metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-hydroxido-bis­­[hemi­aqua­(N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine)­copper(II)] bis­­(tetra­fluoridoborate)

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia, and bDepartment of Inorganic Chemistry, Faculty of Science, Palacký University, Tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic
*Correspondence e-mail: jaroslava.hanikova@student.upjs.sk

(Received 23 April 2012; accepted 14 May 2012; online 19 May 2012)

The title compound, [Cu2(OH)2(C6H16N2)2(H2O)](BF4)2, consists of dinuclear centrosymmetric [Cu2(OH)2(tmen)2(H2O)]2+ complex cations (tmen = N,N,N′,N′-tetra­methyl­ethane-1,2-diamine) and tetra­fluoridoborate anions. In the cation, the CuII atom shows a slightly distorted square-pyramidal coordination geometry provided by a pair of μ-OH anions and by the N atoms of a chelate tmen ligand in the basal plane. The apical position is statistically occupied by the O atom of a half-occupancy water mol­ecule. The F atoms of the anion are disordered over three sets of sites with occupancies of 0.598 (9):0.269 (6):0.134 (8). The crystal packing is governed by ionic forces as well as by O—H⋯F hydrogen bonds.

Related literature

For the structures of related copper(II) complexes, see: Haníková et al. (2012[Haníková, J., Černák, J., Kuchár, J. & Čižmár, E. (2012). Inorg. Chim. Acta, 385, 178-184.]); Handley et al. (2001[Handley, D. A., Hitchock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 316, 59-64.]); Černák et al. (2010[Černák, J., Haníková, J., Kuchár, J., Čižmár, E. & Trávníček, Z. (2010). J. Mol. Struct. 963, 71-75.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(OH)2(C6H16N2)2(H2O)](BF4)2

  • Mr = 585.32

  • Monoclinic, P 21 /c

  • a = 7.5878 (3) Å

  • b = 14.7081 (3) Å

  • c = 11.4164 (3) Å

  • β = 109.174 (4)°

  • V = 1203.41 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 103 K

  • 0.45 × 0.34 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: numerical [Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) in CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])] Tmin = 0.475, Tmax = 0.630

  • 9405 measured reflections

  • 2118 independent reflections

  • 1916 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.12

  • 2118 reflections

  • 168 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯F8i 0.85 1.92 2.717 (4) 156
O1—H1O1⋯F3i 0.85 2.23 3.024 (4) 155
O2—H1O2⋯F12ii 0.87 2.08 2.942 (6) 172
O2—H1O2⋯F4ii 0.87 2.09 2.949 (6) 172
O2—H1O2⋯F6ii 0.87 2.31 3.146 (6) 163
O2—H2O2⋯F2iii 0.85 1.41 2.251 (8) 167
O2—H2O2⋯F9iii 0.85 1.70 2.491 (8) 153
O2—H2O2⋯F7iii 0.85 2.00 2.808 (8) 157
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2007[Crystal Impact (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study on crystal structures and magnetic properties of Cu(II) complexes with general formula Cu(LL)2X2 (LL are en or its N-methylated derivates, X are anions based on fluorine atom; Haníková et al., 2012; Černák et al., 2010) herein we report the crystal structure of the title complex [{Cu(H2O)0.5(OH)(tmen)}2](BF4)2 (tmen is N,N,N',N'-tetramethyl-ethane-1,2-diamine). In contrast to the previously studied complexes Cu(LL)2X2 in which two diamine ligands LL were coordinated to the Cu(II) atom, in the title complex only one tmen ligand is coordinated, presumably due to steric effects. The crystal structure is essentially ionic and is built up of the centrosymmetric dimeric complex cations and tetrafluoridoborate anions (Fig. 1). In the centrosymmetric complex cation the Cu(II) atom is at 50% pentacoordinated. The calculated value of the τ parameter (τ = 16.4%; Addison et al., 1984) indicates that the coordination polyhedron is close to tetragonal pyramid. On the other hand, in the similar [{Cu(OH)(tmen)}2](2BF4)2 complex the Cu(II) atom exhibits square coordination (Handley et al., 2001). The two µ2-hydroxido ligands link the Cu(II) atoms somewhat unsymmetrically, one Cu—O distance being 1.905 (3) Å and the the other 1.916 (3) Å. The coordination plane is completed by two nitrogen atoms from a chelate tmen ligand and the apical position is statistically (50%) occupied by the O atom of a disordered water molecule at a longer Cu—O distance of 2.440 (6) Å. The BF4- anion exhibits a high degree of disorder, the fluorine atoms occupying three disordered positions with refined s.o.f.'s of 0.598 (9):0.269 (6):0.138 (8). The crystal structure (Fig. 2) is additionally stabilized by O—H···F hydrogen bonds (Table 1).

Related literature top

For the structures of related copper(II) complexes, see: Haníková et al. (2012); Handley et al. (2001); Černák et al. (2010). For additional structural analysis, see: Addison et al. (1984).

Experimental top

The dropwise addition of tmen (0.27 cm3, 5 mmol) to a blue solution of Cu(BF4)2.6H2O (1.2 g, 5 mmol) in 20 cm3 of a water:ethanol mixture (1:1 v/v) yielded a violet solution, which was filtered. After seven days blue prisms appeared ion slow evaporation of the solvent which were separated by filtration and dried on air. Yield: 0.55 g (75%).

Anal. [%] (CHNOS Elemental Analyzer vario MICRO, Elementar Analysensysteme GmbH, copper complexometrically) calculated for Cu2C12N4H36B2F8O3 (Mr = 585.32): C, 24.63; H, 6.20; N, 9.57; Cu, 21.75. Found: C, 24.70; H, 6.29; N, 9.59; Cu, 22.03. IR (KBr pellets technique, FT–IR Avatar 330 (ThermoNicolet), in cm-1): 3633 s; 3547 w; 3408 vs; 3005 w; 2922 m; 2902 m; 2860 w; 2816 w; 1622 s; 1475 vs; 1084 vs; 951 s; 807 s; 769 m; 521 s.

The electronic spectrum (Specord 250 spectrometer, Analytic Jena, in Nujol suspension) of the title compound displays a broad absorption band centred at 567 nm which may represent an envelope of transitions from components of t2g to x2–y2 level.

Refinement top

The hydroxy and water H atoms were located in a difference Fourier map and allowed to ride on their parent oxygen atoms with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). The positions of all other H atoms were calculated using an appropriate riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) (methylene groups) or 1.5Ueq(C) (methyl groups). The fluorine atoms of the anion are disordered over three orientations with refined occupancies of 0.598 (9):0.269 (6):0.138 (8). In order to keep the geometric parameters of the anion chemically reasonable, during the refinement the B–F and F···F distances were constrained to be 1.39 (1) and 2.28 (1) Å, respectively. The fluorine atoms of the lowest contributors were refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Only the major component of the disordered tetrafluridoborate anion is shown. Displacement ellipsoids are drawn at the 30 % probability level. Symmetry code: (i) 2-x, 1-y, -z.
[Figure 2] Fig. 2. Hydrogen bonding network in the title compound. Only the major components of the tetrafluridoborate anions are shown. Hydrogen bonds are depicted by dashed lines. Symmetry codes: (i) 2-x, 1-y, -z; (ii) 1+x, y, z.
Di-µ-hydroxido-bis[hemiaqua(N,N,N',N'- tetramethylethane-1,2-diamine)copper(II)] bis(tetrafluoridoborate) top
Crystal data top
[Cu2(OH)2(C6H16N2)2(H2O)](BF4)2F(000) = 600
Mr = 585.32Dx = 1.615 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3802 reflections
a = 7.5878 (3) Åθ = 2.8–31.9°
b = 14.7081 (3) ŵ = 1.85 mm1
c = 11.4164 (3) ÅT = 103 K
β = 109.174 (4)°Prism, blue
V = 1203.41 (6) Å30.45 × 0.34 × 0.25 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2118 independent reflections
Radiation source: fine-focus sealed tube1916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.3438 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scansh = 96
Absorption correction: numerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
k = 1717
Tmin = 0.475, Tmax = 0.630l = 1213
9405 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0802P)2 + 2.3095P]
where P = (Fo2 + 2Fc2)/3
2118 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 1.01 e Å3
1 restraintΔρmin = 0.61 e Å3
Crystal data top
[Cu2(OH)2(C6H16N2)2(H2O)](BF4)2V = 1203.41 (6) Å3
Mr = 585.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5878 (3) ŵ = 1.85 mm1
b = 14.7081 (3) ÅT = 103 K
c = 11.4164 (3) Å0.45 × 0.34 × 0.25 mm
β = 109.174 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
2118 independent reflections
Absorption correction: numerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
1916 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.630Rint = 0.017
9405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.143H-atom parameters constrained
S = 1.12Δρmax = 1.01 e Å3
2118 reflectionsΔρmin = 0.61 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.99395 (7)0.44147 (3)0.10450 (4)0.0366 (2)
O11.1407 (5)0.5349 (2)0.0666 (3)0.0549 (9)
H1O11.23950.55090.12380.066*
N10.8191 (5)0.3470 (2)0.1312 (3)0.0327 (7)
N21.1260 (5)0.4391 (2)0.2902 (3)0.0314 (7)
C10.9128 (7)0.3110 (3)0.2589 (4)0.0415 (10)
H1A0.82010.28020.28920.050*
H1B1.00900.26590.25740.050*
C21.0012 (6)0.3876 (3)0.3435 (4)0.0409 (10)
H2A0.90360.42840.35360.049*
H2B1.07440.36350.42610.049*
C30.7852 (7)0.2687 (3)0.0449 (4)0.0439 (10)
H3A0.69880.22610.06370.066*
H3B0.90350.23780.05450.066*
H3C0.73080.29040.04060.066*
C40.6393 (7)0.3896 (3)0.1180 (4)0.0477 (11)
H4A0.57900.40790.03150.072*
H4B0.65930.44330.17160.072*
H4C0.55940.34620.14200.072*
C51.3102 (6)0.3950 (3)0.3208 (4)0.0418 (10)
H5A1.36920.39280.41100.063*
H5B1.38920.42990.28420.063*
H5C1.29470.33310.28730.063*
C61.1527 (6)0.5319 (3)0.3457 (4)0.0443 (10)
H6A1.03230.56340.32230.066*
H6B1.23930.56620.31490.066*
H6C1.20410.52710.43620.066*
O21.1575 (9)0.3292 (5)0.0210 (6)0.0530 (17)0.50
H1O21.19820.33700.04100.079*0.50
H2O21.21270.28210.05960.079*0.50
B10.3609 (3)0.36611 (14)0.2852 (2)0.0427 (11)
F10.3327 (3)0.44656 (14)0.3535 (2)0.0314 (13)0.598 (9)
F20.2736 (3)0.29431 (14)0.3627 (2)0.073 (2)0.598 (9)
F30.5517 (3)0.34845 (14)0.2352 (2)0.0541 (16)0.598 (9)
F40.2853 (3)0.37442 (14)0.1896 (2)0.063 (2)0.598 (9)
F50.2794 (3)0.43234 (14)0.3741 (2)0.046 (4)0.269 (6)
F60.2286 (3)0.33315 (14)0.2353 (2)0.118 (9)0.269 (6)
F70.4266 (3)0.29504 (14)0.3404 (2)0.114 (7)0.269 (6)
F80.5095 (3)0.40444 (14)0.1910 (2)0.057 (3)0.269 (6)
F90.2163 (3)0.32255 (14)0.3763 (2)0.103 (14)*0.134 (8)
F100.5273 (3)0.31908 (14)0.2676 (2)0.046 (7)*0.134 (8)
F110.3789 (3)0.45493 (14)0.3227 (2)0.024 (6)*0.134 (8)
F120.3210 (3)0.36779 (14)0.1743 (2)0.067 (10)*0.134 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0540 (4)0.0325 (3)0.0289 (3)0.0106 (2)0.0212 (2)0.00740 (18)
O10.082 (2)0.0584 (19)0.0257 (15)0.0393 (18)0.0190 (15)0.0040 (14)
N10.0516 (19)0.0269 (16)0.0236 (15)0.0095 (14)0.0178 (14)0.0008 (13)
N20.0404 (17)0.0258 (17)0.0333 (17)0.0060 (13)0.0193 (14)0.0025 (12)
C10.061 (3)0.037 (2)0.030 (2)0.0131 (19)0.0200 (19)0.0049 (17)
C20.049 (2)0.048 (2)0.0278 (19)0.015 (2)0.0164 (17)0.0039 (18)
C30.067 (3)0.028 (2)0.038 (2)0.0014 (19)0.019 (2)0.0051 (17)
C40.064 (3)0.039 (2)0.051 (3)0.007 (2)0.034 (2)0.011 (2)
C50.045 (2)0.038 (2)0.044 (2)0.0001 (18)0.0163 (19)0.0053 (19)
C60.056 (3)0.032 (2)0.046 (2)0.0030 (19)0.018 (2)0.0064 (19)
O20.058 (4)0.077 (5)0.038 (3)0.004 (3)0.034 (3)0.006 (3)
B10.035 (2)0.040 (3)0.044 (3)0.004 (2)0.000 (2)0.006 (2)
F10.028 (2)0.026 (2)0.024 (2)0.007 (2)0.013 (2)0.0041 (18)
F20.088 (4)0.046 (3)0.057 (3)0.019 (3)0.013 (3)0.005 (2)
F30.040 (3)0.052 (3)0.060 (3)0.013 (2)0.003 (2)0.011 (3)
F40.065 (3)0.085 (5)0.051 (3)0.007 (3)0.033 (3)0.029 (3)
F50.041 (6)0.042 (6)0.037 (6)0.005 (5)0.010 (5)0.003 (4)
F60.059 (8)0.043 (8)0.26 (3)0.002 (6)0.067 (12)0.022 (11)
F70.042 (7)0.060 (8)0.24 (2)0.005 (6)0.046 (10)0.061 (11)
F80.039 (5)0.084 (9)0.041 (6)0.006 (6)0.001 (4)0.004 (6)
Geometric parameters (Å, º) top
Cu1—O11.905 (3)C4—H4B0.9800
Cu1—O1i1.916 (3)C4—H4C0.9800
Cu1—N12.013 (3)C5—H5A0.9800
Cu1—N22.026 (3)C5—H5B0.9800
Cu1—O22.440 (6)C5—H5C0.9800
Cu1—Cu1i2.9683 (8)C6—H6A0.9800
O1—Cu1i1.916 (3)C6—H6B0.9800
O1—H1O10.8499C6—H6C0.9800
N1—C41.463 (6)O2—H1O20.8678
N1—C31.482 (5)O2—H2O20.8533
N1—C11.493 (5)B1—F11.3940
N2—C51.475 (5)B1—F71.3942
N2—C21.489 (5)B1—F61.3942
N2—C61.491 (5)B1—F31.3950
C1—C21.492 (6)B1—F111.3950
C1—H1A0.9900B1—F101.3950
C1—H1B0.9900B1—F41.3953
C2—H2A0.9900B1—F121.3954
C2—H2B0.9900B1—F91.3956
C3—H3A0.9800B1—F51.3960
C3—H3B0.9800B1—F81.3964
C3—H3C0.9800B1—F21.3969
C4—H4A0.9800
O1—Cu1—O1i78.06 (15)H3A—C3—H3B109.5
O1—Cu1—N1174.71 (14)N1—C3—H3C109.5
O1i—Cu1—N197.06 (13)H3A—C3—H3C109.5
O1—Cu1—N297.18 (13)H3B—C3—H3C109.5
O1i—Cu1—N2170.09 (14)N1—C4—H4A109.5
N1—Cu1—N287.33 (12)N1—C4—H4B109.5
O1—Cu1—O289.4 (2)H4A—C4—H4B109.5
O1i—Cu1—O283.9 (2)N1—C4—H4C109.5
N1—Cu1—O292.11 (19)H4A—C4—H4C109.5
N2—Cu1—O2104.89 (18)H4B—C4—H4C109.5
O1—Cu1—Cu1i39.16 (10)N2—C5—H5A109.5
O1i—Cu1—Cu1i38.90 (9)N2—C5—H5B109.5
N1—Cu1—Cu1i135.92 (9)H5A—C5—H5B109.5
N2—Cu1—Cu1i135.73 (9)N2—C5—H5C109.5
O2—Cu1—Cu1i85.68 (16)H5A—C5—H5C109.5
Cu1—O1—Cu1i101.94 (15)H5B—C5—H5C109.5
Cu1—O1—H1O1117.4N2—C6—H6A109.5
Cu1i—O1—H1O1140.6N2—C6—H6B109.5
C4—N1—C3108.2 (3)H6A—C6—H6B109.5
C4—N1—C1112.5 (3)N2—C6—H6C109.5
C3—N1—C1107.2 (3)H6A—C6—H6C109.5
C4—N1—Cu1109.1 (3)H6B—C6—H6C109.5
C3—N1—Cu1114.5 (3)Cu1—O2—H1O2126.3
C1—N1—Cu1105.5 (2)Cu1—O2—H2O2125.0
C5—N2—C2111.1 (3)H1O2—O2—H2O2106.4
C5—N2—C6108.4 (3)F7—B1—F6109.6
C2—N2—C6108.0 (3)F1—B1—F3109.6
C5—N2—Cu1111.1 (3)F11—B1—F10109.5
C2—N2—Cu1105.9 (2)F1—B1—F4109.6
C6—N2—Cu1112.3 (3)F3—B1—F4109.5
C2—C1—N1109.4 (3)F11—B1—F12109.5
C2—C1—H1A109.8F10—B1—F12109.5
N1—C1—H1A109.8F11—B1—F9109.5
C2—C1—H1B109.8F10—B1—F9109.5
N1—C1—H1B109.8F12—B1—F9109.4
H1A—C1—H1B108.2F7—B1—F5109.5
N2—C2—C1109.3 (3)F6—B1—F5109.5
N2—C2—H2A109.8F7—B1—F8109.4
C1—C2—H2A109.8F6—B1—F8109.5
N2—C2—H2B109.8F5—B1—F8109.3
C1—C2—H2B109.8F1—B1—F2109.5
H2A—C2—H2B108.3F3—B1—F2109.3
N1—C3—H3A109.5F4—B1—F2109.3
N1—C3—H3B109.5
O1i—Cu1—O1—Cu1i0.0O2—Cu1—N2—C517.2 (3)
N2—Cu1—O1—Cu1i171.19 (16)Cu1i—Cu1—N2—C582.1 (3)
O2—Cu1—O1—Cu1i83.9 (2)O1—Cu1—N2—C2165.2 (3)
O1i—Cu1—N1—C465.4 (3)N1—Cu1—N2—C212.1 (3)
N2—Cu1—N1—C4105.7 (3)O2—Cu1—N2—C2103.5 (3)
O2—Cu1—N1—C4149.5 (3)Cu1i—Cu1—N2—C2157.2 (2)
Cu1i—Cu1—N1—C463.6 (3)O1—Cu1—N2—C647.5 (3)
O1i—Cu1—N1—C355.9 (3)N1—Cu1—N2—C6129.7 (3)
N2—Cu1—N1—C3133.0 (3)O2—Cu1—N2—C6138.8 (3)
O2—Cu1—N1—C328.2 (3)Cu1i—Cu1—N2—C639.5 (3)
Cu1i—Cu1—N1—C357.8 (3)C4—N1—C1—C278.2 (4)
O1i—Cu1—N1—C1173.6 (3)C3—N1—C1—C2163.0 (4)
N2—Cu1—N1—C115.3 (3)Cu1—N1—C1—C240.6 (4)
O2—Cu1—N1—C189.5 (3)C5—N2—C2—C183.0 (4)
Cu1i—Cu1—N1—C1175.4 (2)C6—N2—C2—C1158.3 (4)
O1—Cu1—N2—C574.1 (3)Cu1—N2—C2—C137.7 (4)
N1—Cu1—N2—C5108.7 (3)N1—C1—C2—N253.7 (5)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···F8i0.851.922.717 (4)156
O1—H1O1···F3i0.852.233.024 (4)155
O2—H1O2···F12ii0.872.082.942 (6)172
O2—H1O2···F4ii0.872.092.949 (6)172
O2—H1O2···F6ii0.872.313.146 (6)163
O2—H2O2···F2iii0.851.412.251 (8)167
O2—H2O2···F9iii0.851.702.491 (8)153
O2—H2O2···F7iii0.852.002.808 (8)157
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(OH)2(C6H16N2)2(H2O)](BF4)2
Mr585.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)103
a, b, c (Å)7.5878 (3), 14.7081 (3), 11.4164 (3)
β (°) 109.174 (4)
V3)1203.41 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.45 × 0.34 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionNumerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
Tmin, Tmax0.475, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
9405, 2118, 1916
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.12
No. of reflections2118
No. of parameters168
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.61

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···F8i0.851.922.717 (4)155.6
O1—H1O1···F3i0.852.233.024 (4)154.5
O2—H1O2···F12ii0.872.082.942 (6)172.4
O2—H1O2···F4ii0.872.092.949 (6)172.1
O2—H1O2···F6ii0.872.313.146 (6)163.1
O2—H2O2···F2iii0.851.412.251 (8)167.0
O2—H2O2···F9iii0.851.702.491 (8)153.2
O2—H2O2···F7iii0.852.002.808 (8)157.4
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Slovak grant agency VEGA (grant 1/0089/09) and University student grants VVGS 1/12–13 and VVGS PF/2012/33.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationČernák, J., Haníková, J., Kuchár, J., Čižmár, E. & Trávníček, Z. (2010). J. Mol. Struct. 963, 71–75.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrystal Impact (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHandley, D. A., Hitchock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 316, 59–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaníková, J., Černák, J., Kuchár, J. & Čižmár, E. (2012). Inorg. Chim. Acta, 385, 178–184.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds