5C3—C7—H7C109.5
C9B—C8B—H8B1109.5H7A—C7—H7C109.5
N1—C8B—H8B2109.5H7B—C7—H7C109.5
O1—S1—N1—C1234.0 (3)S1—N1—C8A—C9A173.6 (8)
O2—S1—N1—C12163.3 (2)C10—N2—C9A—C8A98.8 (10)
C6—S1—N1—C1282.9 (2)C9B—N2—C9A—C8A60.8 (13)
O1—S1—N1—C8A167.7 (5)S2—N2—C9A—C8A121.8 (9)
O2—S1—N1—C8A38.4 (5)N1—C8A—C9A—N248.4 (15)
C6—S1—N1—C8A75.4 (5)C12—N1—C8B—C9B101.7 (7)
O1—S1—N1—C8B168.7 (4)C8A—N1—C8B—C9B57.8 (9)
O2—S1—N1—C8B62.0 (4)S1—N1—C8B—C9B118.0 (6)
C6—S1—N1—C8B51.8 (4)C10—N2—C9B—C8B30.9 (10)
O4—S2—N2—C10165.87 (18)C9A—N2—C9B—C8B55.4 (14)
O3—S2—N2—C1036.5 (2)S2—N2—C9B—C8B176.4 (6)
C13—S2—N2—C1079.6 (2)N1—C8B—C9B—N251.2 (11)
O4—S2—N2—C9A60.1 (4)C9A—N2—C10—C1187.3 (4)
O3—S2—N2—C9A170.6 (4)C9B—N2—C10—C1177.9 (6)
C13—S2—N2—C9A54.4 (4)S2—N2—C10—C11131.8 (2)
O4—S2—N2—C9B39.4 (4)N2—C10—C11—C1265.3 (3)
O3—S2—N2—C9B168.8 (4)C8A—N1—C12—C1173.4 (6)
C13—S2—N2—C9B75.1 (4)C8B—N1—C12—C1184.8 (3)
C6—C1—C2—C30.5 (4)S1—N1—C12—C11133.74 (19)
C1—C2—C3—C41.8 (4)C10—C11—C12—N162.6 (3)
C1—C2—C3—C7177.3 (3)O4—S2—C13—C1420.1 (2)
C2—C3—C4—C51.3 (4)O3—S2—C13—C14149.10 (19)
C7—C3—C4—C5177.7 (3)N2—S2—C13—C1495.0 (2)
C3—C4—C5—C60.4 (4)O4—S2—C13—C18162.33 (19)
C4—C5—C6—C11.7 (4)O3—S2—C13—C1833.3 (2)
C4—C5—C6—S1178.10 (19)N2—S2—C13—C1882.6 (2)
C2—C1—C6—C51.2 (4)C18—C13—C14—C151.9 (4)
C2—C1—C6—S1178.58 (19)S2—C13—C14—C15179.45 (18)
O1—S1—C6—C5143.5 (2)C13—C14—C15—C160.5 (4)
O2—S1—C6—C514.2 (2)C14—C15—C16—C171.3 (4)
N1—S1—C6—C5100.1 (2)C14—C15—C16—C19176.9 (2)
O1—S1—C6—C136.3 (2)C15—C16—C17—C181.6 (4)
O2—S1—C6—C1165.6 (2)C19—C16—C17—C18176.5 (3)
N1—S1—C6—C180.1 (2)C16—C17—C18—C130.3 (4)
C12—N1—C8A—C9A30.8 (12)C14—C13—C18—C171.5 (4)
C8B—N1—C8A—C9A56.6 (10)S2—C13—C18—C17179.09 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.402.886 (3)110
C12—H12A···O10.972.392.878 (3)111
C10—H10B···O4i0.972.523.142 (3)122
C12—H12A···O2i0.972.503.035 (3)115
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H24N2O4S2
Mr408.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.3407 (13), 10.367 (2), 30.516 (6)
V3)2005.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku Mercury CCD/AFC
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.944, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
11747, 3531, 3430
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.07
No. of reflections3531
No. of parameters265
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.20
Absolute structureFlack (1983), 1442 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.402.886 (3)110
C12—H12A···O10.972.392.878 (3)111
C10—H10B···O4i0.972.523.142 (3)122
C12—H12A···O2i0.972.503.035 (3)115
Symmetry code: (i) x1, y, z.
 

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRomba, J., Steinhauser, S. & Hegetschweiler, K. (2002). Z. Kristallogr. New Cryst. Struct. 217, 133–134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L. Z., Huang, Y. W., Yu, G. P., Si, G. D. & Zhu, Q. (2006). Struct. Chem. 17, 235–239.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, G. P., Xu, L. Z., Yi, X., Bi, W. Z., Zhu, Q. & Zhai, Z. W. (2009). J. Agric. Food Chem. 57, 4854–4860.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds