organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1672-o1673

3-{[Bis(pyridin-2-ylmeth­yl)amino]­meth­yl}-2-hy­dr­oxy-5-methyl­benz­aldehyde

aCollege of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhudr@njut.edu.cn

(Received 20 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title compound, C21H21N3O2, the pyridine rings and the benzene ring lie in a propeller arrangement around the central tertiary amine N atom. The dihedral angles formed by the benzene ring with the pyridine rings are 61.0 (3) and 49.6 (3)°, while the dihedral angle between the pyridine rings is 69.7 (3)°. The mol­ecular conformation is stabilized by intramolecular bifurcated O—H⋯N hydrogen bonds. In the crystal, inversion dimers are formed via pairs of C—H⋯N hydrogen bonds.

Related literature

For general background to unsymmetric phenolate compounds, see: Lambert et al. (1997[Lambert, E., Chabut, B., Chardon-Noblat, S., Deronzier, A., Chottard, G., Bousseksou, A., Tuchagues, J.-P., Laugier, J., Bardet, M. & Latour, J.-M. (1997). J. Am. Chem. Soc. 119, 9424-9437.]); Dubois, Xiang et al. (2003[Dubois, L., Xiang, D. F., Tan, X. S., Pécaut, J., Jones, P., Baudron, S., Le Pape, L., Latour, J. M., Baffert, C., Chardon-Noblat, S., Collomb, M. N. & Deronzier, A. (2003). Inorg. Chem. 42, 750-760.]); Dubois, Caspar et al. (2003[Dubois, L., Caspar, R., Jacquamet, L., Petit, P. E., Charlot, M. F., Baffert, C., Collomb, M. N., Deronzier, A. & Latour, J. M. (2003). Inorg. Chem. 42, 4817-4827.]); Carlsson et al. (2004[Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252-8262.]). For the syntheses and structures of related compounds, see: Chirakul et al. (2000[Chirakul, P., Hampton, P. D. & Bencze, Z. (2000). J. Org. Chem. 65, 8297-8300.]); Abe et al. (2006[Abe, A. M. M., Helaja, J. & Koskinen, A. M. P. (2006). Org. Lett. 8, 4537-4540.]); Bortoluzzi et al. (2007[Bortoluzzi, A. J., Neves, A. & Rey, N. A. (2007). Acta Cryst. C63, o84-o86.]); Koval, Huisman, Stassen, Gamez, Lutz, Spek & Reedijk (2004[Koval, I. A., Huisman, M., Stassen, A. F., Gamez, P., Lutz, M., Spek, A. L. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 591-600.]); Koval, Huisman, Stassen, Gamez, Lutz, Spek, Pursche et al. (2004[Koval, I. A., Huisman, M., Stassen, A. F., Gamez, P., Lutz, M., Spek, A. L., Pursche, D., Krebs, B. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 294-300.]); Koval et al. (2007[Koval, I. A., Akhideno, H., Tanase, S., Belle, C., Duboc, C., Saint-Aman, E., Gamez, P., Tooke, D. M., Spek, A. L., Pierre, J.-L. & Reedijk, J. (2007). New J. Chem. 31, 512-518.]); Zhu et al. (2007[Zhu, D., Yan, J., Shen, K. & Shen, X. (2007). Faming Zhuanli Shenqing Gongkai Shuomingshu, CN Patent 101029020A.]). For the synthesis of the title compound, see: Lambert et al. (1997[Lambert, E., Chabut, B., Chardon-Noblat, S., Deronzier, A., Chottard, G., Bousseksou, A., Tuchagues, J.-P., Laugier, J., Bardet, M. & Latour, J.-M. (1997). J. Am. Chem. Soc. 119, 9424-9437.]); Koval et al. (2003[Koval, I. A., Pursche, D., Stassen, A. F., Gamez, P., Krebs, B. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 1669-1674.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O2

  • Mr = 347.41

  • Triclinic, [P \overline 1]

  • a = 8.479 (3) Å

  • b = 9.007 (3) Å

  • c = 12.734 (4) Å

  • α = 107.565 (4)°

  • β = 94.068 (4)°

  • γ = 99.092 (4)°

  • V = 908.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.993

  • 6434 measured reflections

  • 3159 independent reflections

  • 2612 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.06

  • 3159 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N2 0.94 (3) 2.53 (3) 3.219 (2) 130 (2)
O1—H1B⋯N3 0.94 (3) 1.95 (3) 2.790 (2) 148 (2)
C3—H3A⋯N2i 0.93 2.59 3.390 (3) 145
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Unsymmetrical phenolate based "end-off" compartmental ligands which contain two adjacent, but dissimilar coordination sites, are important chelating agents to synthetic model complexes for metalloenzymes such as phosphatase, urease, superoxide dismutase, catalase, tyrosinase, nuclease, etc (Lambert et al., 1997; Dubois, Xiang et al., 2003; Dubois, Caspar et al., 2003; Carlsson et al., 2004). The title compound (HL) is a key precursor to the unsymmetrical ligands (Chirakul et al., 2000; Abe et al., 2006). Up to now, different kinds of interesting model complexes with HL and its derivatives have been reported (Lambert et al., 1997; Koval et al., 2003; Koval, Huisman, Stassen, Gamez, Lutz, Spek & Reedijk, 2004; Koval, Huisman, Stassen, Gamez, Lutz, Spek, Pursche et al., 2004; Koval et al., 2007), however, the crystal structure of the HL itself is still unknown to us. Recently, in the synthesis of HL derivatives (Zhu et al., 2007), we unexpectedly obtained single crystals of HL, and its crystal structure is reported herein.

The X-ray analysis of the title compound (Fig. 1) indicated that two pyridyne rings and the substituted phenyl ring lie in a propeller arrangement around the central tertiary amine N3 atom. The dihedral angles between the phenyl ring and two pyridyne rings are 61.0 (3)° and 49.6 (3)°, respectively, while the dihedral angle between two pyridyne rings is 69.7 (3)°. These angles are larger than those found in the ligand L of the related complexes [Cu2L(µ-NO3)(NO3)2].CH3CN, [Cu(HL)Br2].0.5H2O, [Mn(HL)Cl2], (Koval, Huisman, Stassen, Gamez, Lutz, Spek & Reedijk, 2004) and [Co2L2](ClO4)2.0.7CH3OH, [Co2L2](BF4)2.CH3OH, [Mn2L2](BF4)2.C4H10O (Koval, Huisman, Stassen, Gamez, Lutz, Spek, Pursche et al., 2004). The dihedral angle between the phenyl ring and the C18/C21/O2 plane through the aldehyde group is 10.5 (3)°. All bond lengths and angles are normal (Bortoluzzi et al., 2007). An intramolecular bifurcate O—H···N hydrogen bond (Table 1) stabilizes the molecular conformation. In the crystal structure (Fig. 2), centrosymmetrically related molecules are linked by pairs of C—H···N hydrogen bonds into dimers.

Related literature top

For general background to unsymmetric phenolate compounds, see: Lambert et al. (1997); Dubois, Xiang et al. (2003); Dubois, Caspar et al. (2003);Carlsson et al. (2004). For the syntheses and structures of related compounds, see: Chirakul et al. (2000); Abe et al. (2006); Bortoluzzi et al. (2007); Koval, Huisman, Stassen, Gamez, Lutz, Spek & Reedijk (2004); Koval, Huisman, Stassen, Gamez, Lutz, Spek, Pursche et al. (2004); Koval et al. (2007); Zhu et al. (2007). For the synthesis of the title compound, see: Lambert et al. (1997); Koval et al. (2003).

Experimental top

The title compound was synthesized following the method reported by Lambert et al. (1997) and Koval et al. (2003). Diffraction quality crystals were obtained by slow evaporation of an acetone solution.

Refinement top

The hydroxy H atom was located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing the formation of a dimer through hydrogen bonds (dashed lines). Symmetry code: (i) 1-x, 1-y, 2-z.
3-{[Bis(pyridin-2-ylmethyl)amino]methyl}-2-hydroxy-5-methylbenzaldehyde top
Crystal data top
C21H21N3O2Z = 2
Mr = 347.41F(000) = 368
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.479 (3) ÅCell parameters from 285 reflections
b = 9.007 (3) Åθ = 1.7–26.9°
c = 12.734 (4) ŵ = 0.08 mm1
α = 107.565 (4)°T = 296 K
β = 94.068 (4)°Prism, colourless
γ = 99.092 (4)°0.16 × 0.12 × 0.08 mm
V = 908.2 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3159 independent reflections
Radiation source: fine-focus sealed tube2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 109
Tmin = 0.987, Tmax = 0.993k = 109
6434 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.1506P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3159 reflectionsΔρmax = 0.28 e Å3
240 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Crystal data top
C21H21N3O2γ = 99.092 (4)°
Mr = 347.41V = 908.2 (5) Å3
Triclinic, P1Z = 2
a = 8.479 (3) ÅMo Kα radiation
b = 9.007 (3) ŵ = 0.08 mm1
c = 12.734 (4) ÅT = 296 K
α = 107.565 (4)°0.16 × 0.12 × 0.08 mm
β = 94.068 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2612 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.993Rint = 0.016
6434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
3159 reflectionsΔρmin = 0.13 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30347 (14)0.24261 (15)0.70069 (11)0.0612 (4)
O20.2793 (2)0.4303 (2)0.45307 (13)0.0963 (5)
N10.08654 (17)0.36504 (16)1.11217 (10)0.0500 (3)
N20.44036 (16)0.04369 (16)0.84649 (12)0.0556 (4)
N30.13178 (14)0.13408 (13)0.85047 (9)0.0373 (3)
C10.1725 (2)0.4744 (2)1.20326 (14)0.0619 (5)
H1A0.14220.47551.27220.074*
C20.3018 (2)0.5841 (2)1.20004 (17)0.0672 (5)
H2A0.35860.65681.26520.081*
C30.3457 (2)0.5845 (2)1.09924 (19)0.0677 (5)
H3A0.43310.65781.09440.081*
C40.2591 (2)0.47535 (19)1.00495 (15)0.0544 (4)
H4A0.28650.47470.93540.065*
C50.13093 (17)0.36626 (16)1.01410 (12)0.0386 (3)
C60.5620 (2)0.0253 (2)0.80858 (17)0.0649 (5)
H6A0.65010.03760.79380.078*
C70.5662 (2)0.1817 (2)0.79005 (16)0.0644 (5)
H7A0.65430.22420.76360.077*
C80.4367 (3)0.2741 (2)0.81160 (18)0.0719 (6)
H8A0.43500.38130.80010.086*
C90.3086 (2)0.2069 (2)0.85051 (16)0.0599 (5)
H9A0.21900.26830.86480.072*
C100.31508 (17)0.04723 (17)0.86807 (12)0.0400 (3)
C110.03455 (17)0.24405 (18)0.91278 (12)0.0414 (3)
H11A0.05500.18410.93500.050*
H11B0.00930.29710.86470.050*
C120.18157 (18)0.03443 (18)0.91383 (12)0.0433 (4)
H12A0.08960.04500.91340.052*
H12B0.21700.09960.99030.052*
C130.04151 (18)0.03472 (17)0.74274 (12)0.0426 (4)
H13A0.06390.01270.75450.051*
H13B0.09760.05040.70960.051*
C140.02146 (18)0.12748 (17)0.66384 (11)0.0417 (4)
C150.1264 (2)0.11424 (19)0.60476 (12)0.0488 (4)
H15A0.21570.05110.61790.059*
C160.1472 (2)0.1916 (2)0.52628 (13)0.0540 (4)
C170.0125 (2)0.28009 (19)0.50600 (13)0.0548 (4)
H17A0.02290.33060.45270.066*
C180.1394 (2)0.29671 (18)0.56266 (12)0.0496 (4)
C190.15547 (19)0.22339 (18)0.64412 (12)0.0447 (4)
C200.3128 (3)0.1731 (3)0.46591 (17)0.0776 (6)
H20A0.30640.23320.41510.116*
H20B0.38430.21110.51870.116*
H20C0.35290.06310.42560.116*
C210.2815 (3)0.3831 (2)0.53231 (16)0.0656 (5)
H21A0.37920.40270.57680.079*
H1B0.286 (3)0.207 (3)0.762 (2)0.088 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (7)0.0767 (9)0.0618 (8)0.0016 (6)0.0033 (6)0.0369 (7)
O20.1206 (13)0.1079 (12)0.0805 (10)0.0155 (10)0.0190 (9)0.0608 (10)
N10.0583 (8)0.0525 (8)0.0402 (7)0.0139 (6)0.0080 (6)0.0143 (6)
N20.0447 (8)0.0503 (8)0.0726 (9)0.0084 (6)0.0122 (7)0.0196 (7)
N30.0409 (7)0.0406 (7)0.0325 (6)0.0132 (5)0.0043 (5)0.0118 (5)
C10.0779 (13)0.0663 (12)0.0402 (9)0.0278 (10)0.0011 (8)0.0092 (8)
C20.0591 (12)0.0548 (11)0.0687 (13)0.0207 (9)0.0150 (9)0.0082 (9)
C30.0483 (10)0.0476 (10)0.0942 (15)0.0050 (8)0.0077 (10)0.0055 (10)
C40.0536 (10)0.0487 (9)0.0611 (10)0.0094 (8)0.0163 (8)0.0157 (8)
C50.0392 (8)0.0392 (8)0.0411 (8)0.0155 (6)0.0067 (6)0.0139 (6)
C60.0413 (9)0.0742 (12)0.0825 (13)0.0128 (9)0.0133 (9)0.0277 (10)
C70.0553 (11)0.0843 (14)0.0662 (11)0.0374 (10)0.0134 (9)0.0288 (10)
C80.0888 (14)0.0615 (11)0.0865 (14)0.0411 (11)0.0302 (12)0.0363 (11)
C90.0681 (12)0.0514 (10)0.0752 (12)0.0212 (9)0.0267 (9)0.0330 (9)
C100.0412 (8)0.0450 (8)0.0369 (7)0.0104 (6)0.0020 (6)0.0172 (6)
C110.0396 (8)0.0472 (8)0.0389 (8)0.0139 (6)0.0059 (6)0.0126 (6)
C120.0486 (9)0.0467 (8)0.0413 (8)0.0146 (7)0.0100 (7)0.0199 (7)
C130.0441 (8)0.0422 (8)0.0390 (8)0.0079 (6)0.0039 (6)0.0094 (6)
C140.0466 (9)0.0431 (8)0.0316 (7)0.0126 (7)0.0018 (6)0.0050 (6)
C150.0493 (9)0.0521 (9)0.0389 (8)0.0147 (7)0.0011 (7)0.0042 (7)
C160.0635 (11)0.0561 (10)0.0374 (8)0.0255 (8)0.0058 (7)0.0032 (7)
C170.0792 (13)0.0498 (9)0.0364 (8)0.0240 (9)0.0012 (8)0.0114 (7)
C180.0666 (11)0.0433 (8)0.0389 (8)0.0148 (8)0.0045 (7)0.0112 (7)
C190.0494 (9)0.0458 (8)0.0369 (8)0.0111 (7)0.0004 (6)0.0102 (7)
C200.0765 (14)0.0919 (15)0.0607 (12)0.0335 (12)0.0152 (10)0.0153 (11)
C210.0856 (14)0.0608 (11)0.0568 (11)0.0146 (10)0.0119 (10)0.0272 (9)
Geometric parameters (Å, º) top
O1—C191.3607 (19)C9—C101.378 (2)
O1—H1B0.94 (2)C9—H9A0.9300
O2—C211.207 (2)C10—C121.503 (2)
N1—C51.3324 (19)C11—H11A0.9700
N1—C11.346 (2)C11—H11B0.9700
N2—C61.332 (2)C12—H12A0.9700
N2—C101.333 (2)C12—H12B0.9700
N3—C121.4640 (18)C13—C141.505 (2)
N3—C131.4704 (19)C13—H13A0.9700
N3—C111.4719 (18)C13—H13B0.9700
C1—C21.367 (3)C14—C151.384 (2)
C1—H1A0.9300C14—C191.401 (2)
C2—C31.363 (3)C15—C161.396 (2)
C2—H2A0.9300C15—H15A0.9300
C3—C41.372 (3)C16—C171.372 (3)
C3—H3A0.9300C16—C201.512 (2)
C4—C51.382 (2)C17—C181.394 (2)
C4—H4A0.9300C17—H17A0.9300
C5—C111.501 (2)C18—C191.397 (2)
C6—C71.364 (3)C18—C211.469 (3)
C6—H6A0.9300C20—H20A0.9600
C7—C81.365 (3)C20—H20B0.9600
C7—H7A0.9300C20—H20C0.9600
C8—C91.376 (3)C21—H21A0.9300
C8—H8A0.9300
C19—O1—H1B106.1 (14)H11A—C11—H11B107.9
C5—N1—C1117.31 (15)N3—C12—C10112.76 (11)
C6—N2—C10117.32 (15)N3—C12—H12A109.0
C12—N3—C13110.23 (11)C10—C12—H12A109.0
C12—N3—C11111.29 (11)N3—C12—H12B109.0
C13—N3—C11110.37 (11)C10—C12—H12B109.0
N1—C1—C2123.62 (17)H12A—C12—H12B107.8
N1—C1—H1A118.2N3—C13—C14112.35 (12)
C2—C1—H1A118.2N3—C13—H13A109.1
C3—C2—C1118.53 (17)C14—C13—H13A109.1
C3—C2—H2A120.7N3—C13—H13B109.1
C1—C2—H2A120.7C14—C13—H13B109.1
C2—C3—C4119.06 (18)H13A—C13—H13B107.9
C2—C3—H3A120.5C15—C14—C19118.35 (14)
C4—C3—H3A120.5C15—C14—C13121.45 (14)
C3—C4—C5119.49 (17)C19—C14—C13120.11 (13)
C3—C4—H4A120.3C14—C15—C16122.85 (16)
C5—C4—H4A120.3C14—C15—H15A118.6
N1—C5—C4121.98 (14)C16—C15—H15A118.6
N1—C5—C11117.07 (13)C17—C16—C15117.36 (15)
C4—C5—C11120.95 (13)C17—C16—C20122.75 (17)
N2—C6—C7124.44 (17)C15—C16—C20119.87 (18)
N2—C6—H6A117.8C16—C17—C18122.13 (15)
C7—C6—H6A117.8C16—C17—H17A118.9
C6—C7—C8117.75 (16)C18—C17—H17A118.9
C6—C7—H7A121.1C17—C18—C19119.25 (16)
C8—C7—H7A121.1C17—C18—C21120.01 (15)
C7—C8—C9119.36 (17)C19—C18—C21120.66 (16)
C7—C8—H8A120.3O1—C19—C18118.99 (15)
C9—C8—H8A120.3O1—C19—C14121.01 (13)
C8—C9—C10119.11 (17)C18—C19—C14119.96 (15)
C8—C9—H9A120.4C16—C20—H20A109.5
C10—C9—H9A120.4C16—C20—H20B109.5
N2—C10—C9122.01 (14)H20A—C20—H20B109.5
N2—C10—C12116.25 (13)C16—C20—H20C109.5
C9—C10—C12121.74 (14)H20A—C20—H20C109.5
N3—C11—C5112.23 (12)H20B—C20—H20C109.5
N3—C11—H11A109.2O2—C21—C18124.0 (2)
C5—C11—H11A109.2O2—C21—H21A118.0
N3—C11—H11B109.2C18—C21—H21A118.0
C5—C11—H11B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N20.94 (3)2.53 (3)3.219 (2)130 (2)
O1—H1B···N30.94 (3)1.95 (3)2.790 (2)148 (2)
C3—H3A···N2i0.932.593.390 (3)145
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H21N3O2
Mr347.41
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.479 (3), 9.007 (3), 12.734 (4)
α, β, γ (°)107.565 (4), 94.068 (4), 99.092 (4)
V3)908.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.987, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
6434, 3159, 2612
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.06
No. of reflections3159
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—C191.3607 (19)N2—C101.333 (2)
O2—C211.207 (2)N3—C121.4640 (18)
N1—C51.3324 (19)N3—C131.4704 (19)
N1—C11.346 (2)N3—C111.4719 (18)
N2—C61.332 (2)
C19—O1—H1B106.1 (14)C13—N3—C11110.37 (11)
C12—N3—C13110.23 (11)O2—C21—C18124.0 (2)
C12—N3—C11111.29 (11)O2—C21—H21A118.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N20.94 (3)2.53 (3)3.219 (2)130 (2)
O1—H1B···N30.94 (3)1.95 (3)2.790 (2)148 (2)
C3—H3A···N2i0.93002.59003.390 (3)145.00
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 21171093) and the State Key Laboratory of Materials-Oriented Chemical Engineering (grant No. KL11-03).

References

First citationAbe, A. M. M., Helaja, J. & Koskinen, A. M. P. (2006). Org. Lett. 8, 4537–4540.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBortoluzzi, A. J., Neves, A. & Rey, N. A. (2007). Acta Cryst. C63, o84–o86.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252–8262.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChirakul, P., Hampton, P. D. & Bencze, Z. (2000). J. Org. Chem. 65, 8297–8300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDubois, L., Caspar, R., Jacquamet, L., Petit, P. E., Charlot, M. F., Baffert, C., Collomb, M. N., Deronzier, A. & Latour, J. M. (2003). Inorg. Chem. 42, 4817–4827.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDubois, L., Xiang, D. F., Tan, X. S., Pécaut, J., Jones, P., Baudron, S., Le Pape, L., Latour, J. M., Baffert, C., Chardon-Noblat, S., Collomb, M. N. & Deronzier, A. (2003). Inorg. Chem. 42, 750–760.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKoval, I. A., Akhideno, H., Tanase, S., Belle, C., Duboc, C., Saint-Aman, E., Gamez, P., Tooke, D. M., Spek, A. L., Pierre, J.-L. & Reedijk, J. (2007). New J. Chem. 31, 512–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoval, I. A., Huisman, M., Stassen, A. F., Gamez, P., Lutz, M., Spek, A. L., Pursche, D., Krebs, B. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 294–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoval, I. A., Huisman, M., Stassen, A. F., Gamez, P., Lutz, M., Spek, A. L. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 591–600.  Web of Science CSD CrossRef Google Scholar
First citationKoval, I. A., Pursche, D., Stassen, A. F., Gamez, P., Krebs, B. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 1669–1674.  Web of Science CSD CrossRef Google Scholar
First citationLambert, E., Chabut, B., Chardon-Noblat, S., Deronzier, A., Chottard, G., Bousseksou, A., Tuchagues, J.-P., Laugier, J., Bardet, M. & Latour, J.-M. (1997). J. Am. Chem. Soc. 119, 9424–9437.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, D., Yan, J., Shen, K. & Shen, X. (2007). Faming Zhuanli Shenqing Gongkai Shuomingshu, CN Patent 101029020A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1672-o1673
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds