metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m777-m778

Bis(4′-chloro-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)ruthenium(II) dichloride dihydrate

aDepartment of Chemistry and Chemical Engineering, Lianyungang Teacher's College, Lianyungang 222006, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn

(Received 21 April 2012; accepted 11 May 2012; online 16 May 2012)

In the cation of the title compound, [Ru(C15H10ClN3)2]Cl2·2H2O, the metal atom exhibits a distorted octa­hedral coordination geometry provided by the N atoms of two tridentate terpyridine ligands. The ligands are approximately planar [maximum deviation = 0.156 (5) Å] and form a dihedral angle of 87.0 (3)°. In the crystal, the cations, anions and water mol­ecules are linked into a three-dimensional network by C—H⋯Cl, C—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For the structures of the related hydro­chloride tetra­fluoridoborate and hydro­chloride hexa­fluorido­phospho­rate derivatives, see: Huang & Qian (2007a[Huang, W. & Qian, H. F. (2007a). J. Mol. Struct. 832, 108-106.]). For the structures of RuII, CuII, ZnII, NiII, FeII, CuII and CdII complexes of 4′-chloro-2,2′:6′,2′′-terpyridine, see: Beves et al. (2008[Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Zampese, J. A. (2008). Inorg. Chem. Commun. 11, 1006-1008.]); Huang & Qian (2007b[Huang, W. & Qian, H. F. (2007b). J. Mol. Struct. 874, 64-76.]); Huang et al. (2009[Huang, W., You, W., Wang, L. & Yao, C. (2009). Inorg. Chim. Acta, 362, 2127-2135.]); You et al. (2008[You, W., Yang, X.-Y., Yao, C. & Huang, W. (2008). Acta Cryst. E64, m79.]); You et al. (2009[You, W., Huang, W., Fan, Y. & Yao, C. (2009). J. Coord. Chem. 62, 2125-2137.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C15H10ClN3)2]Cl2·2H2O

  • Mr = 743.42

  • Orthorhombic, P n a 21

  • a = 10.1367 (5) Å

  • b = 16.2964 (7) Å

  • c = 17.8995 (8) Å

  • V = 2956.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 291 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.881

  • 15880 measured reflections

  • 5166 independent reflections

  • 4736 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.01

  • 5166 reflections

  • 389 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2475 Friedel pairs

  • Flack parameter: 0.47 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl4 0.93 2.68 3.590 (5) 169
C12—H12⋯O2i 0.93 2.57 3.391 (6) 148
C15—H15⋯O1ii 0.93 2.48 3.179 (7) 132
C16—H16⋯Cl4iii 0.93 2.81 3.498 (5) 132
C27—H27⋯O1iv 0.93 2.60 3.474 (7) 158
C28—H28⋯Cl4iv 0.93 2.82 3.686 (4) 156
C30—H30⋯O2ii 0.93 2.54 3.203 (6) 128
O1—H1A⋯Cl4 0.85 2.76 3.231 (5) 116
O1—H1B⋯Cl4v 0.85 2.68 3.176 (4) 118
O2—H2A⋯Cl3 0.85 2.51 3.156 (4) 133
O2—H2B⋯Cl3vi 0.85 2.58 3.209 (4) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures of the hydrochlorate tetrafluoroborate and hydrochlorate hexafluorophosphorate derivatives (Huang & Qian, 2007a) and of the Ru(II), Cu(II), Zn(II), Ni(II), Fe(II), Cu(II) and Cd(II) complexes (Huang & Qian, 2007b; Beves et al., 2008; You et al., 2008; You et al., 2009; Huang et al., 2009) of 4'-chloro-2,2':6',2''-terpyridine with metal/ligand ratios of 1:1 and 1:2 have been recently reported by our group. As a continuation of the research in this field, we report herein the crystal structure of a ruthenium(II) dichloride complex bearing the same 4'-chloro-2,2':6',2''-terpyridine ligand with a 1:2 metal/ligand ratio.

The asymmetric unit of the title compound consists of a dication of formula [Ru(C15H10N3Cl)2]2+, two chloride anions and two water molecules (Fig. 1). In the cation, the ruthenium(II) metal displays a distorted octahedral geometry where each 4'-chloro-2,2':6',2'-terpyridine molecule acts as a tridentate mer-arranged N-ligand. The six Ru—N bond lengths (1.977 (3)—2.079 (4) Å) fall in the normal ranges of values. The two 4'-chloro-2,2':6',2''-terpyridine ligands are approximately planar (maximum deviation 0.156 (5) Å for atom C13) and the dihedral angle between them is 87.0 (3)°. In the crystal structure, cations, anions and water molecules are linked into a three-dimensional network by C—H···Cl, C—H···O and O—H···Cl hydrogen bonds (Table 1).

Related literature top

For the structures of the related hydrochlorate tetrafluoridoborate and hydrochlorate hexafluoridophosphorate derivatives, see: Huang & Qian (2007a). For the structures of RuII, CuII, ZnII, NiII, FeII, CuII and CdII complexes of 4'-chloro-2,2':6',2''-terpyridine, see: Beves et al. (2008); Huang & Qian (2007b); Huang et al. (2009); You et al. (2008); You et al. (2009).

Experimental top

The title compound was obtained by refluxing cis-[RuCl2(DMSO)4] (0.121 g, 0.25 mmol) and 4'-chloro-2,2':6',2''-terpyridine (0.134 g, 0.50 mmol) in ethanol for 4 h [0.146 g; yield 78.4% based on Ru(II)]. Single crystals suitable for X-ray diffraction measurement were obtained after 10 days by slow evaporation of an ethanol/water solution (3:1 v/v) at room temperature in air. Elemental analysis: calculated for C24H22RuN6B2F8: C 43.08, H 3.31, N 12.56%; found: C 43.29, H 3.62, N 12.34%. Main FT–IR absorptions (KBr plates, cm-1): 3423 (b, s), 1630 (s), 1591 (w), 1421 (m), 1385 (m), 1107 (m), 1026 (w) and 793 (m).

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.93 Å and O—H = 0.85 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O). The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL-97 (Sheldrick, 2008)

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
Bis(4'-chloro-2,2':6',2''-terpyridine- κ3N,N',N'')ruthenium(II) dichloride dihydrate top
Crystal data top
[Ru(C15H10ClN3)2]Cl2·2H2OF(000) = 1496
Mr = 743.42Dx = 1.670 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8095 reflections
a = 10.1367 (5) Åθ = 2.3–27.6°
b = 16.2964 (7) ŵ = 0.93 mm1
c = 17.8995 (8) ÅT = 291 K
V = 2956.8 (2) Å3Block, red
Z = 40.18 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5166 independent reflections
Radiation source: fine-focus sealed tube4736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 712
Tmin = 0.850, Tmax = 0.881k = 1919
15880 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5166 reflectionsΔρmax = 0.78 e Å3
389 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983), 2475 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.47 (3)
Crystal data top
[Ru(C15H10ClN3)2]Cl2·2H2OV = 2956.8 (2) Å3
Mr = 743.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.1367 (5) ŵ = 0.93 mm1
b = 16.2964 (7) ÅT = 291 K
c = 17.8995 (8) Å0.18 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4736 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.881Rint = 0.069
15880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.78 e Å3
S = 1.01Δρmin = 0.42 e Å3
5166 reflectionsAbsolute structure: Flack (1983), 2475 Friedel pairs
389 parametersAbsolute structure parameter: 0.47 (3)
1 restraint
Special details top

Experimental. The structure was solved by direct methods and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.29385 (2)0.487615 (16)0.79324 (2)0.03652 (10)
Cl10.31009 (13)0.88127 (6)0.76928 (7)0.0702 (4)
Cl20.29576 (11)0.09346 (6)0.80920 (7)0.0620 (4)
N10.4328 (4)0.5037 (2)0.7093 (2)0.0403 (8)
N20.2981 (3)0.60884 (17)0.7856 (3)0.0387 (8)
N30.1519 (3)0.52045 (18)0.87155 (19)0.0405 (7)
N40.1469 (3)0.4589 (2)0.71801 (18)0.0383 (7)
N50.2922 (3)0.36654 (16)0.8003 (3)0.0366 (7)
N60.4377 (4)0.46780 (19)0.8739 (2)0.0402 (8)
C10.4956 (4)0.4461 (3)0.6702 (2)0.0495 (10)
H10.47620.39140.67980.059*
C20.5882 (5)0.4642 (3)0.6161 (3)0.0555 (12)
H20.62950.42220.58980.067*
C30.6187 (4)0.5436 (3)0.6016 (3)0.0590 (12)
H30.68230.55650.56600.071*
C40.5543 (4)0.6052 (3)0.6402 (2)0.0497 (10)
H40.57310.65990.63030.060*
C50.4605 (4)0.5844 (2)0.6942 (2)0.0419 (9)
C60.3842 (4)0.6443 (2)0.7371 (2)0.0415 (9)
C70.3893 (4)0.7289 (2)0.7306 (2)0.0490 (10)
H70.44680.75410.69720.059*
C80.3062 (4)0.7747 (2)0.7753 (2)0.0487 (13)
C90.2190 (4)0.7392 (3)0.8253 (3)0.0488 (10)
H90.16610.77030.85700.059*
C100.2161 (4)0.6537 (2)0.8288 (2)0.0389 (9)
C110.1303 (4)0.6035 (2)0.8758 (2)0.0415 (9)
C120.0307 (4)0.6351 (3)0.9204 (2)0.0513 (10)
H120.01680.69140.92290.062*
C130.0476 (4)0.5823 (3)0.9609 (3)0.0584 (12)
H130.11570.60270.99040.070*
C140.0248 (6)0.5004 (4)0.9576 (4)0.0618 (15)
H140.07720.46410.98460.074*
C150.0791 (5)0.4711 (3)0.9129 (3)0.0494 (11)
H150.09710.41510.91250.059*
C160.0690 (5)0.5099 (3)0.6799 (3)0.0460 (11)
H160.08480.56600.68380.055*
C170.0323 (6)0.4844 (3)0.6356 (3)0.0523 (13)
H170.08430.52260.61070.063*
C180.0577 (4)0.4009 (3)0.6278 (2)0.0534 (11)
H180.12700.38220.59840.064*
C190.0235 (4)0.3467 (3)0.6653 (2)0.0468 (10)
H190.01150.29040.65990.056*
C200.1226 (4)0.3762 (2)0.7108 (2)0.0400 (9)
C210.2080 (4)0.3234 (2)0.7571 (2)0.0381 (8)
C220.2096 (4)0.2384 (2)0.7582 (2)0.0451 (10)
H220.15520.20830.72660.054*
C230.2942 (4)0.1997 (2)0.8073 (3)0.0443 (11)
C240.3774 (4)0.2437 (2)0.8535 (2)0.0467 (10)
H240.43270.21700.88700.056*
C250.3762 (4)0.3286 (2)0.8485 (2)0.0384 (9)
C260.4577 (4)0.3863 (2)0.8907 (2)0.0410 (9)
C270.5518 (4)0.3629 (3)0.9433 (3)0.0501 (10)
H270.56540.30770.95410.060*
C280.6242 (4)0.4223 (3)0.9789 (2)0.0559 (12)
H280.68760.40721.01390.067*
C290.6039 (5)0.5037 (3)0.9635 (3)0.0548 (13)
H290.65200.54410.98800.066*
C300.5092 (4)0.5244 (3)0.9101 (2)0.0472 (10)
H300.49530.57950.89920.057*
O10.8180 (4)0.6796 (3)0.5095 (3)0.0911 (12)
H1A0.75930.70750.48700.137*
H1B0.85130.70820.54450.137*
O20.6110 (4)0.3114 (2)0.4811 (2)0.0952 (14)
H2A0.62400.26890.50770.143*
H2B0.54850.33940.49980.143*
Cl30.82738 (13)0.20222 (8)0.55975 (9)0.0755 (4)
Cl40.60880 (13)0.81073 (7)0.57497 (8)0.0725 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.04084 (15)0.02974 (15)0.03897 (15)0.00017 (10)0.00122 (19)0.00334 (18)
Cl10.0967 (8)0.0306 (5)0.0833 (11)0.0047 (5)0.0244 (7)0.0081 (5)
Cl20.0896 (8)0.0288 (4)0.0676 (10)0.0044 (5)0.0194 (6)0.0067 (5)
N10.040 (2)0.0425 (19)0.039 (2)0.0004 (15)0.0031 (16)0.0033 (15)
N20.0425 (15)0.0282 (14)0.045 (2)0.0023 (11)0.0037 (16)0.0026 (18)
N30.0423 (18)0.0379 (19)0.0412 (19)0.0049 (14)0.0018 (15)0.0015 (14)
N40.0407 (17)0.0389 (17)0.0354 (18)0.0009 (14)0.0011 (14)0.0015 (14)
N50.0437 (15)0.0285 (13)0.0377 (19)0.0032 (11)0.0077 (16)0.0027 (18)
N60.044 (2)0.0368 (16)0.040 (2)0.0002 (16)0.0019 (15)0.0035 (16)
C10.049 (2)0.051 (3)0.049 (3)0.0090 (19)0.004 (2)0.003 (2)
C20.045 (3)0.074 (3)0.047 (3)0.009 (3)0.001 (2)0.000 (3)
C30.044 (3)0.082 (4)0.050 (3)0.003 (2)0.004 (2)0.008 (3)
C40.047 (2)0.058 (3)0.043 (2)0.0064 (19)0.0035 (19)0.0075 (19)
C50.040 (2)0.041 (2)0.045 (2)0.0038 (16)0.0098 (18)0.0067 (17)
C60.043 (2)0.039 (2)0.043 (2)0.0068 (17)0.0092 (18)0.0042 (16)
C70.058 (3)0.039 (2)0.049 (3)0.0110 (19)0.013 (2)0.0118 (18)
C80.064 (3)0.0271 (18)0.055 (4)0.0050 (16)0.020 (2)0.0069 (17)
C90.057 (3)0.037 (2)0.052 (2)0.0085 (18)0.015 (2)0.0036 (18)
C100.041 (2)0.034 (2)0.042 (2)0.0035 (15)0.0067 (17)0.0009 (16)
C110.039 (2)0.047 (2)0.039 (2)0.0063 (16)0.0065 (17)0.0016 (17)
C120.054 (3)0.054 (3)0.045 (3)0.005 (2)0.004 (2)0.0063 (19)
C130.052 (3)0.073 (3)0.050 (3)0.008 (2)0.004 (2)0.017 (2)
C140.053 (4)0.082 (4)0.050 (3)0.013 (3)0.009 (3)0.002 (2)
C150.057 (3)0.047 (2)0.044 (3)0.007 (2)0.000 (2)0.002 (2)
C160.049 (3)0.043 (2)0.046 (3)0.0086 (19)0.002 (2)0.0062 (19)
C170.057 (3)0.060 (3)0.041 (3)0.013 (2)0.007 (2)0.002 (2)
C180.047 (3)0.069 (3)0.044 (3)0.004 (2)0.004 (2)0.006 (2)
C190.046 (2)0.049 (2)0.046 (2)0.0081 (18)0.0012 (19)0.0030 (18)
C200.043 (2)0.039 (2)0.039 (2)0.0009 (16)0.0083 (17)0.0016 (16)
C210.042 (2)0.032 (2)0.041 (2)0.0008 (15)0.0046 (16)0.0014 (16)
C220.049 (2)0.035 (2)0.051 (2)0.0050 (16)0.0085 (18)0.0046 (18)
C230.059 (2)0.0281 (17)0.046 (3)0.0025 (16)0.0182 (19)0.0032 (17)
C240.056 (2)0.041 (2)0.043 (2)0.0148 (18)0.0087 (19)0.0076 (17)
C250.045 (2)0.0344 (19)0.035 (2)0.0035 (16)0.0074 (17)0.0060 (15)
C260.042 (2)0.044 (2)0.037 (2)0.0072 (17)0.0027 (17)0.0048 (16)
C270.054 (3)0.051 (3)0.045 (2)0.010 (2)0.0010 (19)0.0077 (19)
C280.044 (3)0.081 (3)0.043 (3)0.011 (2)0.0042 (19)0.002 (2)
C290.049 (3)0.068 (3)0.047 (3)0.004 (2)0.002 (2)0.008 (2)
C300.045 (2)0.046 (3)0.051 (3)0.0013 (19)0.001 (2)0.003 (2)
O10.094 (3)0.079 (3)0.100 (3)0.001 (2)0.011 (2)0.014 (2)
O20.109 (3)0.067 (2)0.109 (3)0.024 (2)0.035 (3)0.012 (2)
Cl30.0685 (7)0.0689 (8)0.0892 (10)0.0103 (6)0.0019 (7)0.0065 (7)
Cl40.0767 (8)0.0468 (6)0.0941 (10)0.0041 (5)0.0233 (7)0.0034 (6)
Geometric parameters (Å, º) top
Ru1—N12.075 (4)C11—C121.387 (6)
Ru1—N21.981 (3)C12—C131.377 (7)
Ru1—N32.079 (4)C12—H120.9300
Ru1—N42.062 (3)C13—C141.355 (7)
Ru1—N51.977 (3)C13—H130.9300
Ru1—N62.077 (4)C14—C151.407 (8)
Cl1—C81.740 (4)C14—H140.9300
Cl2—C231.732 (4)C15—H150.9300
N1—C11.333 (6)C16—C171.362 (7)
N1—C51.371 (5)C16—H160.9300
N2—C101.350 (5)C17—C181.392 (6)
N2—C61.360 (5)C17—H170.9300
N3—C151.318 (6)C18—C191.381 (6)
N3—C111.373 (5)C18—H180.9300
N4—C161.334 (5)C19—C201.379 (5)
N4—C201.376 (5)C19—H190.9300
N5—C211.348 (5)C20—C211.475 (5)
N5—C251.361 (5)C21—C221.385 (6)
N6—C301.340 (5)C22—C231.380 (6)
N6—C261.377 (5)C22—H220.9300
C1—C21.380 (7)C23—C241.382 (6)
C1—H10.9300C24—C251.387 (5)
C2—C31.355 (7)C24—H240.9300
C2—H20.9300C25—C261.462 (6)
C3—C41.383 (7)C26—C271.393 (6)
C3—H30.9300C27—C281.373 (7)
C4—C51.398 (6)C27—H270.9300
C4—H40.9300C28—C291.370 (7)
C5—C61.463 (5)C28—H280.9300
C6—C71.385 (6)C29—C301.396 (7)
C7—C81.380 (6)C29—H290.9300
C7—H70.9300C30—H300.9300
C8—C91.386 (6)O1—H1A0.8501
C9—C101.394 (6)O1—H1B0.8500
C9—H90.9299O2—H2A0.8500
C10—C111.462 (6)O2—H2B0.8500
N5—Ru1—N2179.19 (14)N3—C11—C12120.9 (4)
N5—Ru1—N478.99 (14)N3—C11—C10115.2 (3)
N2—Ru1—N4101.35 (14)C12—C11—C10123.8 (4)
N5—Ru1—N1100.25 (14)C13—C12—C11119.4 (4)
N2—Ru1—N179.01 (15)C13—C12—H12120.3
N4—Ru1—N192.66 (14)C11—C12—H12120.3
N5—Ru1—N678.84 (14)C14—C13—C12119.6 (5)
N2—Ru1—N6100.83 (14)C14—C13—H13120.2
N4—Ru1—N6157.79 (12)C12—C13—H13120.2
N1—Ru1—N692.64 (11)C13—C14—C15119.2 (5)
N5—Ru1—N3102.01 (14)C13—C14—H14120.4
N2—Ru1—N378.74 (14)C15—C14—H14120.4
N4—Ru1—N389.93 (12)N3—C15—C14122.1 (5)
N1—Ru1—N3157.68 (12)N3—C15—H15119.0
N6—Ru1—N393.28 (14)C14—C15—H15119.0
C1—N1—C5118.3 (4)N4—C16—C17123.6 (4)
C1—N1—Ru1128.0 (3)N4—C16—H16118.2
C5—N1—Ru1113.8 (3)C17—C16—H16118.2
C10—N2—C6122.0 (3)C16—C17—C18119.7 (4)
C10—N2—Ru1119.2 (3)C16—C17—H17120.1
C6—N2—Ru1118.8 (3)C18—C17—H17120.1
C15—N3—C11118.7 (4)C19—C18—C17117.8 (4)
C15—N3—Ru1127.5 (3)C19—C18—H18121.1
C11—N3—Ru1113.7 (3)C17—C18—H18121.1
C16—N4—C20117.2 (4)C20—C19—C18119.8 (4)
C16—N4—Ru1128.3 (3)C20—C19—H19120.1
C20—N4—Ru1114.4 (3)C18—C19—H19120.1
C21—N5—C25121.5 (3)N4—C20—C19121.8 (4)
C21—N5—Ru1119.3 (3)N4—C20—C21114.4 (3)
C25—N5—Ru1119.2 (3)C19—C20—C21123.8 (3)
C30—N6—C26118.5 (4)N5—C21—C22120.4 (4)
C30—N6—Ru1127.5 (3)N5—C21—C20112.9 (3)
C26—N6—Ru1113.9 (3)C22—C21—C20126.7 (4)
N1—C1—C2122.9 (4)C23—C22—C21118.2 (4)
N1—C1—H1118.5C23—C22—H22120.9
C2—C1—H1118.5C21—C22—H22120.9
C3—C2—C1119.6 (5)C22—C23—C24121.6 (4)
C3—C2—H2120.2C22—C23—Cl2118.4 (3)
C1—C2—H2120.2C24—C23—Cl2120.0 (3)
C2—C3—C4119.3 (4)C23—C24—C25118.3 (4)
C2—C3—H3120.4C23—C24—H24120.9
C4—C3—H3120.4C25—C24—H24120.9
C3—C4—C5119.4 (4)N5—C25—C24119.9 (4)
C3—C4—H4120.3N5—C25—C26112.9 (3)
C5—C4—H4120.3C24—C25—C26127.1 (3)
N1—C5—C4120.5 (4)N6—C26—C27120.9 (4)
N1—C5—C6115.4 (4)N6—C26—C25115.1 (3)
C4—C5—C6124.1 (4)C27—C26—C25124.0 (4)
N2—C6—C7120.0 (4)C28—C27—C26119.1 (4)
N2—C6—C5113.0 (3)C28—C27—H27120.5
C7—C6—C5127.0 (4)C26—C27—H27120.5
C8—C7—C6117.9 (4)C29—C28—C27120.6 (4)
C8—C7—H7121.1C29—C28—H28119.7
C6—C7—H7121.1C27—C28—H28119.7
C7—C8—C9122.5 (4)C28—C29—C30118.4 (5)
C7—C8—Cl1119.4 (3)C28—C29—H29120.8
C9—C8—Cl1118.1 (3)C30—C29—H29120.8
C8—C9—C10117.3 (4)N6—C30—C29122.5 (4)
C8—C9—H9122.3N6—C30—H30118.8
C10—C9—H9120.4C29—C30—H30118.8
N2—C10—C9120.2 (4)H1A—O1—H1B109.5
N2—C10—C11113.1 (3)H2A—O2—H2B109.5
C9—C10—C11126.7 (4)
N5—Ru1—N1—C13.0 (4)C4—C5—C6—C71.6 (6)
N2—Ru1—N1—C1177.4 (4)N2—C6—C7—C80.9 (5)
N4—Ru1—N1—C176.3 (4)C5—C6—C7—C8178.4 (4)
N6—Ru1—N1—C182.1 (4)C6—C7—C8—C90.3 (6)
N3—Ru1—N1—C1172.6 (3)C6—C7—C8—Cl1179.6 (3)
N5—Ru1—N1—C5176.9 (3)C7—C8—C9—C100.8 (6)
N2—Ru1—N1—C52.7 (3)Cl1—C8—C9—C10179.3 (3)
N4—Ru1—N1—C5103.8 (3)C6—N2—C10—C90.8 (6)
N6—Ru1—N1—C597.8 (3)Ru1—N2—C10—C9178.8 (3)
N3—Ru1—N1—C57.5 (6)C6—N2—C10—C11179.0 (3)
N4—Ru1—N2—C1087.1 (3)Ru1—N2—C10—C111.3 (5)
N1—Ru1—N2—C10177.6 (3)C8—C9—C10—N21.4 (5)
N6—Ru1—N2—C1091.8 (3)C8—C9—C10—C11178.4 (4)
N3—Ru1—N2—C100.6 (3)C15—N3—C11—C122.5 (6)
N4—Ru1—N2—C693.2 (3)Ru1—N3—C11—C12174.2 (3)
N1—Ru1—N2—C62.7 (3)C15—N3—C11—C10179.4 (4)
N6—Ru1—N2—C687.9 (3)Ru1—N3—C11—C103.9 (4)
N3—Ru1—N2—C6179.1 (3)N2—C10—C11—N33.5 (5)
N5—Ru1—N3—C151.5 (4)C9—C10—C11—N3176.7 (4)
N2—Ru1—N3—C15178.8 (4)N2—C10—C11—C12174.6 (4)
N4—Ru1—N3—C1577.2 (4)C9—C10—C11—C125.2 (6)
N1—Ru1—N3—C15174.1 (4)N3—C11—C12—C130.0 (6)
N6—Ru1—N3—C1580.8 (4)C10—C11—C12—C13178.0 (4)
N5—Ru1—N3—C11177.8 (3)C11—C12—C13—C141.1 (7)
N2—Ru1—N3—C112.5 (3)C12—C13—C14—C150.2 (8)
N4—Ru1—N3—C1199.1 (3)C11—N3—C15—C143.9 (7)
N1—Ru1—N3—C112.3 (5)Ru1—N3—C15—C14172.3 (4)
N6—Ru1—N3—C11102.9 (3)C13—C14—C15—N32.8 (8)
N5—Ru1—N4—C16175.6 (4)C20—N4—C16—C170.6 (6)
N2—Ru1—N4—C165.1 (4)Ru1—N4—C16—C17174.8 (4)
N1—Ru1—N4—C1684.4 (4)N4—C16—C17—C180.8 (8)
N6—Ru1—N4—C16171.9 (4)C16—C17—C18—C190.8 (7)
N3—Ru1—N4—C1673.4 (4)C17—C18—C19—C202.4 (6)
N5—Ru1—N4—C200.1 (3)C16—N4—C20—C191.1 (5)
N2—Ru1—N4—C20179.4 (3)Ru1—N4—C20—C19177.1 (3)
N1—Ru1—N4—C20100.0 (3)C16—N4—C20—C21177.3 (3)
N6—Ru1—N4—C203.6 (5)Ru1—N4—C20—C211.2 (4)
N3—Ru1—N4—C20102.1 (3)C18—C19—C20—N42.6 (6)
N4—Ru1—N5—C211.1 (3)C18—C19—C20—C21175.5 (4)
N1—Ru1—N5—C2189.6 (3)C25—N5—C21—C223.3 (6)
N6—Ru1—N5—C21179.7 (3)Ru1—N5—C21—C22176.7 (3)
N3—Ru1—N5—C2188.7 (3)C25—N5—C21—C20178.0 (3)
N4—Ru1—N5—C25178.9 (3)Ru1—N5—C21—C202.1 (5)
N1—Ru1—N5—C2590.3 (3)N4—C20—C21—N52.1 (5)
N6—Ru1—N5—C250.3 (3)C19—C20—C21—N5176.2 (4)
N3—Ru1—N5—C2591.4 (3)N4—C20—C21—C22176.6 (4)
N5—Ru1—N6—C30179.7 (4)C19—C20—C21—C225.1 (6)
N2—Ru1—N6—C301.1 (4)N5—C21—C22—C233.5 (6)
N4—Ru1—N6—C30176.0 (3)C20—C21—C22—C23178.0 (4)
N1—Ru1—N6—C3080.4 (4)C21—C22—C23—C241.2 (6)
N3—Ru1—N6—C3078.1 (3)C21—C22—C23—Cl2179.6 (3)
N5—Ru1—N6—C260.3 (3)C22—C23—C24—C251.3 (6)
N2—Ru1—N6—C26179.5 (3)Cl2—C23—C24—C25177.9 (3)
N4—Ru1—N6—C263.4 (6)C21—N5—C25—C240.7 (6)
N1—Ru1—N6—C26100.2 (3)Ru1—N5—C25—C24179.2 (3)
N3—Ru1—N6—C26101.3 (3)C21—N5—C25—C26179.2 (3)
C5—N1—C1—C20.9 (6)Ru1—N5—C25—C260.8 (4)
Ru1—N1—C1—C2179.0 (3)C23—C24—C25—N51.5 (5)
N1—C1—C2—C30.4 (7)C23—C24—C25—C26178.6 (4)
C1—C2—C3—C41.3 (6)C30—N6—C26—C271.1 (6)
C2—C3—C4—C50.9 (6)Ru1—N6—C26—C27179.4 (3)
C1—N1—C5—C41.3 (6)C30—N6—C26—C25179.7 (3)
Ru1—N1—C5—C4178.6 (3)Ru1—N6—C26—C250.8 (4)
C1—N1—C5—C6177.6 (3)N5—C25—C26—N61.1 (5)
Ru1—N1—C5—C62.4 (4)C24—C25—C26—N6179.0 (4)
C3—C4—C5—N10.4 (6)N5—C25—C26—C27179.6 (4)
C3—C4—C5—C6178.5 (4)C24—C25—C26—C270.5 (6)
C10—N2—C6—C70.3 (6)N6—C26—C27—C280.6 (6)
Ru1—N2—C6—C7180.0 (3)C25—C26—C27—C28179.1 (4)
C10—N2—C6—C5178.2 (4)C26—C27—C28—C290.4 (7)
Ru1—N2—C6—C52.2 (4)C27—C28—C29—C300.8 (7)
N1—C5—C6—N20.3 (5)C26—N6—C30—C290.7 (6)
C4—C5—C6—N2179.2 (4)Ru1—N6—C30—C29179.9 (3)
N1—C5—C6—C7177.3 (4)C28—C29—C30—N60.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl40.932.683.590 (5)169
C12—H12···O2i0.932.573.391 (6)148
C15—H15···O1ii0.932.483.179 (7)132
C16—H16···Cl4iii0.932.813.498 (5)132
C27—H27···O1iv0.932.603.474 (7)158
C28—H28···Cl4iv0.932.823.686 (4)156
C30—H30···O2ii0.932.543.203 (6)128
O1—H1A···Cl40.852.763.231 (5)116
O1—H1B···Cl4v0.852.683.176 (4)118
O2—H2A···Cl30.852.513.156 (4)133
O2—H2B···Cl3vi0.852.583.209 (4)132
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+3/2, z; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z; (vi) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ru(C15H10ClN3)2]Cl2·2H2O
Mr743.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)291
a, b, c (Å)10.1367 (5), 16.2964 (7), 17.8995 (8)
V3)2956.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.850, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
15880, 5166, 4736
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.01
No. of reflections5166
No. of parameters389
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.42
Absolute structureFlack (1983), 2475 Friedel pairs
Absolute structure parameter0.47 (3)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl40.932.683.590 (5)169
C12—H12···O2i0.932.573.391 (6)148
C15—H15···O1ii0.932.483.179 (7)132.3
C16—H16···Cl4iii0.932.813.498 (5)132
C27—H27···O1iv0.932.603.474 (7)158
C28—H28···Cl4iv0.932.823.686 (4)156
C30—H30···O2ii0.932.543.203 (6)128
O1—H1A···Cl40.852.763.231 (5)116
O1—H1B···Cl4v0.852.683.176 (4)118
O2—H2A···Cl30.852.513.156 (4)133
O2—H2B···Cl3vi0.852.583.209 (4)132
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+3/2, z; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z; (vi) x1/2, y+1/2, z.
 

Acknowledgements

WH would like to acknowledge the National Natural Science Foundation of China (No. 21171088) for financial aid.

References

First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Zampese, J. A. (2008). Inorg. Chem. Commun. 11, 1006–1008.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, W. & Qian, H. F. (2007a). J. Mol. Struct. 832, 108–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, W. & Qian, H. F. (2007b). J. Mol. Struct. 874, 64–76.  Web of Science CSD CrossRef Google Scholar
First citationHuang, W., You, W., Wang, L. & Yao, C. (2009). Inorg. Chim. Acta, 362, 2127–2135.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, W., Huang, W., Fan, Y. & Yao, C. (2009). J. Coord. Chem. 62, 2125–2137.  Web of Science CSD CrossRef CAS Google Scholar
First citationYou, W., Yang, X.-Y., Yao, C. & Huang, W. (2008). Acta Cryst. E64, m79.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m777-m778
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds